Two Decades Later: A Bibliographic Revision of Menegazzia in Chile with New Identification Key and Phylogenetic Perspectives
Abstract
1. State of the Art
1.1. Menegazzia Genus
1.2. Phylogenetic Framework of Menegazzia
1.3. Menegazzia Research in Chile
2. Distribution and Habitat Preferences of Menegazzia Species
3. Methodology
4. Description of Species Distributed in Chile
5. Discussion
6. Dichotomous Identification Key
| 2 |
Thallus with soralia; apothecia rare. | 8 |
| M. opuntioides |
Lobes not segmented; lobe width even, fatty acids or other depsides than barbatic acid present in medulla. | 3 |
| 4 |
Asci 8-spored, or with variable numbers of spores from 1 to 8 and then often associated with underdeveloped asci; spores small, shorter than 30 μm. | 7 |
| M. dispora (synonym M hollermayeri) |
Lobes narrow, 0.5–1.8 mm, flat or slightly concave, greyish or brownish, firmly attached; apothecia small, to 2.0 mm; stictic acid (K+ yellow, P+ orange-red) complex in medulla. | 5 |
| M. megalospora |
Lobes grey-green, occasionally pale brown towards tips; lobe tips shining, epruinose; perforations few to numerous. | 6 |
| M. wilsonii |
Lobes greenish, yellowish-green or distinctly yellow, not very greyish; not brownish towards center, long, radiating; perforations rounded to broadly ellipsoid; medulla in apothecia yellow-orange or white; lecanoric acid in medulla. | 7 |
| M. cincinnata |
Thalline exciples of apothecia thin, smooth and not crenulate; lobes greenish or yellow-green; asci often underdeveloped, with 0–8 spores. | M. valdiviensis |
| M. globulifera |
Soralia not vesicular in origin; lobes greyish or greyish-green; atranorin in upper cortex. | 9 |
| M. neozelandica |
Soralia not, or only in exceptional cases, associated with perforations; stictic acid complex present or absent. | 10 |
| 11 |
Soralia convex to subcapitate, only rarely with an open duct to the medullary cavity. | 16 |
| 12 |
Soralia not raised substantially above the upper surface; lobes not pustulate. | 13 |
| M. fumarprotocetrarica |
Pustules lacerate, not convex; stictic acid (K+ yellow) complex or norstictic acid (K+ red) in medulla. | M. magellanica |
| M. pertransita |
Soralia small; few soredia in each soralium; perforations mostly oval-ellipsoid; apothecia not known; protolichesterinic and lichesterinic acids (C–, K–) in medulla. | M. tenuis |
| 15 |
| M. chrysogaster |
Upper surface of medullary cavity white or brown-black, with or without orange patches. | 16 |
| M. violascens |
Lobes greyish, slightly to prominently maculate, without toe-like laterals; soralia and medulla UV–, not K+ violet; stictic acid complex or norstictic acid in medulla. | 17 |
| 18 |
Soralia variable, chemistry indistinct or weakly reactive (K± yellow, P–); species often confused with others. | M. confusa |
| M. terebrata |
Soralia mostly laminal; lobes slightly pruinose, faintly glossy, often convex; apothecia common; southern South America. | M. subpertusa |
| M. sanguinascens |
Lobes reticulately maculate; medulla greyish-white, without orange patches; stictic acid (K+ yellow) complex in medulla. | M. kawesqarica |
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menegazzia terebrata (Hoffm.) A.Massal. Available online: https://www.gbif.org/species/2603661 (accessed on 6 June 2025).
- Flora of Australia Volume 54—Lichens—Introduction, Lecanorales 1. DCCEEW. Available online: https://www.dcceew.gov.au/science-research/abrs/publications/flora-of-australia/vol54 (accessed on 6 June 2025).
- Hawksworth, D.L. Flora of New Zealand—Lichens. By David J. Galloway. 2007. Revised 2nd edn. Lincoln, New Zealand: Manaaki Whenua Press, Landcare Research, PO Box 40, Lincoln (www.landcare.co.nz/services/, mwpress@LandcareResearch.co.nz). 2 vols. Pp. cxxx + 2261, 16 colour plates. ISBN 10: 0-478-09376-4, 13: 987-0-478-09376-6. Price: NZ $79.99. Lichenologist 2009, 41, 109–110. [Google Scholar] [CrossRef]
- Culberson, C.F.; Culberson, W.L.; Johnson, A. A Standardized TLC Analysis of β-Orcinol Depsidones. Bryologist 1981, 84, 16–29. [Google Scholar] [CrossRef]
- Kantvilas, G. Further Additions to the Genus Menegazzia A. Massal. (Parmeliaceae) in Australia, with a Revised Regional Key. Lichenologist 2019, 51, 137–146. [Google Scholar] [CrossRef]
- Bjerke, J.W.; Elvebakk, A.; Quilhot, W. Distribution and Habitat Ecology of the Sorediate Species of Menegazzia (Parmeliaceae, Lichenized Ascomycota) in Chile. Rev. Chil. Hist. Nat. 2003, 76, 79–98. [Google Scholar] [CrossRef]
- Bjerke, J.W. Menegazzia subsimilis, a Widespread Sorediate Lichen. Lichenologist 2003, 35, 393–396. [Google Scholar] [CrossRef]
- Bjerke, J.W. Revision of the Lichen Genus Menegazzia in Japan, Including Two New Species. Lichenologist 2004, 36, 15–25. [Google Scholar] [CrossRef]
- Bjerke, J.W.; Obermayer, W. The Genus Menegazzia (Parmeliaceae, Lichenized Ascomycetes) in the Tibetan Region. Nova Hedwig. 2005, 81, 301–310. [Google Scholar] [CrossRef]
- Geiser, L.H.; Neitlich, P.N. Air Pollution and Climate Gradients in Western Oregon and Washington Indicated by Epiphytic Macrolichens. Environ. Pollut. 2007, 145, 203–218. [Google Scholar] [CrossRef]
- Jovan, S. Lichen Bioindication of Biodiversity, Air Quality, and Climate: Baseline Results from Monitoring in Washington, Oregon, and California; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2008; Volume 737.
- Farkas, E.; Varga, N.; Veres, K.; Matus, G.; Sinigla, M.; Lőkös, L. Distribution Types of Lichens in Hungary That Indicate Changing Environmental Conditions. J. Fungi 2022, 8, 600. [Google Scholar] [CrossRef]
- Osyczka, P.; Kościelniak, R.; Stanek, M. Old-Growth Forest versus Generalist Lichens: Sensitivity to Prolonged Desiccation Stress and Photosynthesis Reactivation Rate upon Rehydration. Mycologia 2024, 116, 31–43. [Google Scholar] [CrossRef]
- Geiser, L.H. Monitoring Air Quality Using Lichens on National Forests of the Pacific Northwest: Methods and Strategy; R6-NR-AQ-TP-1-04; US Department of Agriculture-Forest Service, Pacific Northwest Region, Air Resource Management: Portland, OR, USA, 2004.
- Thell, A.; Feuerer, T.; Kärnefelt, I.; Myllys, L.; Stenroos, S. Monophyletic Groups within the Parmeliaceae Identified by ITS rDNA, β-Tubulin and GAPDH Sequences. Mycol. Prog. 2004, 3, 297–314. [Google Scholar] [CrossRef]
- Crespo, A.; Kauff, F.; Divakar, P.K.; del Prado, R.; Pérez-Ortega, S.; de Paz, G.A.; Ferencova, Z.; Blanco, O.; Roca-Valiente, B.; Núñez-Zapata, J.; et al. Phylogenetic Generic Classification of Parmelioid Lichens (Parmeliaceae, Ascomycota) Based on Molecular, Morphological and Chemical Evidence. Taxon 2010, 59, 1735–1753. [Google Scholar] [CrossRef]
- Crespo, A.; Lumbsch, H.T.; Mattsson, J.-E.; Blanco, O.; Divakar, P.K.; Articus, K.; Wiklund, E.; Bawingan, P.A.; Wedin, M. Testing Morphology-Based Hypotheses of Phylogenetic Relationships in Parmeliaceae (Ascomycota) Using Three Ribosomal Markers and the Nuclear RPB1 Gene. Mol. Phylogenet. Evol. 2007, 44, 812–824. [Google Scholar] [CrossRef] [PubMed]
- Divakar, P.K.; Crespo, A.; Kraichak, E.; Leavitt, S.D.; Singh, G.; Schmitt, I.; Lumbsch, H.T. Using a Temporal Phylogenetic Method to Harmonize Family- and Genus-Level Classification in the Largest Clade of Lichen-Forming Fungi. Fungal Divers. 2017, 84, 101–117. [Google Scholar] [CrossRef]
- Grewe, F.; Ametrano, C.; Widhelm, T.J.; Leavitt, S.; Distefano, I.; Polyiam, W.; Pizarro, D.; Wedin, M.; Crespo, A.; Divakar, P.K.; et al. Using Target Enrichment Sequencing to Study the Higher-Level Phylogeny of the Largest Lichen-Forming Fungi Family: Parmeliaceae (Ascomycota). IMA Fungus 2020, 11, 27. [Google Scholar] [CrossRef]
- Santesson, R. The South American Menegazziae. Ark. För Bot. 1942, 30A, 1–35. [Google Scholar]
- Quilhot, W.; Rubio, C.; Bernal, M.; Wedin, M. Estructura de comunidades liquénicas en Embothrium coccineum (Proteaceae) en Laguna San Rafael, Chile. Boletín Mus. Nac. Hist. Nat. 2002, 51, 85–96. [Google Scholar] [CrossRef]
- Quilhot, W.; Cuellar, M.; Díaz, R.; Riquelme, F.; Rubio, C. Estudio Preliminar de La Flora Liquénica de Isla Mocha, Sur de Chile. Gayana. Botánica 2010, 67, 206–212. [Google Scholar] [CrossRef]
- Quilhot, W.; Cuellar, M.; Díaz, R.; Riquelme, F.; Rubio, C. Líquenes de Aisén, Sur de Chile. Gayana. Botánica 2012, 69, 57–87. [Google Scholar] [CrossRef]
- Quilhot, W.; Rubio, C.; Bjerke, J.W. El Género Menegazzia (Parmeliaceae, Ascomycotina Liquenizado) En Laguna San Rafael, Aisén, Chile. Boletín Mus. Nac. Hist. Nat. 2002, 51, 81–84. [Google Scholar]
- Bjerke, J.W. A New Sorediate Species of Menegazzia (Parmeliaceae, Lichenized Ascomycota) from Chile. Lichenologist 2001, 33, 117–120. [Google Scholar] [CrossRef]
- Bjerke, J.W. Synopsis of the Lichen Genus Menegazzia (Parmeliaceae, Ascomycota) in South America. Mycotaxon 2005, 91, 423–454. [Google Scholar]
- Bjerke, J.W.; Elvebakk, A. The Sorediate Species of the Genus Menegazzia (Parmeliaceae, Lichenized Ascomycotina) in Southermost South America. Mycotaxon 2001, 78, 363–392. [Google Scholar]
- Pereira, I.; Wang, X.Y.; Oh, S.-O.; Sánchez, P.; Hur, J.-S. Líquenes de Los Alrededores de Las Termas de Chillán y Las Trancas, Región Del Bío-Bío, Chile. Gayana Bot. 2016, 73, 104–112. [Google Scholar] [CrossRef]
- Rubio, C.; Saavedra, M.; Cuéllar, M.; Díaz, R.; Quilhot, W. Epiphytic Lichens of Conguillío National Park, Southern Chile. Gayana Bot. 2013, 70, 66–81. [Google Scholar] [CrossRef]
- Villagra, J.; Sancho, L.G.; Alors, D. Macrolichen Communities Depend on Phorophyte in Conguillío National Park, Chile. Plants 2023, 12, 2452. [Google Scholar] [CrossRef]
- Gauslaa, Y. Rain, Dew, and Humid Air as Drivers of Morphology, Function and Spatial Distribution in Epiphytic Lichens. Lichenologist 2014, 46, 1–16. [Google Scholar] [CrossRef]
- Alors, D.; Lumbsch, H.T.; Divakar, P.K.; Leavitt, S.D.; Crespo, A. An Integrative Approach for Understanding Diversity in the Punctelia rudecta Species Complex (Parmeliaceae, Ascomycota). PLoS ONE 2016, 11, e0146537. [Google Scholar] [CrossRef]
- Sayers, E.W.; Beck, J.; Bolton, E.E.; Brister, J.R.; Chan, J.; Connor, R.; Feldgarden, M.; Fine, A.M.; Funk, K.; Hoffman, J.; et al. Database Resources of the National Center for Biotechnology Information in 2025. Nucleic Acids Res. 2024, 53, D20–D29. [Google Scholar] [CrossRef]
- Evangelinos, D.; Etourneau, J.; van de Flierdt, T.; Crosta, X.; Jeandel, C.; Flores, J.-A.; Harwood, D.M.; Valero, L.; Ducassou, E.; Sauermilch, I.; et al. Late Miocene Onset of the Modern Antarctic Circumpolar Current. Nat. Geosci. 2024, 17, 165–170. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alors, D. Two Decades Later: A Bibliographic Revision of Menegazzia in Chile with New Identification Key and Phylogenetic Perspectives. Diversity 2025, 17, 483. https://doi.org/10.3390/d17070483
Alors D. Two Decades Later: A Bibliographic Revision of Menegazzia in Chile with New Identification Key and Phylogenetic Perspectives. Diversity. 2025; 17(7):483. https://doi.org/10.3390/d17070483
Chicago/Turabian StyleAlors, David. 2025. "Two Decades Later: A Bibliographic Revision of Menegazzia in Chile with New Identification Key and Phylogenetic Perspectives" Diversity 17, no. 7: 483. https://doi.org/10.3390/d17070483
APA StyleAlors, D. (2025). Two Decades Later: A Bibliographic Revision of Menegazzia in Chile with New Identification Key and Phylogenetic Perspectives. Diversity, 17(7), 483. https://doi.org/10.3390/d17070483