Blood Glucose in Birds: Another Way to Think About “Normal” Glycemia and Diabetes Mellitus in Animals
Abstract
1. Introduction
2. Materials and Methods
Bibliographic Search Description
3. Anatomy of the Avian Endocrine Pancreas
4. Blood Glucose Regulation in Birds
4.1. Blood Plasma Glucose Levels
4.2. Glucose Transporters (GLUTs)
4.3. Intestinal Glucose Absorption
4.4. Glucose Utilization by Tissues
4.5. The Role of Insulin in Avian Glucose Regulation
4.6. Pancreatic Function and Hormonal Regulation
4.7. Hyperglycemia and Oxidative Stress Resistance
5. Diabetes Mellitus
- Type I (insulin-dependent) diabetes: This form results from the autoimmune-mediated destruction of pancreatic β-cells, leading to an absolute deficiency of insulin production. Genetic predisposition and environmental factors contribute to this process, causing a significant reduction in insulin secretion and subsequent hyperglycemia [112].
- Type II (insulin-independent) diabetes: This form is characterized by insulin resistance, which occurs when peripheral tissues fail to adequately respond to insulin [113]. Despite elevated blood glucose levels prompting increased insulin secretion, the tissues do not efficiently uptake glucose, resulting in sustained hyperglycemia. Insulin secretion is accompanied by the release of islet amyloid polypeptide (IAPP), also known as amylin. In humans, the aggregation of IAPP into amyloid deposits within the islets of Langerhans has been implicated in β-cell dysfunction and the progression of diabetes mellitus [114]. However, the presence of amyloidosis is not a prerequisite for diagnosing diabetes [115]. To date, pancreatic amyloidosis has not been reported in birds. Nonetheless, factors such as a high-fat diet, obesity, and genetic predisposition may predispose birds to developing diabetes mellitus [5].
- In addition to these two primary types of diabetes, there are at least two other recognized forms in humans: MODY (Maturity Onset Diabetes of the Young) and LADA (Latent Autoimmune Diabetes in Adults), with minor incidence [116].
5.1. Etiopathogenesis
5.2. Reporting
5.3. Clinical Signs
5.4. Diagnosis
5.5. Treatment
5.5.1. Insulin Therapy
5.5.2. Oral Hypoglycemic Therapy
5.5.3. Adjustment of Dietary Regimen
6. Discussion
- Lymphoplasmacytic pancreatitis
- Pancreatic adenocarcinoma
- Hepatic and pancreatic hemochromatosis
- Pacheco’s disease (herpesvirosis in psittacines)
- Elevated hepatic zinc concentrations.
- Polyuria
- Polydipsia
- Polyphagia
- Weight loss
- Lethargy
- Hematocrit and complete blood count (CBC)
- Hematobiochemical analysis (with special attention to blood glucose levels, liver enzymes, and amylases, among others)
- Measurement of β-hydroxybutyrate
- Urinalysis to evaluate glycosuria and ketonuria
- Measurement of insulin and glucagon levels
- Endoscopy and pancreatic biopsy for histological examination
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Martinez del Rio, C.; Gutiérrez-Guerrero, Y.T. An Evolutionary Remedy for an Abominable Physiological Mystery: Benign Hyperglycemia in Birds. J. Mol. Evol. 2020, 88, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Braun, E.J.; Sweazea, K.L. Glucose Regulation in Birds. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2008, 151, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Beuchat, C.A.; Chong, C.R. Hyperglycemia in Hummingbirds and Its Consequences for Hemoglobin Glycation. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1998, 120, 409–416. [Google Scholar] [CrossRef]
- Sweazea, K.L. Revisiting Glucose Regulation in Birds—A Negative Model of Diabetes Complications. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2022, 262, 110778. [Google Scholar] [CrossRef]
- Diabetes, Diet, and Doves: Birds as a Negative Model for Hyperglycemic Complications—ProQuest. Available online: https://www.proquest.com/openview/47a13c5fc4a34bc4cf6c76cde1488acf/1?cbl=18750&diss=y&pq-origsite=gscholar (accessed on 10 April 2025).
- Scanes, C.G.; Dridi, S. (Eds.) Sturkie’s Avian Physiology; Academic Press: Cambridge, MA, USA, 2021; ISBN 978-0-12-819770-7. [Google Scholar]
- Pilny, A.A. The Avian Pancreas in Health and Disease. Vet. Clin. N. Am. Exot. Anim. Pract. 2008, 11, 25–34. [Google Scholar] [CrossRef]
- Hazelwood, R.L. The Avian Endocrine Pancreas. Am. Zool. 1973, 13, 699–709. [Google Scholar] [CrossRef]
- Satoh, T. Bird Evolution by Insulin Resistance. Trends Endocrinol. Metab. 2021, 32, 803–813. [Google Scholar] [CrossRef]
- Sojka, P.A. Glucose Homeostasis and Derangement in Birds. Vet. Clin. Exot. Anim. Pract. 2025, 28, 165–178. [Google Scholar] [CrossRef]
- Pilny, A.A.; Luong, R. Diabetes Mellitus in a Chestnut-Fronted Macaw (Ara severa). J. Avian Med. Surg. 2005, 19, 297–302. [Google Scholar] [CrossRef]
- Kahler, J. Sandostatin®® (Synthetic Somatostatin) Treatment for Diabetes Mellitus in a Sulfur Breasted Toucan (Ramphastus sulfuratus sulfuratus). In Proceedings of the Main Conference Proceedings Association of Avian Veterinarians, Reno, NV, USA, 28–30 September 1994. [Google Scholar]
- Phalen, D.N.; Falcon, M.; Tomaszewski, E.K. Endocrine Pancreatic Insufficiency Secondary to Chronic Herpesvirus Pancreatitis in a Cockatiel (Nymphicus hollandicus). J. Avian Med. Surg. 2007, 21, 140–145. [Google Scholar] [CrossRef]
- DiGeronimo, P.M.; Crossland, N.A.; Jugan, A.; Nevarez, J.G.; Tully, T.N.; Evans, D.E. Diabetes Mellitus with Concurrent Cerebellar Degeneration and Necrosis in a Domestic Goose (Anser anser domesticus). J. Avian Med. Surg. 2018, 32, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Gancz, A.Y.; Wellehan, J.F.X.; Boutette, J.; Malka, S.; Lee, S.E.; Smith, D.A.; Taylor, M. Diabetes Mellitus Concurrent with Hepatic Haemosiderosis in Two Macaws (Ara severa, Ara militaris). Avian Pathol. 2007, 36, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, S.L.; Bailey, R.; Baitchman, E. Diagnosis and Management of Diabetes Mellitus in a Bali Mynah (Leucopsar rothschildi). J. Avian Med. Surg. 2016, 30, 146–151. [Google Scholar] [CrossRef]
- Douglass, E.M. Diabetes Mellitus in a Toco Toucan. Mod. Vet. Pract. 1981, 62, 293–295. [Google Scholar] [PubMed]
- Candeletta, S.C.; Homer, B.L.; Garner, M.M.; Isaza, R. Diabetes Mellitus Associated with Chronic Lymphocytic Pancreatitis in an African Grey Parrot (Psittacus erithacus erithacus). J. Assoc. Avian Vet. 1993, 7, 39. [Google Scholar] [CrossRef]
- Desmarchelier, M.; Langlois, I. Diabetes Mellitus in a Nanday Conure (Nandayus nenday). J. Avian Med. Surg. 2008, 22, 246–254. [Google Scholar] [CrossRef]
- Rawdon, B.B. Morphogenesis and Differentiation of the Avian Endocrine Pancreas, with Particular Reference to Experimental Studies on the Chick Embryo. Microsc. Res. Tech. 1998, 43, 292–305. [Google Scholar] [CrossRef]
- Matsuura, K.; Katsumoto, K.; Fukuda, K.; Kume, K.; Kume, S. Conserved Origin of the Ventral Pancreas in Chicken. Mech. Dev. 2009, 126, 817–827. [Google Scholar] [CrossRef]
- Manáková, E.; Titlbach, M. Development of the Chick Pancreas with Regard to Estimation of the Relative Occurrence and Growth of Endocrine Tissue. Anat. Histol. Embryol. 2007, 36, 127–134. [Google Scholar] [CrossRef]
- Konig, H.E. Avian Anatomy 2nd Edition: Textbook and Colour Atlas; 5m Books, Ltd.: Sheffield, UK, 2016; ISBN 978-1-910455-95-1. [Google Scholar]
- Rideau, N. Chapter 25—Insulin Secretion in Birds. In Leanness in Domestic Birds; Leclercq, B., Whitehead, C.C., Eds.; Butterworth-Heinemann: Oxford, UK, 1988; pp. 269–294. ISBN 978-0-408-01036-8. [Google Scholar]
- Steiner, D.J.; Kim, A.; Miller, K.; Hara, M. Pancreatic Islet Plasticity: Interspecies Comparison of Islet Architecture and Composition. Islets 2010, 2, 135–145. [Google Scholar] [CrossRef]
- O’Malley, B. Clinical Anatomy and Physiology of Exotic Species: Structure and Function of Mammals, Birds, Reptiles, and Amphibians; Elsevier Saunders: Edinburgh, UK; New York, NY, USA, 2005; ISBN 978-0-7020-2782-6. [Google Scholar]
- Lucini, C.; Romano, A.; Castaldo, L. NPY Immunoreactivity in Endocrine Cells of Duck Pancreas: An Ontogenetic Study. Anat. Rec. 2000, 259, 35–40. [Google Scholar] [CrossRef]
- Carpenter, J.W.; Hawkins, M.G.; Barron, H. APPENDIX 1—Table of Common Drugs and Approximate Doses. In Current Therapy in Avian Medicine and Surgery; Speer, B.L., Ed.; W.B. Saunders: Philadelphia, PA, USA, 2016; pp. 795–824. ISBN 978-1-4557-4671-2. [Google Scholar]
- Szwergold, B.S.; Miller, C.B. Potential of Birds to Serve as a Pathology-Free Model of Type 2 Diabetes, Part 1: Is the Apparent Absence of the Rage Gene a Factor in the Resistance of Avian Organisms to Chronic Hyperglycemia? Rejuvenation Res. 2014, 17, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Lill, A. Sources of Variation in Blood Glucose Concentrations of Free-Living Birds. Avian Biol. Res. 2011, 4, 78–86. [Google Scholar] [CrossRef]
- Savory, C.J. How Closely Do Circulating Blood Glucose Levels Reflect Feeding State in Fowls? Comp. Biochem. Physiol. A Comp. Physiol. 1987, 88, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, R.M.; Mathew, A.; Setchenska, M.S.; Grdisa, M.; White, M.K. Loss of Glucose Transport in Developing Avian Red Cells. Eur. J. Cell Biol. 1998, 75, 66–77. [Google Scholar] [CrossRef]
- Diamond, D.L.; Carruthers, A. Metabolic Control of Sugar Transport by Derepression of Cell Surface Glucose Transporters: An Insulin-Independent Recruitment-Independent Mechanism of Regulation. J. Biol. Chem. 1993, 268, 6437–6444. [Google Scholar] [CrossRef]
- Byers, M.S.; Howard, C.; Wang, X. Avian and Mammalian Facilitative Glucose Transporters. Microarrays 2017, 6, 7. [Google Scholar] [CrossRef]
- Carver, F.; Shibley, J.I.; Pennington, J.; Pennington, S. Differential Expression of Glucose Transporters during Chick Embryogenesis. CMLS Cell. Mol. Life Sci. 2001, 58, 645–652. [Google Scholar] [CrossRef]
- Duclos, M.J.; Chevalier, B.; Le Marchand-Brustel, Y.; Tanti, J.F.; Goddard, C.; Simon, J. Insulin-like Growth Factor-I-Stimulated Glucose Transport in Myotubes Derived from Chicken Muscle Satellite Cells. J. Endocrinol. 1993, 137, 465–472. [Google Scholar] [CrossRef]
- Seki, Y.; Sato, K.; Kono, T.; Abe, H.; Akiba, Y. Broiler Chickens (Ross strain) Lack Insulin-Responsive Glucose Transporter GLUT4 and Have GLUT8 cDNA. Gen. Comp. Endocrinol. 2003, 133, 80–87. [Google Scholar] [CrossRef]
- Sweazea, K.L.; McMurtry, J.P.; Braun, E.J. Inhibition of Lipolysis Does Not Affect Insulin Sensitivity to Glucose Uptake in the Mourning Dove. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2006, 144, 387–394. [Google Scholar] [CrossRef]
- Welch, K.C.; Allalou, A.; Sehgal, P.; Cheng, J.; Ashok, A. Glucose Transporter Expression in an Avian Nectarivore: The Ruby-Throated Hummingbird (Archilochus colubris). PLoS ONE 2013, 8, e77003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sumners, L.H.; Siegel, P.B.; Cline, M.A.; Gilbert, E.R. Quantity of Glucose Transporter and Appetite-Associated Factor mRNA in Various Tissues after Insulin Injection in Chickens Selected for Low or High Body Weight. Physiol. Genom. 2013, 45, 1084–1094. [Google Scholar] [CrossRef] [PubMed]
- Huttener, R.; Thorrez, L.; Veld, T.I.; Granvik, M.; Van Lommel, L.; Waelkens, E.; Derua, R.; Lemaire, K.; Goyvaerts, L.; De Coster, S.; et al. Sequencing Refractory Regions in Bird Genomes Are Hotspots for Accelerated Protein Evolution. BMC Ecol. Evol. 2021, 21, 176. [Google Scholar] [CrossRef] [PubMed]
- Shimamoto, S.; Nakashima, K.; Kamimura, R.; Kohrogi, R.; Inoue, H.; Nishikoba, N.; Ohtsuka, A.; Ijiri, D. Insulin Acutely Increases Glucose Transporter 1 on Plasma Membranes and Glucose Uptake in an AKT-Dependent Manner in Chicken Adipocytes. Gen. Comp. Endocrinol. 2019, 283, 113232. [Google Scholar] [CrossRef]
- Zhao, J.P.; Bao, J.; Wang, X.J.; Jiao, H.C.; Song, Z.G.; Lin, H. Altered Gene and Protein Expression of Glucose Transporter1 Underlies Dexamethasone Inhibition of Insulin-Stimulated Glucose Uptake in Chicken Muscles. J. Anim. Sci. 2012, 90, 4337–4345. [Google Scholar] [CrossRef]
- Amat, C.; Piqueras, J.; Planas, J.; Moreto, M. Electrical Properties of the Intestinal Mucosa of the Chicken and the Effects of Luminal Glucose. Poult. Sci. 1999, 78, 1126–1131. [Google Scholar] [CrossRef]
- Dyer, J.; Ritzhaupt, A.; Wood, I.S.; de la Horra, C.; Illundain, A.A.; Shirazi-Beechey, S.P. Expression of the Na+/Glucose Co-Transporter (SGLT1) along the Length of the Avian Intestine. Biochem. Soc. Trans. 1997, 25, 480S. [Google Scholar] [CrossRef]
- Garcìa-Amado, M.A.; del, C.; Eglee Perez, M.; Dominguez-Bello, M.G. Intestinal D-Glucose and L-Alanine Transport in Japanese Quail (Coturnix coturnix). Poult. Sci. 2005, 84, 947–950. [Google Scholar] [CrossRef]
- Gal-Garber, O.; Mabjeesh, S.J.; Sklan, D.; Uni, Z. Partial Sequence and Expression of the Gene for and Activity of the Sodium Glucose Transporter in the Small Intestine of Fed, Starved and Refed Chickens. J. Nutr. 2000, 130, 2174–2179. [Google Scholar] [CrossRef]
- Garriga, C.; Moretó, M.; Planas, J.M. Hexose Transport across the Basolateral Membrane of the Chicken Jejunum. Am. J. Physiol. 1997, 272, R1330–R1335. [Google Scholar] [CrossRef] [PubMed]
- Garriga, C.; Rovira, N.; Moretó, M.; Planas, J.M. Expression of Na+-D-Glucose Cotransporter in Brush-Border Membrane of the Chicken Intestine. Am. J. Physiol. 1999, 276, R627–R631. [Google Scholar] [CrossRef] [PubMed]
- Garriga, C.; Planas, J.M.; Moretó, M. Aldosterone Mediates the Changes in Hexose Transport Induced by Low Sodium Intake in Chicken Distal Intestine. J. Physiol. 2001, 535, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Laverty, G.; Bjarnadóttir, S.; Elbrønd, V.S.; Arnason, S.S. Aldosterone Suppresses Expression of an Avian Colonic Sodium-Glucose Cotransporter. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R1041–R1050. [Google Scholar] [CrossRef]
- Soriano, M.E.; Planas, J.M. Developmental Study of Alpha-Methyl-D-Glucoside and L-Proline Uptake in the Small Intestine of the White Leghorn Chicken. Poult. Sci. 1998, 77, 1347–1353. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Kidrick, J.; Wong, E.A. Localization of Cells Expressing SGLT1 mRNA in the Yolk Sac and Small Intestine of Broilers. Poult. Sci. 2019, 98, 984–990. [Google Scholar] [CrossRef]
- Klasing, K.C. Comparative Avian Nutrition; Cab International: Wallingford, UK, 1998. [Google Scholar]
- Karasov, W.H. Integrative Physiology of Transcellular and Paracellular Intestinal Absorption. J. Exp. Biol. 2017, 220, 2495–2501. [Google Scholar] [CrossRef]
- Lavin, S.R.; Karasov, W.H. Allometry of Paracellular Absorption in Birds. Physiol. Biochem. Zool. 2008, 81, 551–560. [Google Scholar] [CrossRef]
- Skopec, M.M.; Green, A.K.; Karasov, W.H. Flavonoids Have Differential Effects on Glucose Absorption in Rats (Rattus norvegicus) and American Robins (Turdis migratorius). J. Chem. Ecol. 2010, 36, 236–243. [Google Scholar] [CrossRef]
- Afik, D.; McWilliams, S.R.; Karasov, W.H. A Test for Passive Absorption of Glucose in Yellow-Rumped Warblers and Its Ecological Implications. Physiol. Zool. 1997, 70, 370–377. [Google Scholar] [CrossRef]
- Caviedes-Vidal, E.; McWhorter, T.J.; Lavin, S.R.; Chediack, J.G.; Tracy, C.R.; Karasov, W.H. The Digestive Adaptation of Flying Vertebrates: High Intestinal Paracellular Absorption Compensates for Smaller Guts. Proc. Natl. Acad. Sci. USA 2007, 104, 19132–19137. [Google Scholar] [CrossRef]
- Chang, M.-H.; Chediack, J.G.; Caviedes-Vidal, E.; Karasov, W.H. L-Glucose Absorption in House Sparrows (Passer domesticus) Is Nonmediated. J. Comp. Physiol. B 2004, 174, 181–188. [Google Scholar] [CrossRef]
- Chang, M.-H.; Karasov, W.H. How the House Sparrow Passer Domesticus Absorbs Glucose. J. Exp. Biol. 2004, 207, 3109–3121. [Google Scholar] [CrossRef] [PubMed]
- Chediack, J.G.; Caviedes-Vidal, E.; Karasov, W.H.; Pestchanker, M. Passive Absorption of Hydrophilic Carbohydrate Probes by the House Sparrow Passer Domesticus. J. Exp. Biol. 2001, 204, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Garro, C.; Brun, A.; Karasov, W.H.; Caviedes-Vidal, E. Small Intestinal Epithelial Permeability to Water-Soluble Nutrients Higher in Passerine Birds than in Rodents. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1766–1773. [Google Scholar] [CrossRef]
- Karasov, W.H.; Cork, S.J. Glucose Absorption by a Nectarivorous Bird: The Passive Pathway Is Paramount. Am. J. Physiol. 1994, 267, G18–G26. [Google Scholar] [CrossRef] [PubMed]
- Karasov, W.H.; Caviedes-Vidal, E.; Bakken, B.H.; Izhaki, I.; Samuni-Blank, M.; Arad, Z. Capacity for Absorption of Water-Soluble Secondary Metabolites Greater in Birds than in Rodents. PLoS ONE 2012, 7, e32417. [Google Scholar] [CrossRef]
- Napier, K.R.; Purchase, C.; McWhorter, T.J.; Nicolson, S.W.; Fleming, P.A. The Sweet Life: Diet Sugar Concentration Influences Paracellular Glucose Absorption. Biol. Lett. 2008, 4, 530–533. [Google Scholar] [CrossRef]
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the Brain: The Role of Glucose in Physiological and Pathological Brain Function. Trends Neurosci. 2013, 36, 587–597. [Google Scholar] [CrossRef]
- Kono, T.; Nishida, M.; Nishiki, Y.; Seki, Y.; Sato, K.; Akiba, Y. Characterisation of Glucose Transporter (GLUT) Gene Expression in Broiler Chickens. Br. Poult. Sci. 2005, 46, 510–515. [Google Scholar] [CrossRef]
- Anderson, D.K.; Hazelwood, R.L. Chicken Cerebrospinal Fluid: Normal Composition and Response to Insulin Administration. J. Physiol. 1969, 202, 83–95. [Google Scholar] [CrossRef]
- Gibbs, M.E.; Hutchinson, D.S. Rapid Turnover of Glycogen in Memory Formation. Neurochem. Res. 2012, 37, 2456–2463. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, M.E.; O’Dowd, B.S.; Hertz, E.; Hertz, L. Astrocytic Energy Metabolism Consolidates Memory in Young Chicks. Neuroscience 2006, 141, 9–13. [Google Scholar] [CrossRef]
- O’Dowd, B.S.; Gibbs, M.E.; Ng, K.T.; Hertz, E.; Hertz, L. Astrocytic Glycogenolysis Energizes Memory Processes in Neonate Chicks. Brain Res. Dev. Brain Res. 1994, 78, 137–141. [Google Scholar] [CrossRef] [PubMed]
- McNay, E.C.; Pearson-Leary, J. GluT4: A Central Player in Hippocampal Memory and Brain Insulin Resistance. Exp. Neurol. 2020, 323, 113076. [Google Scholar] [CrossRef]
- Butler, P.J. The Physiological Basis of Bird Flight. Phil. Trans. R. Soc. B 2016, 371, 20150384. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.H.; George, J.C. Effects of Intense Exercise on Intracellular Glycogen and Fat in Pigeon Pectoralis. Acta Anat. 1976, 96, 568–573. [Google Scholar] [CrossRef]
- Tinker, D.A.; Brosnan, J.T.; Herzberg, G.R. Interorgan Metabolism of Amino Acids, Glucose, Lactate, Glycerol and Uric Acid in the Domestic Fowl (Gallus domesticus). Biochem. J. 1986, 240, 829–836. [Google Scholar] [CrossRef]
- Warriss, P.D.; Kestin, S.C.; Brown, S.N.; Bevis, E.A. Depletion of Glycogen Reserves in Fasting Broiler Chickens. Br. Poult. Sci. 1988, 29, 149–154. [Google Scholar] [CrossRef]
- Pistone, J.; Heatley, J.J.; Campbell, T.A.; Voelker, G. Assessing Passeriformes Health in South Texas via Select Venous Analytes. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2017, 210, 64–71. [Google Scholar] [CrossRef]
- Jenni-Eiermann, S.; Jenni, L. Postexercise Ketosis in Night-Migrating Passerine Birds. Physiol. Biochem. Zool. PBZ 2001, 74, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Schwilch, R.; Jenni, L.; Jenni-Eiermann, S. Metabolic Responses of Homing Pigeons to Flight and Subsequent Recovery. J. Comp. Physiol. B 1996, 166, 77–87. [Google Scholar] [CrossRef]
- Daniel, P.M.; Love, E.R.; Pratt, O.E. Insulin-Stimulated Entry of Glucose into Muscle in Vivo as a Major Factor in the Regulation of Blood Glucose. J. Physiol. 1975, 247, 273–288. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Hansen, P.A.; Marshall, B.A.; Holloszy, J.O.; Mueckler, M. Insulin Unmasks a COOH-Terminal Glut4 Epitope and Increases Glucose Transport across T-Tubules in Skeletal Muscle. J. Cell Biol. 1996, 135, 415–430. [Google Scholar] [CrossRef]
- Navale, A.M.; Paranjape, A.N. Glucose Transporters: Physiological and Pathological Roles. Biophys. Rev. 2016, 8, 5–9. [Google Scholar] [CrossRef]
- Sweazea, K.L.; Braun, E.J. Glucose Transport by English Sparrow (Passer domesticus) Skeletal Muscle: Have We Been Chirping up the Wrong Tree? J. Exp. Zool. A Comp. Exp. Biol. 2005, 303, 143–153. [Google Scholar] [CrossRef]
- Sweazea, K.L.; Braun, E.J. Glucose Transporter Expression in English Sparrows (Passer domesticus). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2006, 144, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Koppányi, T.; Ivy, A.C.; Tatum, A.L.; Jung, F. Studies in Avian Diabetes and Glycosuria. Am. J. Physiol.-Leg. Content 1926, 78, 666–674. [Google Scholar] [CrossRef]
- Langslow, D.R.; Freeman, B.M. Partial Pancreatectomy and the Role of Insulin in Carbohydrate Metabolism Ingallus Domesticus. Diabetologia 1972, 8, 206–210. [Google Scholar] [CrossRef]
- Minkowski, O. Untersuchungen Über den Diabetes Mellitus nach Exstirpation des Pankreas; F.C.W. Vogel: Leipzig, Germany, 1893. [Google Scholar]
- Mirsky, I.A.; Nelson, N.; Grayman, I.; Korenberg, M. Studies on Normal and Depancreatized Domestic Ducks. Am. J. Physiol. Leg. Content 1941, 135, 223–229. [Google Scholar] [CrossRef]
- Cieslak, S.R.; Hazelwood, R.L. The Role of the Splenic Pancreatic Lobe in Regulating Metabolic Normalcy Following 99% Pancreatectomy in Chickens. Gen. Comp. Endocrinol. 1986, 61, 476–489. [Google Scholar] [CrossRef] [PubMed]
- Nelson, N.; Elgart, S. Pancreatic Diabetes in the Owl. Endocrinology 1942, 31, 119–123. [Google Scholar] [CrossRef]
- Karmann, H.; Mialhe, P. Glucose, Insulin and Glucagon in the Diabetic Goose. Horm. Metab. Res. 1976, 8, 419–426. [Google Scholar] [CrossRef]
- Sitbon, G.; Mialhe, P. The endocrine pancreas of birds. J. Physiol. 1980, 76, 5–24. [Google Scholar]
- Rae, M. Avian Endocrine Disorders. In Laboratory Medicine: Avian and Exotic Pets; W.B. Saunders: Philadelphia, PA, USA, 2000; pp. 76–89. [Google Scholar]
- Tokushima, Y.; Takahashi, K.; Sato, K.; Akiba, Y. Glucose Uptake in Vivo in Skeletal Muscles of Insulin-Injected Chicks. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2005, 141, 43–48. [Google Scholar] [CrossRef]
- Dupont, J.; Dagou, C.; Derouet, M.; Simon, J.; Taouis, M. Early Steps of Insulin Receptor Signaling in Chicken and Rat: Apparent Refractoriness in Chicken Muscle. Domest. Anim. Endocrinol. 2004, 26, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Rutter, G.A. Regulating Glucagon Secretion: Somatostatin in the Spotlight. Diabetes 2009, 58, 299–301. [Google Scholar] [CrossRef]
- Hazelwood, R.L. Pancreatic Hormones, Insulin/Glucagon Molar Ratios, and Somatostatin as Determinants of Avian Carbohydrate Metabolism. J. Exp. Zool. 1984, 232, 647–652. [Google Scholar] [CrossRef]
- Austad, S.N. Candidate Bird Species for Use in Aging Research. ILAR J. 2011, 52, 89–96. [Google Scholar] [CrossRef]
- Holmes, D.J.; Austad, S.N. The Evolution of Avian Senescence Patterns: Implications for Understanding Primary Aging Processes. Am. Zool. 1995, 35, 307–317. [Google Scholar] [CrossRef]
- Holmes, D.J.; Flückiger, R.; Austad, S.N. Comparative Biology of Aging in Birds: An Update. Exp. Gerontol. 2001, 36, 869–883. [Google Scholar] [CrossRef] [PubMed]
- Trevelyan, R.; Harvey, P.H.; Pagel, M.D. Metabolic Rates and Life Histories in Birds. Funct. Ecol. 1990, 4, 135–141. [Google Scholar] [CrossRef]
- Cohen, A.; Klasing, K.; Ricklefs, R. Measuring Circulating Antioxidants in Wild Birds. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 147, 110–121. [Google Scholar] [CrossRef]
- Ingram, T.; Zuck, J.; Borges, C.R.; Redig, P.; Sweazea, K.L. Variations in Native Protein Glycation and Plasma Antioxidants in Several Birds of Prey. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2017, 210, 18–28. [Google Scholar] [CrossRef]
- Klandorf, H.; Probert, I.L.; Iqbal, M. In the Defence against Hyperglycaemia: An Avian Strategy. World’s Poult. Sci. J. 1999, 55, 251–268. [Google Scholar] [CrossRef]
- Ku, H.H.; Sohal, R.S. Comparison of Mitochondrial Pro-Oxidant Generation and Anti-Oxidant Defenses between Rat and Pigeon: Possible Basis of Variation in Longevity and Metabolic Potential. Mech. Ageing Dev. 1993, 72, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Machín, M.; Simoyi, M.F.; Blemings, K.P.; Klandorf, H. Increased Dietary Protein Elevates Plasma Uric Acid and Is Associated with Decreased Oxidative Stress in Rapidly-Growing Broilers. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2004, 137, 383–390. [Google Scholar] [CrossRef]
- Smith, C.L.; Toomey, M.; Walker, B.R.; Braun, E.J.; Wolf, B.O.; McGraw, K.; Sweazea, K.L. Naturally High Plasma Glucose Levels in Mourning Doves (Zenaida macroura) Do Not Lead to High Levels of Reactive Oxygen Species in the Vasculature. Zoology 2011, 114, 171–176. [Google Scholar] [CrossRef]
- Stinefelt, B.; Leonard, S.S.; Blemings, K.P.; Shi, X.; Klandorf, H. Free Radical Scavenging, DNA Protection, and Inhibition of Lipid Peroxidation Mediated by Uric Acid. Ann. Clin. Lab. Sci. 2005, 35, 37–45. [Google Scholar]
- Kaul, K.; Tarr, J.M.; Ahmad, S.I.; Kohner, E.M.; Chibber, R. Introduction to Diabetes Mellitus. In Diabetes: An Old Disease, a New Insight; Ahmad, S.I., Ed.; Springer: New York, NY, USA, 2013; pp. 1–11. ISBN 978-1-4614-5441-0. [Google Scholar]
- Alam, U.; Asghar, O.; Azmi, S.; Malik, R.A. Chapter 15—General Aspects of Diabetes Mellitus. In Handbook of Clinical Neurology; Zochodne, D.W., Malik, R.A., Eds.; Diabetes and the Nervous System; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Syed, F.Z. Type 1 Diabetes Mellitus. Ann. Intern. Med. 2022, 175, ITC33–ITC48. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I.; et al. Type 2 Diabetes Mellitus. Nat. Rev. Dis. Primers 2015, 1, 15019. [Google Scholar] [CrossRef] [PubMed]
- Kanatsuka, A.; Kou, S.; Makino, H. IAPP/Amylin and β-Cell Failure: Implication of the Risk Factors of Type 2 Diabetes. Diabetol. Int. 2018, 9, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Tenidis, K.; Waldner, M.; Bernhagen, J.; Fischle, W.; Bergmann, M.; Weber, M.; Merkle, M.-L.; Voelter, W.; Brunner, H.; Kapurniotu, A. Identification of a Penta- and Hexapeptide of Islet Amyloid Polypeptide (IAPP) with Amyloidogenic and Cytotoxic Properties. J. Mol. Biol. 2000, 295, 1055–1071. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee; ElSayed, N.A.; McCoy, R.G.; Aleppo, G.; Balapattabi, K.; Beverly, E.A.; Briggs Early, K.; Bruemmer, D.; Ebekozien, O.; Echouffo-Tcheugui, J.B.; et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S27–S49. [Google Scholar] [CrossRef]
- Brian, L.S. Current Therapy in Avian Medicine and Surgery; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 978-1-4557-4671-2. [Google Scholar]
- Cavicchioli, L.; Zappulli, V.; Beffagna, G.; Caliari, D.; Zanetti, R.; Nordio, L.; Mainenti, M.; Frezza, F.; Bonfante, F.; Patrono, L.V.; et al. Histopathological and Immunohistochemical Study of Exocrine and Endocrine Pancreatic Lesions in Avian Influenza A Experimentally Infected Turkeys Showing Evidence of Pancreatic Regeneration. Avian Pathol. 2015, 44, 498–508. [Google Scholar] [CrossRef]
- Sileo, L.; Nelson Beyer, W.; Mateo, R. Pancreatitis in Wild Zinc-Poisoned Waterfowl. Avian Pathol. 2003, 32, 655–660. [Google Scholar] [CrossRef]
- Carreira, V.; Gadsden, B.J.; Harrison, T.M.; Braselton, W.E.; Fitzgerald, S.D. Pancreatic Atrophy Due to Zinc Toxicosis in Two African Ostriches (Struthio camelus). J. Zoo. Wildl. Med. 2011, 42, 304–308. [Google Scholar] [CrossRef]
- Van de Weyer, Y.; Tahas, S.A. Avian Diabetes Mellitus: A Review. J. Avian Med. Surg. 2024, 38, 21–33. [Google Scholar] [CrossRef]
- Miscellaneous Diseases of Pet Birds—Exotic and Laboratory Animals. Available online: https://www.msdvetmanual.com/exotic-and-laboratory-animals/pet-birds/miscellaneous-diseases-of-pet-birds (accessed on 16 April 2025).
- Altman, R.B.; Clubb, S.L.; Quesenberry, K.; Dorrestein, G.M. Avian Medicine and Surgery; Altman, R.B., Ed.; Saunders: Philadelphia, PA, USA, 1997; ISBN 978-0-7216-5446-1. [Google Scholar]
- Bonda, M. Plasma Glucagon, Serum Insulin, and Serum Amylase Levels in Normal and a Hyperglycemic Macaw. In Proceedings of the Annual Conference of the Association of Avian Veterinarians, Tampa, FL, USA, 28–29 August 1996; Volume 77, p. 88. [Google Scholar]
- Carpenter, J.W.; Harms, C.A. (Eds.) Carpenter’s Exotic Animal Formulary; Saunders: Philadelphia, PA, USA, 2022; ISBN 978-0-323-83392-9. [Google Scholar]
- Nelson, R.W. Oral Medications for Treating Diabetes Mellitus in Dogs and Cats. J. Small Anim. Pract. 2000, 41, 486–490. [Google Scholar] [CrossRef]
- Kalra, S.; Gupta, Y. The Insulin:Glucagon Ratio and the Choice of Glucose-Lowering Drugs. Diabetes Ther. 2016, 7, 1–9. [Google Scholar] [CrossRef]
- Segerstolpe, Å.; Palasantza, A.; Eliasson, P.; Andersson, E.-M.; Andréasson, A.-C.; Sun, X.; Picelli, S.; Sabirsh, A.; Clausen, M.; Bjursell, M.K.; et al. Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes. Cell Metab. 2016, 24, 593–607. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Wang, Z.; Luo, P.; Du, P.; Zhang, X.; Zhang, H.; Si, X.; Ma, S.; Chen, W.; Huang, Y. Identifying Insulin-Responsive circRNAs in Chicken Pectoralis. BMC Genom. 2025, 26, 148. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quattrone, A.; Picozzi, I.; Lubian, E.; Fehri, N.E.; Menchetti, L.; Barbato, O.; Vigo, D.; Agradi, S.; Sulçe, M.; Faustini, M.; et al. Blood Glucose in Birds: Another Way to Think About “Normal” Glycemia and Diabetes Mellitus in Animals. Diversity 2025, 17, 355. https://doi.org/10.3390/d17050355
Quattrone A, Picozzi I, Lubian E, Fehri NE, Menchetti L, Barbato O, Vigo D, Agradi S, Sulçe M, Faustini M, et al. Blood Glucose in Birds: Another Way to Think About “Normal” Glycemia and Diabetes Mellitus in Animals. Diversity. 2025; 17(5):355. https://doi.org/10.3390/d17050355
Chicago/Turabian StyleQuattrone, Alda, Ivan Picozzi, Emanuele Lubian, Nour Elhouda Fehri, Laura Menchetti, Olimpia Barbato, Daniele Vigo, Stella Agradi, Majlind Sulçe, Massimo Faustini, and et al. 2025. "Blood Glucose in Birds: Another Way to Think About “Normal” Glycemia and Diabetes Mellitus in Animals" Diversity 17, no. 5: 355. https://doi.org/10.3390/d17050355
APA StyleQuattrone, A., Picozzi, I., Lubian, E., Fehri, N. E., Menchetti, L., Barbato, O., Vigo, D., Agradi, S., Sulçe, M., Faustini, M., Ozuni, E., Bixheku, X., Brecchia, G., & Curone, G. (2025). Blood Glucose in Birds: Another Way to Think About “Normal” Glycemia and Diabetes Mellitus in Animals. Diversity, 17(5), 355. https://doi.org/10.3390/d17050355