How Do Waterbird Communities Respond to Multi-Scale Environmental Variables in the Satellite Wetlands Surrounding a Ramsar Site, Shengjin Lake in China?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Waterbird Surveys
2.3. Environmental Variables
2.4. Data Analysis
3. Results
3.1. Waterbird Communities
3.2. The Effects of Environmental Variables
3.3. Species’ Compositions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fluet-Chouinard, E.; Stocker, B.D.; Zhang, Z.; Malhotra, A.; Melton, J.R.; Poulter, B.; Kaplan, J.O.; Goldewijk, K.K.; Siebert, S.; Minayeva, T.; et al. Minayeva Extensive global wetland loss over the past three centuries. Nature 2023, 614, 281–286. [Google Scholar] [CrossRef]
- Xiong, Y.; Mo, S.; Wu, H.; Qu, X.; Liu, Y.; Zhou, L. Influence of human activities and climate change on wetland landscape pattern—A review. Sci. Total Environ. 2023, 879, 163112. [Google Scholar] [CrossRef]
- Brandis, K.J.; Bino, G.; Spencer, J.A.; Ramp, D.; Kingsford, R.T. Decline in colonial waterbird breeding highlights loss of Ramsar wetland function. Biol. Conserv. 2018, 225, 22–30. [Google Scholar] [CrossRef]
- Jia, Q.; Wang, X.; Zhang, Y.; Cao, L.; Fox, A.D. Drivers of waterbird communities and their declines on Yangtze River floodplain lakes. Biol. Conserv. 2018, 218, 240–246. [Google Scholar] [CrossRef]
- Rajpar, M.N.; Ahmad, S.; Zakaria, M.; Ahmad, A.; Guo, X.; Nabi, G.; Wanghe, K. Artificial wetlands as alternative habitat for a wide range of waterbird species. Ecol. Indic. 2022, 138, 108855. [Google Scholar] [CrossRef]
- Giosa, E.; Mammides, C.; Zotos, S. The importance of artificial wetlands for birds: A case study from Cyprus. PLoS ONE 2018, 13, e0197286. [Google Scholar] [CrossRef] [PubMed]
- Tavares, D.C.; Guadagnin, D.L.; de Moura, J.F.; Siciliano, S.; Merico, A. Environmental and anthropogenic factors structuring waterbird habitats of tropical coastal lagoons: Implications for management. Biol. Conserv. 2015, 186, 12–21. [Google Scholar] [CrossRef]
- Pérez-García, J.M.; Sebastián-González, E.; Alexander, K.L.; Sánchez-Zapata, J.A.; Botella, F. Effect of landscape configuration and habitat quality on the community structure of waterbirds using a man-made habitat. Eur. J. Wildl. Res. 2014, 60, 875–883. [Google Scholar] [CrossRef]
- Brandolin, P.G.; Blendinger, P.G. Effect of habitat and landscape structure on waterbird abundance in wetlands of central Argentina. Wetl. Ecol. Manag. 2016, 24, 93–105. [Google Scholar] [CrossRef]
- Cerda-Peña, C.; Rau, J.R. The importance of wetland habitat area for waterbird species-richness. Ibis 2023, 165, 739–752. [Google Scholar] [CrossRef]
- He, K.; Song, A.; Zhang, Z.; Ramdat, N.; Wang, J.; Wu, W.; Chen, X. Restored coastal wetlands with low degree of separation and high patch connectivity attract more birds. Front. Mar. Sci. 2023, 10, 1081827. [Google Scholar] [CrossRef]
- Hamza, F. Impacts of human activities on diversity of wintering waterbirds: Assessment in Mediterranean coastal area. Ocean Coast. Manag. 2020, 198, 105317. [Google Scholar] [CrossRef]
- Wang, W.; Fraser, J.D.; Chen, J. Wintering waterbirds in the middle and lower Yangtze River floodplain: Changes in abundance and distribution. Bird Conserv. Int. 2017, 27, 167–186. [Google Scholar] [CrossRef]
- Yu, H.; Wang, X.; Cao, L.; Zhang, L.U.; Jia, Q.; Lee, H.; Xu, Z.; Liu, G.; Xu, W.; Hu, B.; et al. Are declining populations of wild geese in China ‘prisoners’ of their natural habitats? Curr. Biol. 2017, 27, R376–R377. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yang, Y.; Wang, Z.; Yang, L.; Zhang, D.; Zhou, L. The relationship between seasonal water level fluctuation and habitat availability for wintering waterbirds at Shengjin Lake, China. Bird Conserv. Int. 2019, 29, 100–114. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, P.; Zhang, S.; Wang, W. Dynamic identification and health assessment of wetlands in the middle reaches of the Yangtze River basin under changing environment. J. Clean. Prod. 2022, 345, 131105. [Google Scholar] [CrossRef]
- Ma, Z.; Cai, Y.; Li, B.; Chen, J. Managing wetland habitats for waterbirds: An international perspective. Wetlands 2010, 30, 15–27. [Google Scholar] [CrossRef]
- Almeida, B.A.; Sebastián-González, E.; dos Anjos, L.; Green, A.J. Comparing the diversity and composition of waterbird functional traits between natural, restored, and artificial wetlands. Freshw. Biol. 2020, 65, 2196–2210. [Google Scholar] [CrossRef]
- Li, C.; Zhou, L.; Xu, L.; Zhao, N.; Beauchamp, G. Vigilance and activity time-budget adjustments of wintering hooded cranes, Grus monacha, in human-dominated foraging habitats. PLoS ONE 2015, 10, e0118928. [Google Scholar] [CrossRef]
- Delany, S. Guidelines for Participants in the International Waterbird Census (IWC); Wetlands International: Wageningen, The Netherlands, 2005. [Google Scholar]
- MacKinnon, J.; Nong, Y.X.; Hua, L.L.; Yao, X.; Zhi, G.; Chang, G.; Jun, L.J.; MacKinnon, A. Guide to the Birds of China; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Diver, K.C. Not as the crow flies: Assessing effective isolation for island biogeographical analysis. J. Biogeogr. 2008, 35, 1040–1048. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Fox, A.D. Birds and people both depend on China’s wetlands. Nature 2009, 460, 173. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhou, L.; Xu, W. Diversity of wintering waterbirds enhanced by restoring aquatic vegetation at Shengjin Lake, China. Sci. Total Environ. 2020, 737, 140190. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.L.D.; Oliveira, M.D.S.; Rocha, R.J.D.S.; Pitelli, R.A. Water-level controlled reservoir as refugia for waterbirds in an urban landscape. Ornithol. Res. 2020, 28, 151–160. [Google Scholar] [CrossRef]
- Kingsford, R.T.; Jenkins, K.M.; Porter, J.L. Imposed hydrological stability on lakes in arid Australia and effects on waterbirds. Ecology 2004, 85, 2478–2492. [Google Scholar] [CrossRef]
- Cheng, B.; Zhu, X.; Alatalo, J.M.; Gordon, J.; Li, H.; Jiang, B.; Yin, W. The impacts of water level fluctuations from paddy fields and aquaculture ponds on wetland habitats for wintering waterbirds: Implications for wetland management. Front. Environ. Sci. 2022, 10, 980201. [Google Scholar] [CrossRef]
- Bai, M.L.; Chih, W.C.; Lai, Y.C.; Lee, P.F.; Lien, Y.Y. Aquaculture ponds as important high-tide habitats for waterbirds along the west coast of Taiwan. Ornithol. Sci. 2018, 17, 55–67. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, J.; Ma, Z. Effects of aquaculture on the maintenance of waterbird populations. Conserv. Biol. 2022, 36, e13913. [Google Scholar] [CrossRef] [PubMed]
- Feaga, J.S.; Vilella, F.J.; Kaminski, R.M.; Davis, J.B. Waterbird use of catfish ponds and migratory bird habitat initiative wetlands in Mississippi. Waterbirds 2015, 38, 269–281. [Google Scholar] [CrossRef]
- Otieno, N.E.; Mutati, A.S.; Akoth, C.; Ogwanjg, D.; Mwinami, T.; Alaro, P.; Njoka, J. Role of invertebrate prey abundance on waterbird distribution across rice field growth stages in Western Kenya. Waterbirds 2015, 38, 47–57. [Google Scholar] [CrossRef]
- Pernollet, C.A.; Cavallo, F.; Simpson, D.; Gauthier-Clerc, M.; Guillemain, M. Seed density and waterfowl use of rice fields in Camargue, France. J. Wildl. Manag. 2017, 81, 96–111. [Google Scholar] [CrossRef]
- Pierluissi, S. Breeding waterbirds in rice fields: A global review. Waterbirds 2010, 33, 123–132. [Google Scholar]
- Elphick, C.S. A history of ecological studies of birds in rice fields. J. Ornithol. 2015, 156 (Suppl. S1), 239–245. [Google Scholar] [CrossRef]
- Fan, Y.; Zhou, L.; Cheng, L.; Song, Y.; Xu, W. Foraging behavior of the Greater White-fronted Goose (Anser albifrons) wintering at Shengjin Lake: Diet shifts and habitat use. Avian Res. 2020, 11, 3. [Google Scholar] [CrossRef]
- Zamora-Marín, J.M.; Zamora-López, A.; Jiménez-Franco, M.V.; Calvo, J.F.; Oliva-Paterna, F.J. Small ponds support high terrestrial bird species richness in a Mediterranean semiarid region. Hydrobiologia 2021, 848, 1623–1638. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, Y.; Ma, J. Wetland habitats supporting waterbird diversity: Conservation perspective on biodiversity-ecosystem functioning relationship. J. Environ. Manag. 2024, 357, 120663. [Google Scholar] [CrossRef]
- Wang, C.; Wang, G.; Dai, L.; Liu, H.; Li, Y.; Zhou, Y.; Chen, H.; Dong, B.; Lv, S.; Zhao, Y. Diverse usage of waterbird habitats and spatial management in Yancheng coastal wetlands. Ecol. Indic. 2020, 117, 106583. [Google Scholar] [CrossRef]
- Gao, B.; Gong, P.; Zhang, W.; Yang, J.; Si, Y. Multiscale effects of habitat and surrounding matrices on waterbird diversity in the Yangtze River Floodplain. Landsc. Ecol. 2021, 36, 179–190. [Google Scholar] [CrossRef]
- Dou, P.; Cui, B. Dynamics and integrity of wetland network in estuary. Ecol. Inform. 2014, 24, 1–10. [Google Scholar] [CrossRef]
- Quan, R.C.; Wen, X.; Yang, X. Effects of human activities on migratory waterbirds at Lashihai Lake, China. Biol. Conserv. 2002, 108, 273–279. [Google Scholar] [CrossRef]
- Flynn, D.F.; Mirotchnick, N.; Jain, M.; Palmer, M.I.; Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 2011, 92, 1573–1581. [Google Scholar] [CrossRef]
- Hou, X.; Feng, L.; Tang, J.; Song, X.P.; Liu, J.; Zhang, Y.; Wang, J.; Xu, Y.; Dai, Y.; Zheng, Y.; et al. Anthropogenic transformation of Yangtze Plain freshwater lakes: Patterns, drivers and impacts. Remote Sens. Environ. 2020, 248, 111998. [Google Scholar] [CrossRef]
- Li, C.; Li, H.; Zhang, Y.; Zha, D.; Zhao, B.; Yang, S.; Zhang, B.; de Boer, W.F. Predicting hydrological impacts of the Yangtze-to-Huaihe Water Diversion Project on habitat availability for wintering waterbirds at Caizi Lake. J. Environ. Manag. 2019, 249, 109251. [Google Scholar] [CrossRef] [PubMed]
- Albanese, G.; Haukos, D.A. A network model framework for prioritizing wetland conservation in the Great Plains. Landsc. Ecol. 2017, 32, 115–130. [Google Scholar] [CrossRef]
Total Species Richness | Number of Species Threatened/Protected * | |
---|---|---|
Summer | ||
Reservoirs | 18 | 1/1 |
Aquaculture ponds | 27 | 1/0 |
Paddy fields | 22 | 0/1 |
Natural ponds | 21 | 0/1 |
Winter | ||
Reservoirs | 17 | 0/0 |
Aquaculture ponds | 38 | 7/6 |
Paddy fields | 28 | 4/5 |
Natural ponds | 39 | 6/4 |
Variables | Summer | Winter | ||||
---|---|---|---|---|---|---|
Species Richness | Number of Individuals | Shannon–Wiener Index | Species Richness | Number of Individuals | Shannon–Wiener Index | |
AW | 0.0073 (<0.001) | 0.0201 (<0.001) | 0.0021 (0.638) | 0.0089 (<0.001) | 0.0172 (<0.001) | 0.0035 (0.436) |
HD | 0.4928 (0.025) | 1.4540 (<0.001) | 0.1278 (0.810) | 0.1872 (0.395) | −0.4728 (<0.001) | 0.1575 (0.775) |
DS | 0.0001 (0.308) | −0.0001 (0.0241) | 0.0001 (0.515) | 0.0001 (0.342) | 0.0001 (<0.001) | 0.0012 (0.830) |
LC | 0.0002 (0.015) | 0.0005 (<0.001) | 0.0001 (0.735) | 0.0001 (0.066) | 0.0001 (<0.001) | 0.0001 (0.538) |
Reservoirs | Aquaculture Ponds | Paddy Fields | Natural Ponds | |
---|---|---|---|---|
Summer | ||||
Reservoirs | F = 10.54, p = 0.001 | F = 4.45, p = 0.001 | F = 3.24, p = 0.003 | |
Aquaculture ponds | R2 = 0.334 | F = 5.26, p = 0.001 | F = 6.87, p = 0.001 | |
Paddy fields | R2 = 0.162 | R2 = 0.208 | F = 3.96, p = 0.001 | |
Natural ponds | R2 = 0.115 | R2 = 0.238 | R2 = 0.142 | |
Winter | ||||
Reservoirs | F = 7.11, p = 0.001 | F = 5.51, p = 0.001 | F = 2.49, p = 0.002 | |
Aquaculture ponds | R2 = 0.253 | F = 4.11 p = 0.001 | F = 2.55, p = 0.006 | |
Paddy fields | R2 = 0.193 | R2 = 0.171 | F = 3.09, p = 0.001 | |
Natural ponds | R2 = 0.091 | R2 = 0.104 | R2 = 0.114 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, C.; Xu, S.; Qian, Z.; Liao, Q.; Wu, T.; Wang, G. How Do Waterbird Communities Respond to Multi-Scale Environmental Variables in the Satellite Wetlands Surrounding a Ramsar Site, Shengjin Lake in China? Diversity 2025, 17, 176. https://doi.org/10.3390/d17030176
Pan C, Xu S, Qian Z, Liao Q, Wu T, Wang G. How Do Waterbird Communities Respond to Multi-Scale Environmental Variables in the Satellite Wetlands Surrounding a Ramsar Site, Shengjin Lake in China? Diversity. 2025; 17(3):176. https://doi.org/10.3390/d17030176
Chicago/Turabian StylePan, Chengrong, Sheng Xu, Zhenbing Qian, Qichen Liao, Tongxinyu Wu, and Guangyao Wang. 2025. "How Do Waterbird Communities Respond to Multi-Scale Environmental Variables in the Satellite Wetlands Surrounding a Ramsar Site, Shengjin Lake in China?" Diversity 17, no. 3: 176. https://doi.org/10.3390/d17030176
APA StylePan, C., Xu, S., Qian, Z., Liao, Q., Wu, T., & Wang, G. (2025). How Do Waterbird Communities Respond to Multi-Scale Environmental Variables in the Satellite Wetlands Surrounding a Ramsar Site, Shengjin Lake in China? Diversity, 17(3), 176. https://doi.org/10.3390/d17030176