Subverting Dominance Hierarchies: Interspecific Submission and Agonistic Interactions Between Golden Jackals and a Red Fox
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Camera Trap Deployment and Behavioral Observation of Carnivore Interactions
3. Results
3.1. Submissive Interaction of a Golden Jackal Toward a Red Fox
3.2. Aggressive Interactions Between a Golden Jackal and a Red Fox
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Terborgh, J.; Estes, J.A.; Paquet, P.; Ralls, K.; Boyd-Heger, D.; Miller, B.J.; Noss, R.F. The Role of Top Carnivores in Regulating Terrestrial Ecosystems; Island Press: Washington, DC, USA, 1999. [Google Scholar]
- Roemer, G.W.; Gompper, M.E.; Van Valkenburgh, B. The Ecological Role of the Mammalian Mesocarnivore. Bioscience 2009, 59, 165–173. [Google Scholar] [CrossRef]
- Winnie, J.; Creel, S. The many effects of carnivores on their prey and their implications for trophic cascades, and ecosystem structure and function. Food Webs 2017, 12, 88–94. [Google Scholar] [CrossRef]
- Ripple, W.J.; Estes, J.A.; Beschta, R.L.; Wilmers, C.C.; Ritchie, E.G.; Hebblewhite, M.; Berger, J.; Elmhagen, B.; Letnic, M.; Nelson, M.P.; et al. Status and Ecological Effects of the World’s Largest Carnivores. Science 2014, 343, 1241484. [Google Scholar] [CrossRef]
- Monterroso, P.; Díaz-Ruiz, F.; Lukacs, P.M.; Alves, P.C.; Ferreras, P. Ecological traits and the spatial structure of competitive coexistence among carnivores. Ecology 2020, 101, e03059. [Google Scholar] [CrossRef]
- HilleRisLambers, J.; Adler, P.B.; Harpole, W.S.; Levine, J.M.; Mayfield, M.M. Rethinking Community Assembly Through the Lens of Coexistence Theory. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 227–248. [Google Scholar] [CrossRef]
- Dayan, T.; Simberloff, D.; Tchernov, E.; Yom-tov, Y. Canine carnassials: Character displacement in the wolves, jackals and foxes of Israel. Biol. J. Linn. Soc. 1992, 45, 315–331. [Google Scholar] [CrossRef]
- Karanth, K.U.; Srivathsa, A.; Vasudev, D.; Puri, M.; Parameshwaran, R.; Kumar, N.S. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient. Proc. R. Soc. B Biol. Sci. 2017, 284, 20161860. [Google Scholar] [CrossRef]
- Ritchie, E.G.; Johnson, C.N. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 2009, 12, 982–998. [Google Scholar] [CrossRef] [PubMed]
- Fedriani, J.M.; Fuller, T.K.; Sauvajot, R.M.; York, E.C. Competition and intraguild predation among three sympatric carnivores. Oecologia 2000, 125, 258–270. [Google Scholar] [CrossRef]
- Vanak, A.T.; Fortin, D.; Thaker, M.; Ogden, M.; Owen, C.; Greatwood, S.; Slotow, R. Moving to stay in place: Behavioral mechanisms for coexistence of African large carnivores. Ecology 2013, 94, 2619–2631. [Google Scholar] [CrossRef]
- Swanson, A.; Caro, T.; Davies-Mostert, H.; Mills, M.G.L.; Macdonald, D.W.; Borner, M.; Masenga, E.; Packer, C. Cheetahs and wild dogs show contrasting patterns of suppression by lions. J. Anim. Ecol. 2014, 83, 1418–1427. [Google Scholar] [CrossRef] [PubMed]
- Kneitel, J.M.; Chase, J.M. Trade-offs in community ecology: Linking spatial scales and species coexistence. Ecol. Lett. 2004, 7, 69–80. [Google Scholar] [CrossRef]
- Palomares, F.; Caro, T.M. Interspecific Killing Among Mammalian Carnivores. Am. Nat. 1999, 153, 492–508. [Google Scholar] [CrossRef] [PubMed]
- Creel, S. Dominance, aggression, and glucocorticoid levels in social carnivores. J. Mammal. 2005, 86, 255–264. [Google Scholar] [CrossRef]
- Allen, M.L.; Wilmers, C.C.; Elbroch, L.M.; Golla, J.M.; Wittmer, H.U. The importance of motivation, weapons, and foul odors in driving encounter competition in carnivores. Ecology 2016, 97, 1905–1912. [Google Scholar] [CrossRef]
- Sivy, K.J.; Pozzanghera, C.B.; Grace, J.B.; Prugh, L.R. Fatal Attraction? Intraguild Facilitation and Suppression Among Predators. Am. Nat. 2017, 190, 663–679. [Google Scholar] [CrossRef]
- Allen, M.L.; Avrin, A.C.; Wittmer, H.U.; Wang, Y.; Wilmers, C.C. Mesocarnivores vary in their spatiotemporal avoidance strategies at communications hubs of an apex carnivore. Oecologia 2024, 204, 805–813. [Google Scholar] [CrossRef]
- López-Bao, J.V.; Palomares, F.; Rodríguez, A.; Ferreras, P. Intraspecific interference influences the use of prey hotspots. Oikos 2011, 120, 1489–1496. [Google Scholar] [CrossRef]
- Dorning, J.; Harris, S. Dominance, gender, and season influence food patch use in a group-living, solitary foraging canid. Behav. Ecol. 2017, 28, 1302–1313. [Google Scholar] [CrossRef]
- Cronk, N.E.; Pillay, N. Food choice and feeding on carrion in two African mongoose species in an urban environment. Acta Ethol. 2018, 21, 127–136. [Google Scholar] [CrossRef]
- Garvey, P.M.; Glen, A.S.; Pech, R.P. Foraging Ermine Avoid Risk: Behavioural responses of a mesopredator to its interspecific competitors in a mammalian guild. Biol. Invasions 2015, 17, 1771–1783. [Google Scholar] [CrossRef]
- Zevgolis, Y.G.; Christopoulos, A.; Kalargalis, I.I.; Zannetos, S.P.; Botetzagias, I.; Dimitrakopoulos, P.G. An (Un)Expected Threat for a Regionally Near-Threatened Species: A Predation Case of a Persian Squirrel on an Insular Ecosystem. Animals 2022, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Garvey, P.M.; Glen, A.S.; Clout, M.N.; Nichols, M.; Pech, R.P. Niche partitioning in a guild of invasive mammalian predators. Ecol. Appl. 2022, 32, e2566. [Google Scholar] [CrossRef]
- Peers, M.J.L.; Thornton, D.H.; Murray, D.L. Evidence for large-scale effects of competition: Niche displacement in Canada lynx and bobcat. Proc. R. Soc. B Biol. Sci. 2013, 280, 20132495. [Google Scholar] [CrossRef] [PubMed]
- Sanglas, A.; Palomares, F. Response of a mesocarnivore community to a new food resource: Recognition, exploitation, and interspecific competition. Eur. J. Wildl. Res. 2022, 68, 51. [Google Scholar] [CrossRef]
- Kutsukake, N.; Clutton-Brock, T.H. Aggression and submission reflect reproductive conflict between females in cooperatively breeding meerkats Suricata suricatta. Behav. Ecol. Sociobiol. 2006, 59, 541–548. [Google Scholar] [CrossRef]
- Kutsukake, N.; Clutton-Brock, T.H. Do meerkats engage in conflict management following aggression? Reconciliation, submission and avoidance. Anim. Behav. 2008, 75, 1441–1453. [Google Scholar] [CrossRef]
- Baan, C.; Bergmüller, R.; Smith, D.W.; Molnar, B. Conflict management in free-ranging wolves, Canis lupus. Anim. Behav. 2014, 90, 327–334. [Google Scholar] [CrossRef]
- Reddon, A.R.; Ruberto, T.; Reader, S.M. Submission signals in animal groups. Behaviour 2021, 159, 1–20. [Google Scholar] [CrossRef]
- McCormick, S.K.; Holekamp, K.E. Aggressiveness and submissiveness in spotted hyaenas: One trait or two? Anim. Behav. 2022, 186, 179–190. [Google Scholar] [CrossRef]
- Rowell, T.E. The concept of social dominance. Behav. Biol. 1974, 11, 131–154. [Google Scholar] [CrossRef] [PubMed]
- Mitchell-Jones, A.J.; Amori, G.; Bogdanowicz, W.; Krystufek, B.; Reijnders, P.J.H.; Spitzenberger, F.; Stubbe, M.; Thissen, J.B.M.; Vohralik, V.; Zima, J. The Atlas of European Mammals; Poyser: London, UK, 1999; ISBN 9780856611308. [Google Scholar]
- Hoffmann, M.; Arnold, J.; Duckworth, J.W.; Jhala, Y.; Kamler, J.F.; Krofel, M. Canis aureus. In IUCN Red List Threatened Species; IUCN: Gland, Switzerland, 2018. [Google Scholar]
- Lloyd, H.G. The Red Fox; B.T. Batsford: London, UK, 1980; ISBN 9780713411904. [Google Scholar]
- Macdonald, D.W. The ecology of carnivore social behaviour. Nature 1983, 301, 379–384. [Google Scholar] [CrossRef]
- Gittleman, J.L. Carnivore body size: Ecological and taxonomic correlates. Oecologia 1985, 67, 540–554. [Google Scholar] [CrossRef]
- Hoffmann, M.; Sillero-Zubiri, C. Vulpes vulpes. In IUCN Red List Threatened Species; IUCN: Gland, Switzerland, 2016. [Google Scholar]
- Tsunoda, H.; Raichev, E.G.; Newman, C.; Masuda, R.; Georgiev, D.M.; Kaneko, Y. Food niche segregation between sympatric golden jackals and red foxes in central Bulgaria. J. Zool. 2017, 303, 64–71. [Google Scholar] [CrossRef]
- Scheinin, S.; Yom-Tov, Y.; Motro, U.; Geffen, E. Behavioural responses of red foxes to an increase in the presence of golden jackals: A field experiment. Anim. Behav. 2006, 71, 577–584. [Google Scholar] [CrossRef]
- Farkas, A.; Jánoska, F.; Fodor, J.-T.; Náhlik, A. The high level of nutritional niche overlap between red fox (Vulpes vulpes) and sympatric golden jackal (Canis aureus) affects the body weight of juvenile foxes. Eur. J. Wildl. Res. 2017, 63, 46. [Google Scholar] [CrossRef]
- Lanszki, J.; Kurys, A.; Heltai, M.; Csányi, S.; Ács, K. Diet Composition of the Golden Jackal in an Area of Intensive Big Game Management. Ann. Zool. Fenn. 2015, 52, 243–255. [Google Scholar] [CrossRef]
- Lanszki, J.; Kurys, A.; Szabó, L.; Nagyapáti, N.; Porter, L.B.; Heltai, M. Diet composition of the golden jackal and the sympatric red fox in an agricultural area (Hungary). Folia Zool. 2016, 65, 310–322. [Google Scholar] [CrossRef]
- Macdonald, D.W. “Helpers” in fox society. Nature 1979, 282, 69–71. [Google Scholar] [CrossRef]
- Yom-Tov, Y.; Ashkenazi, S.; Viner, O. Cattle predation by the golden jackal Canis aureus in the Golan Heights, Israel. Biol. Conserv. 1995, 73, 19–22. [Google Scholar] [CrossRef]
- Chapron, G.; Kaczensky, P.; Linnell, J.D.C.; von Arx, M.; Huber, D.; Andrén, H.; López-Bao, J.V.; Adamec, M.; Álvares, F.; Anders, O.; et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 2014, 346, 1517–1519. [Google Scholar] [CrossRef] [PubMed]
- Giannatos, G.; Karypidou, A.; Legakis, A.; Polymeni, R. Golden jackal (Canis aureus L.) diet in Southern Greece. Mamm. Biol. 2010, 75, 227–232. [Google Scholar] [CrossRef]
- Borkowski, J.; Zalewski, A.; Manor, R. Diet Composition of Golden Jackals in Israel. Ann. Zool. Fenn. 2011, 48, 108–118. [Google Scholar] [CrossRef]
- Ćirović, D.; Penezić, A.; Krofel, M. Jackals as cleaners: Ecosystem services provided by a mesocarnivore in human-dominated landscapes. Biol. Conserv. 2016, 199, 51–55. [Google Scholar] [CrossRef]
- Singh, A.; Mukherjee, A.; Dookia, S.; Kumara, H.N. High resource availability and lack of competition have increased population of a meso-carnivore—A case study of Golden Jackal in Keoladeo National Park, India. Mammal Res. 2016, 61, 209–219. [Google Scholar] [CrossRef]
- Torretta, E.; Riboldi, L.; Costa, E.; Delfoco, C.; Frignani, E.; Meriggi, A. Niche partitioning between sympatric wild canids: The case of the golden jackal (Canis aureus) and the red fox (Vulpes vulpes) in north-eastern Italy. BMC Ecol. Evol. 2021, 21, 129. [Google Scholar] [CrossRef]
- Raichev, E.G.; Tsunoda, H.; Newman, C.; Masuda, R.; Georgiev, D.M.; Kaneko, Y. The Reliance of the Golden Jackal (Canis aureus) on Anthropogenic Foods in winter in Central Bulgaria. Mammal Study 2013, 38, 19–27. [Google Scholar] [CrossRef]
- Böcker, F.; Weber, H.; Arnold, J.; Collet, S.; Hatlauf, J. Interspecific social interaction between golden jackal (Canis aureus) and red fox (Vulpes vulpes). Mammal Res. 2024, 69, 319–324. [Google Scholar] [CrossRef]
- Zevgolis, Y.G.; Kotselis, C.; Kouris, A.D.; Christopoulos, A. A New Aspect of Predator–Prey Dynamics: The Case of a Livestock Guardian Dog Predating upon an Invasive Coypu in Lake Kerkini, Greece. Conservation 2024, 4, 609–616. [Google Scholar] [CrossRef]
- Tsiobani, E.T.; Yiakoulaki, M.D.; Hasanagas, N.D.; Menexes, G.; Papanikolaou, K. Water Buffaloes Grazing Behaviour at the Lake Kerkini National Park, Northern Greece. Hacquetia 2016, 15, 133–142. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). EUNIS Habitat Classification. Available online: https://www.eea.europa.eu/data-and-maps/data/eunis-habitat-classification (accessed on 15 March 2025).
- Stanton, L.A.; Bridge, E.S.; Huizinga, J.; Johnson, S.R.; Young, J.K.; Benson-Amram, S. Variation in reversal learning by three generalist mesocarnivores. Anim. Cogn. 2021, 24, 555–568. [Google Scholar] [CrossRef] [PubMed]
- Mettler, A.E.; Shivik, J.A. Dominance and neophobia in coyote (Canis latrans) breeding pairs. Appl. Anim. Behav. Sci. 2007, 102, 85–94. [Google Scholar] [CrossRef]
- Windberg, L.A. Coyote responses to visual and olfactory stimuli related to familiarity with an area. Can. J. Zool. 1996, 74, 2248–2253. [Google Scholar] [CrossRef]
- Friard, O.; Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 2016, 7, 1325–1330. [Google Scholar] [CrossRef]
- Allen, M.L.; Elbroch, L.M.; Wittmer, H.U. Can’t bear the competition: Energetic losses from kleptoparasitism by a dominant scavenger may alter foraging behaviors of an apex predator. Basic Appl. Ecol. 2021, 51, 1–10. [Google Scholar] [CrossRef]
- Haswell, P.M.; Kusak, J.; Jones, K.A.; Hayward, M.W. Fear of the dark? A mesopredator mitigates large carnivore risk through nocturnality, but humans moderate the interaction. Behav. Ecol. Sociobiol. 2020, 74, 62. [Google Scholar] [CrossRef]
- Bell, E.; Fisher, J.T.; Darimont, C.; Hart, H.; Bone, C. Influence of heterospecifics on mesocarnivore behaviour at shared scavenging opportunities in the Canadian Rocky Mountains. Sci. Rep. 2023, 13, 11026. [Google Scholar] [CrossRef] [PubMed]
- Wikenros, C.; Ståhlberg, S.; Sand, H. Feeding under high risk of intraguild predation: Vigilance patterns of two medium-sized generalist predators. J. Mammal. 2014, 95, 862–870. [Google Scholar] [CrossRef]
- Tsunoda, H. Niche Overlaps and Partitioning Between Eurasian Golden Jackal Canis aureus and Sympatric Red Fox Vulpes vulpes. Proc. Zool. Soc. 2022, 75, 143–151. [Google Scholar] [CrossRef]
- Searle, C.E.; Smit, J.B.; Cusack, J.J.; Strampelli, P.; Grau, A.; Mkuburo, L.; Macdonald, D.W.; Loveridge, A.J.; Dickman, A.J. Temporal partitioning and spatiotemporal avoidance among large carnivores in a human-impacted African landscape. PLoS ONE 2021, 16, e0256876. [Google Scholar] [CrossRef]
- Nakabayashi, M.; Kanamori, T.; Matsukawa, A.; Tangah, J.; Tuuga, A.; Malim, P.T.; Bernard, H.; Ahmad, A.H.; Matsuda, I.; Hanya, G. Temporal activity patterns suggesting niche partitioning of sympatric carnivores in Borneo, Malaysia. Sci. Rep. 2021, 11, 19819. [Google Scholar] [CrossRef]
- Castelló, J.R.; Claudio, S.-Z. Canids of the World: Wolves, Wild Dogs, Foxes, Jackals, Coyotes, and Their Relatives; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Hernandez-Puentes, C.; Torre, I.; Vilella, M. Spatio-temporal interactions within a Mediterranean community of Mesocarnivores. Mamm. Biol. 2022, 102, 357–373. [Google Scholar] [CrossRef]
- Zevgolis, Y.G.; Zotou, S.; Iliou, A.; Christopoulos, A. Subterranean to submarine: Stress-induced locomotor repertoire expansion and aquatic escape in the Anatolian mole rat (Nannospalax xanthodon) under risk of predation. J. Ethol. 2024, 43, 39–43. [Google Scholar] [CrossRef]
- Klauder, K.J.; Borg, B.L.; Sivy, K.J.; Prugh, L.R. Gifts of an enemy: Scavenging dynamics in the presence of wolves (Canis lupus). J. Mammal. 2021, 102, 558–573. [Google Scholar] [CrossRef]
- Brown, J.H.; Maurer, B.A. Body size, ecological dominance and Cope’s rule. Nature 1986, 324, 248–250. [Google Scholar] [CrossRef]
- Woodward, G.; Hildrew, A.G. Body-size determinants of niche overlap and intraguild predation within a complex food web. J. Anim. Ecol. 2002, 71, 1063–1074. [Google Scholar] [CrossRef]
- Hansen, K.W.; Ranc, N.; Morgan, J.; Jordan, N.R.; McNutt, J.W.; Wilson, A.; Wilmers, C.C. How territoriality and sociality influence the habitat selection and movements of a large carnivore. Ecol. Evol. 2024, 14, e11217. [Google Scholar] [CrossRef]
- Brown, M.B.; Schlacher, T.A.; Schoeman, D.S.; Weston, M.A.; Huijbers, C.M.; Olds, A.D.; Connolly, R.M. Invasive carnivores alter ecological function and enhance complementarity in scavenger assemblages on ocean beaches. Ecology 2015, 96, 2715–2725. [Google Scholar] [CrossRef]
- Newsome, T.; Cairncross, R.; Cunningham, C.X.; Spencer, E.E.; Barton, P.S.; Ripple, W.J.; Wirsing, A.J. Scavenging with invasive species. Biol. Rev. 2024, 99, 562–581. [Google Scholar] [CrossRef]
- Wooster, E.; Wallach, A.D.; Ramp, D. The Wily and Courageous Red Fox: Behavioural Analysis of a Mesopredator at Resource Points Shared by an Apex Predator. Animals 2019, 9, 907. [Google Scholar] [CrossRef]
- Morton, F.B.; Gartner, M.; Norrie, E.-M.; Haddou, Y.; Soulsbury, C.D.; Adaway, K.A. Urban foxes are bolder but not more innovative than their rural conspecifics. Anim. Behav. 2023, 203, 101–113. [Google Scholar] [CrossRef]
- Olson, L.E.; Squires, J.R.; Roberts, E.K.; Ivan, J.S.; Hebblewhite, M. Sharing the same slope: Behavioral responses of a threatened mesocarnivore to motorized and nonmotorized winter recreation. Ecol. Evol. 2018, 8, 8555–8572. [Google Scholar] [CrossRef] [PubMed]
- Rossa, M.; Lovari, S.; Ferretti, F. Spatiotemporal patterns of wolf, mesocarnivores and prey in a Mediterranean area. Behav. Ecol. Sociobiol. 2021, 75, 32. [Google Scholar] [CrossRef]
- Gómez-Ortiz, Y.; Monroy-Vilchis, O.; Mendoza-Martínez, G.D. Feeding interactions in an assemblage of terrestrial carnivores in central Mexico. Zool. Stud. 2015, 54, 16. [Google Scholar] [CrossRef]
- Arnold, J.; Humer, A.; Heltai, M.; Murariu, D.; Spassov, N.; Hackländer, K. Current status and distribution of golden jackals Canis aureus in Europe. Mamm. Rev. 2012, 42, 1–11. [Google Scholar] [CrossRef]
- Rutkowski, R.; Krofel, M.; Giannatos, G.; Ćirović, D.; Männil, P.; Volokh, A.M.; Lanszki, J.; Heltai, M.; Szabó, L.; Banea, O.C.; et al. A European Concern? Genetic Structure and Expansion of Golden Jackals (Canis aureus) in Europe and the Caucasus. PLoS ONE 2015, 10, e0141236. [Google Scholar] [CrossRef]
- Karamanlidis, A.; de Gabriel Hernando, M.; Avgerinou, M.; Bogdanowicz, W.; Galanis, K.; Kalogeropoulou, S.; Krambokoukis, L.; Panagiotopoulos, N.; Taklis, C. Rapid expansion of the golden jackal in Greece: Research, management and conservation priorities. Endanger. Species Res. 2023, 51, 1–13. [Google Scholar] [CrossRef]
- Jiménez, J.; Nuñez-Arjona, J.C.; Mougeot, F.; Ferreras, P.; González, L.M.; García-Domínguez, F.; Muñoz-Igualada, J.; Palacios, M.J.; Pla, S.; Rueda, C.; et al. Restoring apex predators can reduce mesopredator abundances. Biol. Conserv. 2019, 238, 108234. [Google Scholar] [CrossRef]
- Ferreiro-Arias, I.; Isla, J.; Jordano, P.; Benítez-López, A. Fine-scale coexistence between Mediterranean mesocarnivores is mediated by spatial, temporal, and trophic resource partitioning. Ecol. Evol. 2021, 11, 15520–15533. [Google Scholar] [CrossRef]
- Prugh, L.R.; Sivy, K.J. Enemies with benefits: Integrating positive and negative interactions among terrestrial carnivores. Ecol. Lett. 2020, 23, 902–918. [Google Scholar] [CrossRef]
Behavior | Species | Description | Time (s) | Code |
---|---|---|---|---|
Continuous feeding | Red fox | Feeding uninterrupted at carcass, head lowered, body relaxed | 0–10 | - |
Appearance in background | Golden jackals (group) | Group visible at distance, no engagement with carcass | 5–10 | - |
Vigilant monitoring | Red fox | Lifts head, briefly looks toward approaching jackal, returns to feeding | 10–20 | 3A |
Initial cautious movement | Golden jackal | Begins slow, non-linear approach toward carcass; body lowered, tail tucked | 10–20 | 3A, 3B |
Intermittent pauses | Golden jackal | Stops briefly during approach, hesitates, assesses fox reactions | 15–20 | 3A, 3B |
Resumption of feeding | Red fox | Returns to full feeding behavior without significant interruption | 15–25 | 3C, 3D |
Close approach | Golden jackal | Final slow movement to within ~2–3 m of carcass, body still lowered | 20–30 | 3C |
Stationary submission | Golden jackal | Stops moving, remains motionless in a submissive lowered posture | 30–40 | 3D, 3E |
Occasional vigilance | Red fox | Brief head lifts to monitor stationary jackal | 30–45 | 3E |
Withdrawal initiation | Golden jackal | Begins slow retreat, maintaining low posture | 40–45 | 3F |
Final retreat | Golden jackal | Gradually exits the carcass vicinity without turning back | 45–60 | 3F–3L |
Continuous feeding (final phase) | Red fox | Maintains exclusive carcass access without displacement | 45–60 | 3F–3L |
Behavior | Species | Description | Time (s) | Code |
---|---|---|---|---|
Continuous feeding | Red fox | Feeding at carcass, relaxed posture | 0–6 | 4A |
Jackal approach | Golden jackal | Direct approach toward carcass with assertive gait | 6–12 | 4B |
Visual confrontation | Both | Fox turns to face jackal; jackal halts approach | 12 | 4B, 4C |
First threat movement | Golden jackal | Forward lunge toward fox without contact | 17 | 4D |
Defensive posture | Red fox | Piloerection and crouching defensive posture | 17–18 | 4D, 4E, |
First chase initiated | Red fox | Fox chases jackal; jackal flees rapidly | 18–21 | 4F, 4G |
Return to carcass | Red fox | Stops chase, returns to feeding | 21–23 | 4G |
Jackal persistence | Golden jackal | Trails fox at a distance, re-approaches carcass | 23–30 | 4G |
Second chase initiated | Red fox | Fox launches second chase after jackal | 23–28 | 4H, |
Third chase and confrontation | Red fox | Aggressive pursuit and brief physical proximity | 30–35 | 4I |
Distress vocalization | Golden jackal | High-pitched bark during retreat from fox | 34–35 | 4I |
Final retreat | Golden jackal | Jackal fully withdraws from carcass area | 35–43 | 4I, 4J |
Jackal re-appearance | Golden jackal | Sniffing ground submissively near conflict area | 51–55 | 4K |
Continuous feeding (final phase) | Red fox | Remains undisturbed at carcass, resumes feeding | 43–60 | 4L |
New jackal approach | Golden jackal (second) | Slow approach toward fox from behind | 60–72 | 5A, 5B |
Defensive reaction | Red fox | Piloerection, defensive crouching upon approach | 72–78 | 5C, 5D |
Mock bite attempt | Golden jackal | Forward lunge without physical contact | 78 | 5F, 5G |
Prolonged chase | Red fox | Extended chase of jackal across area | 78–102 | 5G, 5H |
Distress vocalization (second) | Golden jackal | High-pitched distress call during chase | 102 | 5I |
Fox returns to carcass | Red fox | Stops pursuit, returns to feeding | 103–120 | 5J–5L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zevgolis, Y.G.; Kotselis, C.; Giritziotis, B.; Lekka, A.; Christopoulos, A. Subverting Dominance Hierarchies: Interspecific Submission and Agonistic Interactions Between Golden Jackals and a Red Fox. Diversity 2025, 17, 454. https://doi.org/10.3390/d17070454
Zevgolis YG, Kotselis C, Giritziotis B, Lekka A, Christopoulos A. Subverting Dominance Hierarchies: Interspecific Submission and Agonistic Interactions Between Golden Jackals and a Red Fox. Diversity. 2025; 17(7):454. https://doi.org/10.3390/d17070454
Chicago/Turabian StyleZevgolis, Yiannis G., Christos Kotselis, Babis Giritziotis, Anastasia Lekka, and Apostolos Christopoulos. 2025. "Subverting Dominance Hierarchies: Interspecific Submission and Agonistic Interactions Between Golden Jackals and a Red Fox" Diversity 17, no. 7: 454. https://doi.org/10.3390/d17070454
APA StyleZevgolis, Y. G., Kotselis, C., Giritziotis, B., Lekka, A., & Christopoulos, A. (2025). Subverting Dominance Hierarchies: Interspecific Submission and Agonistic Interactions Between Golden Jackals and a Red Fox. Diversity, 17(7), 454. https://doi.org/10.3390/d17070454