Analysis of the Variability of the Textile Properties of Brown Cotton Preserved in the Native Communities of the Amazon of the Province of La Convención—Cusco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Method of Sampling Plant Material
2.2. Measurement of the Qualitative and Quantitative Properties of Cotton Fibers
2.3. Statistical Analysis
3. Results
3.1. Diversity in Terms of Fiber Quality
3.2. ANOVA Related to Fiber Quality
3.3. Pearson Correlations Between Variables
3.4. Principal Component Analysis
3.5. Cluster Analysis
4. Discussion
4.1. Quality of Cotton Fiber
4.2. Biodiversity and Conservation
4.3. Fibers with Natural Colors
4.4. Quality of the Collected Material
4.5. Multivariate Analyses: Potential Use in Identifying Superior Genotypes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UHML | Fiber length |
MIC | Micronaire index |
STR_res | Fiber strength |
Elong | Fiber elongation. |
SFI | Short fiber content |
UNIF | Uniform length index |
MAD | Maturity coefficient |
References
- Baghyalakshmi, K.; Priyanka, R.A.; Sarathapriya, G.; Ramchander, S.; Prakash, A.H. Genetic improvement of fiber quality in tetraploid cotton: An overview of major QTLs and genes involved in and edited for the quality of cotton fibers. J. Cotton Res. 2024, 7, 33. [Google Scholar] [CrossRef]
- Zheng, J.; Wen, S.; Yu, Z.; Luo, K.; Rong, J.; Ding, M. Alternative Splicing during Fiber Development in G. hirsutum. Int. J. Mol. Sci. 2023, 24, 11812. [Google Scholar] [CrossRef] [PubMed]
- Gowda, S.A.; Bourland, F.M.; Kaur, B.; Jones, D.C.; Kuraparthy, V. Genetic diversity and population structure analyses and genome-wide association studies of photoperiod sensitivity in cotton (Gossypium hirsutum L.). Theor. Appl. Genet. 2023, 136, 230. [Google Scholar] [CrossRef]
- Grover, C.E.; Zhu, X.; Grupp, K.K.; Jareczek, J.J.; Gallagher, J.P.; Szadkowski, E. Molecular confirmation of species status for the allopolyploid cotton species, Gossypium ekmanianum Wittmack. Genet. Resour. Crop Evol. 2015, 62, 103–114. [Google Scholar] [CrossRef]
- Morales-Aranibar, L.; Yucra, F.E.Y.; Aranibar, C.G.M.; Saenz, M.C.; Gonzales, H.H.S.; Aguilera, J.G.; Alvarez, J.L.L.L.; Zuffo, A.M.; Steiner, F.; Ratke, R.F.; et al. First report on the genetic diversity of populations of Gossypium barbadense L. and Gossypium hirsutun L. in the Amazonian native communities, Cusco—Peru. Plants 2023, 12, 865. [Google Scholar] [CrossRef] [PubMed]
- Salama, E.A.A.; Farid, M.A.; El-Mahalawy, Y.A.; El-Akheder, A.A.A.; Aboshosha, A.A.; Fayed, A.M.; Yehia, W.M.B.; Lamlom, S.F. Exploring the diversity of agromorphological and fiber characteristics in cotton (G. barbadense L.). BMC Plant Biol. 2024, 24, 403. [Google Scholar] [CrossRef]
- Abdelraheem, A.; Zhu, Y.L.; Zhang, J. Quantitative Trait Locus Mapping for Fusarium Wilt Race 4 Resistance in a Recombinant Inbred Line Population of Pima Cotton (Gossypium Barbadense). Pathogens 2022, 11, 1143. [Google Scholar] [CrossRef]
- Cardoso, K.C.M.; Barroso, G.H.; Freitas, F.O.; de Menezes, I.P.P.; Fernandes Silva, C.; Arriel, N.H.C.; Sofiatti, V.; Hoffmann, L.V. Traditional fabric and medicinal use are the leading factors of in situ conservation of Gossypium barbadense in Central Brazil. Sustainability 2023, 15, 4552. [Google Scholar] [CrossRef]
- Lamlom, S.F.; Yehia, W.M.B.; Kotb, H.M.K.; Abdelghany, A.M.; Shah, A.N.; Salama, E.A.A.; Abdelhamid, M.M.A.; Abdelsalam, N.R. Genetic improvement of Egyptian cotton (Gossypium barbadense L.) for high yield and fiber quality properties under semi arid conditions. Sci. Rep. 2024, 14, 7723. [Google Scholar] [CrossRef]
- Morales-Aranibar, L.; Rivera, M.Y.N.; Gonzales, H.H.S.; Aranibar, C.G.M.; Gutierrez, N.L.; Gomez, F.G.; Zuffo, A.M.; Aguilera, J.G.; Steiner, F. Comparative analysis of key fiber characteristics in white Pima cotton (L.): Native accessions from the Peruvian Amazon. Agrosystems Geosci. Environ. 2024, 7, e20517. [Google Scholar] [CrossRef]
- Morales-Aranibar, L.; Saenz, M.C.; Morales-Aranibar, C.G.; Rivera, M.Y.N.; Aguilera, J.G.; Steiner, F.; Bardiviesso, D.M.; Zuffo, A.M. Deciphering the White Fiber Quality of Gossypium barbadense L. var. brasiliensis in La Convención, Cusco, Peru. J. Cotton Res. 2024, 7, 23. [Google Scholar] [CrossRef]
- Abdel-Aty, M.S.; Youssef-Soad, A.; Yehia, W.M.B.; El-Nawsany, R.T.E.; Kotb, H.M.K.; Ahmed, G.A.; Hasan, M.E.; Salama, E.A.A.; Lamlom, S.F.; Saleh, F.H.; et al. Genetic analysis of yield traits in Egyptian cotton crosses (Gossypium barbdense L.) under normal conditions. BMC Plant Biol. 2022, 22, 462. [Google Scholar] [CrossRef] [PubMed]
- Morales-Aranibar, L.; Soto, C.A.M.; Sanchez, A.R.Y.; Morales-Aranibar, C.G.; Apaza-Canqui, A.E.; Saenz, M.A.C.; Aguilera, J.G.; Oliveira, B.R.d. Socioeconomic and Cultural Impacts of Native Cotton Cultivation in the Amazonian Communities of Alto Urubamba, La Convencion-Cusco Province, Peru. Sustainability 2024, 16, 7953. [Google Scholar] [CrossRef]
- Ditta, A.; Zhou, Z.; Cai, X.; Wang, X.; Okubazghi, K.W.; Shehzad, M.; Xu, Y.; Hou, Y.; Sajid Iqbal, M.; Khan, M.K.R.; et al. Assessment of Genetic Diversity, Population Structure, and Evolutionary Relationship of Uncharacterized Genes in a Novel Germplasm Collection of Diploid and Allotetraploid Gossypium Accessions Using EST and Genomic SSR Markers. Int. J. Mol. Sci. 2018, 19, 2401. [Google Scholar] [CrossRef]
- Nidagundi, J.M.; Hugar, A.A.; Revanásiddayya; Korappala, V.; Shiva, K.; Patil, S.; Shivamurthy, R.; Yarrappa, A.M.; Guranna, H.S. Combination ability and a multiparent-based approach to derive simultaneous transgressive segregants for multiple traits in cotton (Gossypium hirsutum L.). Plant Breed. 2024, 143, 650–665. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, X.; Cai, X.; Xu, Y.; Sun, R.; Umer, M.J.; Wang, K.; Qin, T.; Hou, Y.; Wang, Y.; et al. Genome-Wide Association Study of Lint Percentage in Gossypium hirsutum L. Races. Int. J. Mol. Sci. 2023, 24, 10404. [Google Scholar] [CrossRef]
- López, S.; Gil, A. Phenology of Gossypium raimondii Ulbrich “native cotton” of green fiber. Sci. Agropecu. 2017, 8, 267–271. [Google Scholar] [CrossRef]
- Naoumkina, M.; Hinchliffe, D.J.; Thyssen, G.N. Naturally, colored cotton for wearable applications. Front. Plant Sci. 2024, 15, 1350405. [Google Scholar] [CrossRef]
- Revanasiddayya, R.; Nidagundi, J.M.; Fakrudin, B.; Kuchanur, P.; Yogeesh, L.N.; Hanchinal, S.; Suma, T.C.; Sunkad, G.; Muralidhara, B.; Maheshkumar, D.; et al. Genetic diversity among colored cotton genotypes in relation to fiber color and ploidy level according to SSR markers. Czech J. Genet. Plant Breed. 2024, 60, 12–24. [Google Scholar] [CrossRef]
- Gong, W.; Du, X.; Jia, Y.; Pan, Z. Color cotton and its utilization in China. In Cotton Fiber: Physics, Chemistry and Biology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 117–132. [Google Scholar]
- Selvakumar, S.; Ragavan, T.; Gurusamy, A.; Prabhaharan, J.; Gunasekaran, M.; Sivakumar, T.; Subramanian, E.; Rani, S.; Arthirani, B.; Sathishkumar, A.; et al. Impact of different nutrient management strategies on growth, yield components and yield of coloured cotton (Gossypium hirsutum L.) cv. Vaidehi 1. Front. Sustain. Food Syst. 2025, 9, 1544696. [Google Scholar] [CrossRef]
- Rahimova, G.; Nabiev, S.; Azimov, A.; Sagdiev, M.; Alimova, R.N.; Khamdullaev, S.; Shavkiev, J. Morphological and agronomic characterization of colored cotton cultivars of G. hirsutum L. J. Wildl. Biodivers. 2024, 8, 165–178. [Google Scholar]
- Sun, J.; Sun, Y.; Zhu, Q.H. Breeding next-generation naturally colored cotton. Trends Plant Sci. 2021, 26, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Luo, W.; Li, Y.; Lin, Z. Advances and new insights in naturally colored cotton breeding and research. Ind. Crops Prod. 2024, 211, 118252. [Google Scholar] [CrossRef]
- Çınar, V.M.; Ünay, A. Combining suitable brown lint color, fiber quality, and yield in F2 cotton hybrids. Ind. Crops Prod. 2025, 224, 119674. [Google Scholar] [CrossRef]
- Arriel, N.H.C.; Cerón, M.; Cardoso, K.C.M.; Dileo, P.N.; González, C.; Hoffmann, L.V.; Jiménez, H.; Klein, L.M.; Lima, M.M.d.A.; Medina, C.; et al. History and status of local cotton Gossypium spp. in Argentina, Brazil, Colombia and Ecuador. Genet. Resour. Crop Evol. 2023, 70, 2193–2217. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Li, Q.; Sun, X.; Gao, J.; Li, D.; Guo, N. Exploring the differences in traits and genes between brown cotton and white cotton hybrid offspring (Gossypium hirsutum L.). Planta 2025, 261, 35. [Google Scholar] [CrossRef]
- Campbell, B.T.; Hugie, K.L.; Wu, J.; Jones, D.C. Assessing the breeding potential of extralong staple upland germplasm in a cot ton breeding program. Crop Sci. 2018, 58, 1145–1154. [Google Scholar] [CrossRef]
- Otzen, T.; Manterola, C. Sampling techniques on a population under study. Int. J. Morphol. 2017, 35, 227–232. [Google Scholar] [CrossRef]
- Hayat, K.; Bardak, A. Genetic variability for ginning outturn and association among fiber quality traits in an upland cotton global germplasm collection. Sains Malays. 2020, 49, 11–18. [Google Scholar] [CrossRef]
- Cotton Incorporated. The Classification of Cotton. 2018. Available online: https://www.cottoninc.com/wp-content/uploads/2017/02/Classification-of-Cotton.pdf (accessed on 10 September 2023).
- Zellweger, U. Uster HVI Spectrum: High Volume Instrument for Fiber Testing—Application Handbook; Uster Technologies AG: Uster, Switzerland, 1999. [Google Scholar]
- IMAMT. Manual de Boas Práticas de Manejo do Algodoeiro em Mato Grosso—4ª Edição. 2014. Available online: https://imamt.org.br/manual-de-boas-praticas-de-manejodo-algodoeiro-em-mato-grosso-4a-edicao/ (accessed on 10 September 2023).
- Salazar, C.E. Measurement of Fiber Quality Characteristics Based on H.V.I. 2002. Available online: http://hdl.handle.net/20.500.12324/17906 (accessed on 10 September 2023).
- Bhering, L.L. Rbio: A tool for biometric and statistical analysis using the R plat form. Crop Breed. Appl. Biotechnol. 2017, 17, 187–190. [Google Scholar] [CrossRef]
- Darawsheh, M.K.; Beslemes, D.; Kouneli, V.; Tigka, E.; Bilalis, D.; Roussis, I.; Karydogianni, S.; Mavroeidis, A.; Triantafyllidis, V.; Kosma, C.; et al. Environmental and regional effects on fiber quality of cotton grown in Greece. Agronomy 2022, 12, 943. [Google Scholar] [CrossRef]
- Çetin, B.; Copeur, O. Combining ability and heterosis for fiber color and quality in cotton (Gossypium hirsutum L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2022, 50, 12782. [Google Scholar] [CrossRef]
- Saleem, H.; Chaudhary, M.T.; Shakeel, A.; Wani, S.H.; Du, X.; Azhar, M.T. Wild Cotton Genepool: An Unopened Treasure. In Wild Germplasm for Genetic Improvement in Crop Plants; Azhar, M.T., Wani, S.H., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 19–53. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Y.; Ali, A.M.; Xiao, R.; Liang, C.; Meng, Z.; Wang, Y.; Wang, P.; Wang, X.; Zhang, R. Rich variant phenotype of Gossypium hirsutum L. saturated mutant library provides resources for cotton functional genomics and breeding. Ind. Crops Prod. 2022, 186, 115232. [Google Scholar] [CrossRef]
- Wang, W.; Yang, X.; Zeng, J.; Liang, A.; Liu, D.; Wang, W.; Wang, M.; Li, Y.; Lin, X.; Zhang, J.; et al. Construction of ethyl methane sulfonate mutant library in G. arboreum and rapid identification of mutant genes via repeated resequencing. Ind. Crops Prod. 2024, 213, 118373. [Google Scholar] [CrossRef]
- Singh, S.; Thakur, A.; Tomar, R.S.; Tiwari, S.; Sharma, R.A. Agro-Biodiversity, Status, and Conservation Strategies: An Indian Perspective. In Toward Sustainable Natural Resources; Rani, M., Chaudhary, B.S., Jamal, S., Kumar, P., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Muhammad, N.; Luo, T.; Gui, H.; Dong, Q.; Wang, Q.; Pang, N.; Zhang, X.; Wang, X.; Ma, X.; Song, M. Effects of Phosphorus-Mediated Alleviation of Salt Stress on Cotton Genotypes: Biochemical Responses and Growth Adaptations. Agronomy 2024, 14, 1707. [Google Scholar] [CrossRef]
- Che, J.; Yang, X. A recent (2009–2021) perspective on sustainable color and textile coloration using natural plant resources. Heliyon 2022, 8, e10979. [Google Scholar] [CrossRef] [PubMed]
- Rathinamoorthy, R.; Parthiban, M. Colored cotton: A new eco-friendly textile material for the future. In Handbook of Ecomaterials; Martinez, L., Kharissova, O., Kharisov, B., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Reddy, B.V.R.P.; Vishnuvardhan, K.M.; Amarnath, K.; Sagar, U.N.; Kalyani, D.L.; Ramakrishna, M.S.; Reddy, Y.R.; Venkateswarulu, N.C. Insights into the genetic divergence in Asiatic cotton (Gossypium arboreum L.) germplasm for fiber-quality traits. Plant Genet. Resour. 2025, 23, 18–26. [Google Scholar] [CrossRef]
- Tesema, A.F.; Sayeed, M.A.; Turner, C.; Kelly, B.R.; Hequet, E.F. Use of Span Lengths Extracted from the HVI Fibrogram to Predict Yarn Quality. J. Nat. Fibers 2023, 20, 2248379. [Google Scholar] [CrossRef]
- Lewin, M. Handbook of Fiber Chemistry, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Cassidy, T.; Goswami, P. Textile and Clothing Design Technology; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Orcón-Basilio, B.; Giraldo-Borja, M.; Flores Rúa, E.; Berrospi, A.Y. Textile pretreatment alternatives: Integrated scouring-bleaching and chemical-enzymatic bleaching method, evaluation and comparison with the classical method. J. Chem. Soc. Peru 2019, 85, 175–188. [Google Scholar] [CrossRef]
- Serquen-Lopez, L.M.; Iglesias-Osores, S. Molecular characterization of native colored cotton varieties on the north coast of Peru. Sci. Agropecu. 2019, 10, 167–168. [Google Scholar] [CrossRef]
- Broetto, F.; Marchese, J.A.; Coscolin, R.B.S.; de Barros, É.A.; Bressan, D.F.; Campohermoso, M.C. Vegetative growth, yield and fiber quality in cotton plants subjected to mineral stress. Ideas 2013, 31, 79–86. [Google Scholar] [CrossRef]
- López, A.; López, E.; Gil, E.; Caicedo, M.; Mendoza, M. Characterization of fruits, seeds and fibers of Gossypium barbadense “Brown cotton”. Sciéndo 2018, 21, 301–304. [Google Scholar] [CrossRef]
- Aguilera, J.G.; Ribeiro, E.B.E.; Nascimento, A.C.V.; Silva, M.V.; Carvalho, R.S.; Cocco, A.S.; Barreto, A.F.S.; Martins, G.S.; Barcelos, R.P.; Rodrigues, J.A.S.; et al. Qualitative and quantitative descriptors for quantifying the genetic diversity of bean seeds. Trends Agric. Environ. Sci. 2023, 1, e230001. [Google Scholar] [CrossRef]
- Argentel-Martinez, L.; Penuelas-Rubio, O.; Aguilera, J.G.; Krewer, B.I.; Diniz, J.F.; Barros, P.P.V.; Alfonso Junior, J.A.; Ratke, R.F.; Zuffo, A.M.; Garatuza-Payan, J. Effects of planting position and Azospirillum brasilense application on the sprout and agronomic traits of cassava (Manihot esculenta Crantz). Agric. Soc. Desarro. 2023, 20, 166–177. [Google Scholar] [CrossRef]
- Sampaio, A.P.L.; Aguilera, J.G.; Mendes, A.M.S.; Argentel-Martinez, L.; Zuffo, A.M.; Teodoro, P.E. The role of the genetic diversity of Capsicum spp. in the conservation of the species: Qualitative and quantitative characterization. Ciência E Agrotecnologia 2023, 47, e009122. [Google Scholar] [CrossRef]
- Raphael, J.P.A.; Echer, F.R.; Rosolem, C.A. Understanding fiber quality in field-grown shaded cotton: Nitrogen fertilization implications. Field Crops Res. 2024, 317, 109543. [Google Scholar] [CrossRef]
Descriptor (Measurement Unit) | Description Qualitative | Description Quantitative | Reference |
---|---|---|---|
Fiber length/mm | Short fiber | ≤20.5 | [31] |
Medium fiber | 20.6–27.8 | ||
Long fiber | 28.6–33.3 | ||
Extralong fiber | 34.9–42.0 | ||
Micronaire/maturity fineness−1 | Very fine | <3.0 | [32,33] |
Fine | 3–3.9 | ||
Medium | 4–4.9 | ||
Coarse | 5–5.9 | ||
Very coarse | ≥6.0 | ||
Fiber strength/gf tex−1 | Weak | ≤23 | [31] |
Intermediate | 24–25 | ||
Average | 26–28 | ||
Strong | 29–30 | ||
Very strong | ≥31 | ||
Length uniformity index/% | Very low | <77 | [32,33] |
Low | 77–79 | ||
Intermediate | 80–82 | ||
High | 83–85 | ||
Very high | >85 | ||
Fiber elongation/% | Very low | <5.0 | [32,33] |
Low | 5.0–5.8 | ||
Average | 5.9–6.7 | ||
High | 6.8–7.6 | ||
Very high | ≥7.7 | ||
Maturity index | Very immature | <0.70 | [34] |
Immature | 0.70–0.85 | ||
Mature | 0.86–1.00 | ||
Very mature | >1.00 | ||
Short fiber index/% | Very low | <6 | [32] |
Low | 6–9 | ||
Average | 10–13 | ||
High | 14–17 | ||
Very high | >17 |
Accession | Species | Collection Site | Cotton Fiber Quality Properties | ||||||
---|---|---|---|---|---|---|---|---|---|
UHML | MIC | STR_res | Elong | SFI | UNIF | MAD | |||
G1 | G. barbadense var. brasiliensis | Timpia | 27.88 | 6.25 | 36.9 | 15.1 | 9.1 | 83.4 | 0.80 |
G2 | Gossypium spp. | Timpia | 26.10 | 5.05 | 28.3 | 15.1 | 10.0 | 83.4 | 0.79 |
G3 | G. barbadense | Ticumpinia | 25.21 | 6.35 | 20.9 | 13.5 | 12.2 | 82.1 | 0.80 |
G4 | G. barbadense | Kirigueti | 23.68 | 6.28 | 27.1 | 16.3 | 10.6 | 83.5 | 0.78 |
G5 | G. barbadense | Shivankoreni | 23.28 | 5.27 | 23.0 | 18.5 | 13.7 | 83.2 | 0.77 |
G6 | G. barbadense var. brasiliensis | Timpia | 23.20 | 4.12 | 20.8 | 16.9 | 16.4 | 81.7 | 0.78 |
G7 | G. barbadense | Koribeni | 22.59 | 7.07 | 29.7 | 19.4 | 14.0 | 81.6 | 0.76 |
G8 | G. barbadense var. brasiliensis | Poyentimari | 21.78 | 4.08 | 16.3 | 17.3 | 27.3 | 77.6 | 0.77 |
G9 | G. barbadense var. brasiliensis | Camisea | 21.44 | 6.45 | 24.3 | 16.9 | 19.7 | 77.8 | 0.78 |
Cotton Group | Cotton Fiber Quality Properties | ||||||
---|---|---|---|---|---|---|---|
UHML | MIC | STR_Res | Elong | SFI | UNIF | MAD | |
Group 1 | 23.58 ± 2.97 | 5.23 ± 1.30 | 24.58 ± 8.85 | 16.55 ± 0.98 | 18.13 ± 7.55 | 80.13 ± 2.89 | 0.78 ± 0.01 |
Group 2 | 26.10 ± 0.01 | 5.05 ± 0.41 | 28.30 ± 0.32 | 15.10 ± 0.02 | 10.00 ± 0.41 | 83.40 ± 0.01 | 0.79 ± 0.05 |
Group 3 | 23.69 ± 1.11 | 6.24 ± 0.74 | 25.18 ± 3.97 | 16.93 ± 2.63 | 12.63 ± 1.56 | 82.60 ± 0.90 | 0.78 ± 0.02 |
F test | |||||||
Probability > F | 0.37 | 0.29 | 0.79 | 0.54 | 0.19 | 0.16 | 0.60 |
CV (%) | 8.60 | 17.51 | 24.83 | 11.20 | 35.30 | 2.42 | 1.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Aranibar, L.; Márquez-Romero, F.R.; Morales-Aranibar, C.G.; Aran Ferreiro, D.; Aguilera, J.G.; Steiner, F.; Zuffo, A.M. Analysis of the Variability of the Textile Properties of Brown Cotton Preserved in the Native Communities of the Amazon of the Province of La Convención—Cusco. Diversity 2025, 17, 272. https://doi.org/10.3390/d17040272
Morales-Aranibar L, Márquez-Romero FR, Morales-Aranibar CG, Aran Ferreiro D, Aguilera JG, Steiner F, Zuffo AM. Analysis of the Variability of the Textile Properties of Brown Cotton Preserved in the Native Communities of the Amazon of the Province of La Convención—Cusco. Diversity. 2025; 17(4):272. https://doi.org/10.3390/d17040272
Chicago/Turabian StyleMorales-Aranibar, Luis, Fanny Rosario Márquez-Romero, Carlos Genaro Morales-Aranibar, Diego Aran Ferreiro, Jorge González Aguilera, Fábio Steiner, and Alan Mario Zuffo. 2025. "Analysis of the Variability of the Textile Properties of Brown Cotton Preserved in the Native Communities of the Amazon of the Province of La Convención—Cusco" Diversity 17, no. 4: 272. https://doi.org/10.3390/d17040272
APA StyleMorales-Aranibar, L., Márquez-Romero, F. R., Morales-Aranibar, C. G., Aran Ferreiro, D., Aguilera, J. G., Steiner, F., & Zuffo, A. M. (2025). Analysis of the Variability of the Textile Properties of Brown Cotton Preserved in the Native Communities of the Amazon of the Province of La Convención—Cusco. Diversity, 17(4), 272. https://doi.org/10.3390/d17040272