Review of Coral Taxonomy, Evolution and Diversity
Abstract
1. Introduction
2. Overview of Reticulate Evolution

- There is no easy definition of a ‘species’;
- There are no clear morphological or genetic boundaries between ‘species’, ‘sibling species’, ‘hybrids’, clades and ‘subspecies’;
- Many if not most recognised ‘species’ have variable distribution boundaries and as a result, ‘sibling species’ are likely to be common;
- A ‘grey zone’ commonly occurs between sibling species and subspecies where taxonomic divisions are uncertain and gene flow is ongoing;
- Taxonomic complexity exists for any ‘species’ both across its geographic range and among habitats in one place;
- Despite impressive dispersal capabilities via larvae and rafting, populations of very widespread species, at the edges of their ranges or those which have disjunctions, may be partly reproductively isolated on ecological and biogeographic timescales but not necessarily on evolutionary (or phylogenetic) scales;
- Polyphyletic species may be the norm, not the exception.
- There are significant historical confusions;
- There is clarity of taxonomic units in some regions and confusion in others;
- There are significant conflicts between taxonomists working in different regions or with different molecular, museum and/or field experience;
- Molecular taxonomy can resolve some confusions as can reproductive studies, but others cannot be readily resolved by any methods;
- Broad field experience and significant sampling across ranges is essential to avoid misinterpretation of morphological and/or molecular results;
- There are no easy resolutions of these conflicts and grey zones.
3. Species Delineation in a Reticulate System
3.1. Reproduction and Population Dynamics
3.1.1. Reproductive Mode and Dispersion
Asexual Reproduction
Sexual Reproduction
3.1.2. Hybridisation



- Is centre stage for any concept of reticulate evolution;
- Leaves no clear distinction between species (however defined), subspecies and hybrids;
- Occurs to an unknown extent but could be widespread across most major scleractinian taxa;
- Creates uncertainty in both morphological and molecular taxonomy;
- Is not readily accommodated by binomial nomenclature;
- Creates uncertainty and unpredictability in geographic boundaries;
- Reinforces a widespread view that conservation needs to be on finer spatial scales than distribution boundaries suggest.
3.1.3. Reproductive Mechanisms and Taxonomy
3.2. Other Mechanisms Causing Genetic Mixing and Divergence
3.2.1. The Holobiont
3.2.2. Chimaerism, Mosaicism and Somatic Mutations
3.2.3. Contemporary Stressors
Environmental Impacts
- Rates of evolution [218];
- Thermal tolerance;
- Acclimation;
- Their potential as a genetic resource for denuded reefs [224];
- Human intervention through selective breeding of heat- or other stress-tolerant cultivars [225];
- And other mechanisms of ‘assisted evolution’ [226].
Disease
3.3. Observing Reality
3.3.1. Blame It on Taxonomy?
3.3.2. The Biological Entity
3.3.3. Biological Entities and Names
3.3.4. Morphospecies
3.3.5. Field and Museum Studies
3.3.6. Habitat and Environment-Correlated Variation
3.4. Habitats
3.4.1. Back Reef, Lagoonal and Wave Hammered Reef Crests
3.4.2. Mesophotic Communities
3.5. Conceptualising Species-Habitat Variability
3.6. Geographic Reticulation
3.7. Local Abundance, Isolation and Habitat Marginality
3.8. Co-Occurrence
4. Species Boundaries and Taxonomic Decisions
4.1. Syngameons
- A syngameon is a group of taxa which show detectable or inferred hybridisation and/or gene flow between them;
- Gene flow between members of a syngameon does not need to be direct or frequent (some members may connect with other taxa via intermediates, and hybridisation may be rare or occur only in some habitats or geographic regions and not others);
- The taxa included will commonly be at species level but are not limited to this level;
- Members of a syngameon may come from different genera (and theoretically could come from higher phylogenetic levels although this has not, so far, been demonstrated in corals);
- Genetic lineages forming a syngameon may be part of a single recognised species or belong to more than one species—the defining characteristic being that direct or indirect gene flow must be observable or inferred between them;
- Syngameons could conceptually exist in the past but, since, by definition, they rely on recognition of gene flow between organisms, in practice they only exist in the present;
- The number of taxa included in a syngameon is flexible and will generally increase rather than decrease as new gene-flow linkages are discovered;
- Timelines have yet to be well determined but will be a mixture of historical and recent generational genetic exchanges.
4.2. Sister Species, Sub-Species Variants and Cryptic Lineages
4.3. Synonyms
Historical and Modern Synonymies
4.4. Misleading Assumptions and Continuing Challenges
4.5. Cryptic Species and Lineages
4.6. Polyphyletic Species
4.7. Stylophora, a Case Study
4.8. Integrating Genetics, Reproduction and Biological Entities
- They represent what is actually observed in nature;
- They are operational taxonomic units below the level of genus but above the level of subspecies or variant which, importantly, can be recognised consistently in the field;
- They have provided a relatively stable taxonomic framework for ecological, reproductive and molecular studies for several decades;
- They have highlighted the inherent environmental variability of taxa and hence provide an important context for design and interpretation of reproductive and molecular studies;
- Their existence and distinctiveness have remained independent of nomenclatural changes, despite potential confusions caused by those name changes (Section 7 below);
- The boundaries of most biological entities are proving robust, notwithstanding the difficulties due to reticulation;
- They offer an important strand of the evidence required for species delineation.
- Differences in observer knowledge and potential for inter-observer disagreement or bias—agreement depends on geographic experience and whether that is shared or relates to different regions.
- Incomplete knowledge of geographic and habitat variation can lead to limited understanding of the entity, especially with recently described taxa.
- Misalignment of observed field variability with underlying genetic variability:
- ○
- Strong selective conservation of genes controlling phenotypic presentation may obscure deeper molecular divisions (a hybrid may display a single parent’s morphology; two sister species may not be recognised);
- ○
- Convergent evolution may, theoretically, lead to similar phenotypic presentation of widely different molecular taxa. Note, however, that (a) the biological entity is identified using many more criteria than just the simple phenotypic morphology of a taxon; and (b) it is unlikely that convergent evolution at genus level or above would be so complete that evolutionarily conserved micromorphological elements would also converge (bats and birds may both fly, but they are easily distinguished).
- Recognisable field variability can offer clues to, but cannot, on its own, identify differing genetic signatures.
- While the biological entity reflects the variability that is observed in nature, it can only hint at the significance of that variability to a species’ evolutionary history or its reproductive or hybridisation potential. These must be supplied by molecular and reproductive studies.
- a
- Estimates of the natural genetic variance across habitats and geographic range.
- b
- The degree of difference in the genetic signatures required for species delineation.
- c
- The spatial distribution of populations with different signatures.
- d
- The temporal persistence of different signatures.
- e
- Co-occurrence of different signatures (specifically existing in the same vicinity—including habitat and environmental conditions—not just in the same geographic region).
5. Current Taxonomic Issues
5.1. Historical and Pervasive Issues
5.1.1. Type Specimens
- The type is not the same species as the description
- Multiple syntypes belong to different species
- Type specimen sharing
- The type locality is wrong or details are unrecorded or doubtful
- The holotype does not clearly represent the species
- Type specimens appear to overlap with another species
- Multiple syntypes or other type specimens come from different locations
- Nominal species without a specimen or which are unrecognisable
5.1.2. Resulting Consequences for Synonymies
5.2. Geographic Isolation and Distribution Extremities
5.3. Taxonomic Complications of Species Complexes and Complex Species
5.4. Anomalies and Possible Extinctions
5.5. Taxonomic and Nomenclatural Inconsistencies and Disagreements
6. Issues from Recent Molecular Studies
6.1. Sampling
6.1.1. Number of Samples
6.1.2. Omission of Gradients of Variability Across Habitats or Geographic Space
6.1.3. Omission of Key Species
6.2. Misidentification
6.3. Information Processing
6.3.1. Cladistics
6.3.2. Bayesian Inference
6.3.3. DNA Methodology
6.3.4. Morphometrics
6.3.5. Microstructure
7. Discrepancies Between Molecular and Morphological Taxonomies
7.1. Shuffles Between Genera
7.1.1. Lithophyllon mokai, Psammocora explanulata and Coscinaraea wellsi

7.1.2. Fungia concinna, F. repanda, F. scabra and F. spinifer
7.1.3. Fungia fralinae
7.1.4. Cycloseris hexagonalis
7.1.5. Phymastrea, Favites, Goniastrea and Paragoniastrea
“The recovery of the clade comprising G. australensis, G. deformis and F. russelli is a fascinating result, first and foremost because it is well supported in all three gene trees. None of the previous reconstructions have recovered this grouping—the five-gene phylogeny of Huang et al. (2011) [373] showed G. australensis and F. russelli as a paraphyly with A. curta nested within them, while Arrigoni et al. (2012) [376] supported the sister relationship between F. russelli and A. curta.”
7.1.6. Caulastraea and Astraeosmilia
7.1.7. Erythrastrea and Oulophyllia
7.1.8. Turbinaria and Duncanopsammia
7.1.9. Poritipora
7.1.10. Calathiscus
7.1.11. Paraclavarina
7.1.12. Symphyllia, Australomussa and Parascolymia

7.1.13. Porites
7.2. Summary of Generic Shuffles
7.3. Issues with Species
7.3.1. Leptastrea magaloni/L. pruinosa

7.3.2. Goniastrea (=Paramontastraea = Favites) peresi
7.3.3. Paraechinophyllia variabilis
7.3.4. Micromussa indiana/M. amakusensis
7.3.5. Acropora tenuissima and Acropora rongoi
“Specimens of A. rongoi in the collection at QMT were previously identified as A. striata (Verrill, 1866), Acropora elseyi (Brook, 1892) and Acropora florida (Dana, 1846), attributable to the variability in gross morphology of A. rongoi in different habitats. Verrill’s holotype of A. striata from the Ryukyu Islands has similar radial corallite shape but is clearly distinguished from A. rongoi on the basis of molecular and biogeographical evidence. Furthermore, the interpretation of A. striata as hispidose (Shirai, 1980 [396]; Veron and Wallace, 1984 [237]; Wallace, 1999) [285]) is likely to be incorrect because the holotype lacks tertiary branching.”

7.3.6. Acropora bifaria, A. kenti and A. africana
“The other three nominal species are … resurrected because: (1) they have type localities a long distance from Fiji; and (2) they show morphological differences from the holotype of A. tenuis … This biogeographical and morphological evidence, combined with the strong geographical variation in numerous other studies of ‘A. tenuis’, warrants resurrection of these nominal species. … [However] … additional sampling, particularly in the Indian Ocean, will be required to confirm their taxonomic boundaries.”
7.3.7. Acropora hyacinthus Complex
7.4. Generic Solutions
7.4.1. Acanthastrea ishigakiensis and Symphyllia erythraea
7.4.2. Favia leptophylla
7.4.3. Acanthastrea (=Lobophyllia) pachysepta
7.4.4. Micromussa (=Phymastrea, =Montastrea) multipunctata
7.4.5. Goniastrea (=Dipsastraea, = Favia, =Orbicella (Astrea)) stelligera
7.5. Agreements
8. Why the Discrepancies?
8.1. Author-Related Explanations
- (1)
- The author believes that their findings do not need to relate to morphology. However, since most molecular studies broadly support existing species delineations, such conflicts should, at the very least, ‘raise a red flag’ and require additional confirmation.
- (2)
- The results were derived from a superseded technology, commonly in GenBank [351] data, and would be different using modern methods and/or more comprehensive samples.
- (3)
- The results are not nested in a broader consideration of the molecular composition of the species studied, and the molecular consequences of environmental and biogeographic variations and thus the scope of conclusions were not supported by the sampling design.
- (4)
- Misunderstanding the risks of relying on unreplicated cladistic trees in reticulate systems, leading to unwarranted confidence in phylogenetic conclusions. This issue can be compounded by post hoc examination of specimens in search of morphological distinctions, a process that can introduce or reinforce confirmation bias.
- (5)
- A collecting error.
- (6)
- Omission of one or more key species which skewed the results.
- (7)
- The authors were unaware how their results (such as summarised by a cladogram) would map onto what is seen in nature, and might have modified their conclusions or awaited further confirmation had they understood.
- (8)
- The authors were fully aware of overt conflicts with morphology but considered that their results were nevertheless correct.
8.2. Underlying Issues
- (1)
- Inadequate fieldwork, in both sample collecting and seeing the living reality of molecular results, is a common cause of biological incongruence. By analogy, satellite imagery swept to prominence in studies of reef morphology and coral community distribution, initially providing highly erroneous results with mixtures of uniquely useful data (e.g., broad-scale surveys) and misleading, unsupported, claims (e.g., analyses of biodiversity), the latter leading to many premature publications.
- (2)
- We emphasise the importance of an adequate number of samples taken from an appropriate range of locations. Small sample numbers may produce strongly supported but misleading phylogenies due to stochastic effects. Without broad geographic and ecological sampling, results may be misleading if used prematurely to justify species delineation. Pertinent examples which support the need for such broad sampling are provided by detailed studies with much higher replication, for example, Acropora spathulata [33] (with geographic distance); Montastraea cavernosa [323], Stylophora pistillata [100], Seriatopora hystrix [322], and Pachyseris speciosa [247] (with depth); and the review (not about coral) of Ahrens et al. (2016) [406].
- (3)
- Some authors of what we believe are clearly incongruent results appear to assume that an alternative explanation for their molecular findings cannot exist. Considering the range of molecular complexities continually being revealed in all living organisms, this is a bold assumption. These cases are especially pertinent because the species involved (and we illustrate above) are morphologically readily recognised, suggesting that similar but less recognisable occurrences may be common for similar reasons in other molecular studies.
- (4)
- Species, however defined, are not isolated units to be shuffled repeatedly among genera with every new molecular result. This has created significant unnecessary destabilisation. If there is a perceived case for a generic change, it is pertinent to ensure that (a) the change reflects reality in nature; (b) that alternative views (including those based on other molecular studies) are addressed and if there is disagreement explain why; and (c) potentially related species are included in the study.
- (5)
- The ‘splitting versus lumping’ debate, as old as taxonomy, has a modern twist where molecular studies have again brought it to the fore, especially where geographically widespread species are split into regional species based on molecular differences, sometimes augmented by observations about type specimens. Clearly, populations of widespread species in different oceans cannot directly interbreed over such distances and molecular differences are therefore to be expected. However, for many species including those referred to in ‘Geographic Reticulation’ (above), a multitude of intermediate populations exist which potentially facilitate unlimited gene flow between distant regions over timescales of decades to centuries. Species splitting, taken to a logical endpoint, would mean that every coral population on a semi-isolated reef tract is open to being deemed a new species if their molecular signature reflects their isolation. Our alternative view is that many of such nominal species are geographic variants of a widespread parent in grey zones of speciation. A second cause of runaway splitting may occur with polyphyletic species which, as discussed above, potentially includes most species irrespective of their distribution. Again, taken to a logical endpoint, such splitting could be a source of thousands of supposedly ‘new species’.
9. Reticulate Patterns
- (1)
- Are morphological and molecular variations in lock-step? This is a critical question, both for its own sake but also because it profoundly affects the number and variety of samples required for molecular studies. Until foundational studies are made, perhaps it is reasonable to assume that a small number of well-authenticated samples are representative of a species at a single location if several samples are taken from each of the more benign environments, but as we have seen, these samples would not be representative of the same entity in mesophotic or exposed reef flat environments.
- (2)
- Is polyphylogeny the norm or the exception? Again, this is a question on which taxonomic decisions are repeatedly made. Reticulation predicts a dominance of the former, supported by the multitude of studies listed in ‘Species for which there is evidence of polyphylogeny’ (Box 5 above). However, there must be a spectrum which separates these species (of which Pocillopora damicornis is an extreme example according to the frequent referrals to it throughout this article) from those that seem clearly monophyletic such as the monospecific Diploastrea heliopora, Coeloseris mayeri, Gardineroseris planulata, or Oulastrea crispata. Knowing where individual species fit on this spectrum is essential for clarifying their taxonomic position.
- (3)
- To what degree are mesophotic corals genetically independent from their shallow-water neighbours? If they are largely independent, can these corals act as lifeboats when their shallow-water neighbours are bleached to extinction?
- (4)
- Is there an objective measure of molecular distinction between entities that form a continuum and those which do not? This question goes to the foundation of what, operationally, we should or should not deem to be a species.
- (5)
- Is there any molecular basis for determining levels of geographic variation in an entity and, if so, can these groupings be given an operational name? This question has particular relevance to conservation decisions.
10. The Need for Foundational Studies
11. The Future
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
| Admixture | A process where individuals from two or more previously isolated populations interbreed. The previously isolated populations are ancestral or parental and the newly formed population admixed (also see hybridisation). |
| Algorithm | A process or set of rules to be followed in calculations or other problem-solving operations, especially by a computer. |
| Amphitropical distribution | The same biological entity has disjunct populations, one in the tropical northern hemisphere and another in the tropical southern hemisphere. |
| Assisted evolution | Human mediated interventions designed to accelerate the adaptation of organisms to environmental stressors with the aim of enhancing resilience and persistence. Principal mechanisms include: induced acclimatisation, such as environmental preconditioning or modulation of epigenetic mechanisms; selective breeding, including intraspecific and interspecific hybridisation for stress-tolerant traits; holobiont community manipulation, changes to host-associated microbial or symbiont communities, through shuffling, switching, or inoculation with naturally tolerant strains; genetic modifications of either host or symbiont genomes to enhance tolerance or performance under stress. |
| Assortative mating | A form of non-random mating in which individuals select mates based on certain similar (positive assortative mating) or dissimilar (negative assortative mating) traits. It can have significant consequences for genetic divergence and speciation (positive assortative mating) or mixing (negative assortative mating). |
| Autotomy | (in corals) a means of asexual reproduction due to break-up of a parent corallite. Seen commonly in Diaseris. |
| Backcrossing | Cross of a hybrid with one of its parent species. |
| Bayesian inference | A method of statistical inference used to update information as new data become available, specifically by providing more readily interpretable confidence intervals. |
| Biogeographic boundaries | Distribution boundaries of species. |
| Biological entity | A discrete ‘species-level’ taxonomic unit (whether named or unnamed, formally described or not) which has an identifiable suite of variability in the field and is recognised across different environmental and spatial scales. Depending on the degree of confidence, a biological entity may be considered a ‘valid entity’, a ‘probably valid entity’ or ‘possibly valid entity’. In CoralsOfTheWorld.org, observations made in the field have, as far as possible, been combined with genetic, reproductive and physiological studies to develop a taxonomic framework of biological entities integrating all of these sources. Where these can be associated with existing descriptions and names these become ‘valid species’. The boundaries of biological entities may become modified where new information from molecular studies, reproduction and physiology make sense with what is observed in the natural world. |
| Biological Species Concept | A concept of a species defined as a group of individuals living in one or more populations that can potentially interbreed to produce fertile offspring and which are reproductively isolated from other such groups. |
| Cenozoic | The Earth’s current geological era representing 66 million years of Earth’s history. |
| Chimaeras | Genetically mixed taxa formed by the fusion of spat from two or more parent colonies. |
| Cladistics | A numerical classification procedure that attempts to reconstruct the evolutionary history of taxa by focusing on shared derived characters (synapomorphies) deduced to have originated from a recent common ancestor. The process groups taxa into ‘clades’ which are monophyletic groups that include the recent ancestor and all its descendants. While cladistics is a useful tool, it has limitations in reticulate evolutionary systems such as corals where there is significant hybridisation and gene flow across taxa and results must be interpreted with caution. |
| Cladogram | A diagram (also known as a ‘gene tree’) showing the cladistic relationship among species that are assumed to have evolved from a common ancestor. |
| Complex species | A single species which is not well defined (morphologically and/or genetically) and is presumed to be an amalgam of, as yet, poorly distinguished sister or sibling species (see also species complex). |
| Convergence | An evolutionary process where similar morphological traits or genetic changes evolve independently in species or species groups that are not closely related. Convergence can also occur through hybridisation and genetic exchange which may be more frequent where populations of sympatric species are small or are geographically isolated. |
| Co-occurrence | The occurrence in the same location (habitat, depth) of two or more species (see also sympatry, which has a less confined meaning). |
| Coral bleaching | The whitening of coral resulting from the expulsion of symbiotic algae (zooxanthellae) from their tissues. |
| Cross-breeding | Genetic exchange between different species. |
| Cryptic species | Two or more species that are more-or-less indistinguishable morphologically. |
| Darwinian evolution | Evolution due, primarily, to natural selection. Darwin’s theory predated genetics, hence neo-Darwinian evolution which is inclusive of genetics. |
| Disjunct distribution | One where two or more related populations are geographically separated. |
| Dispersion | The process of dispersing; in corals, primarily of larvae or via rafting of colonies on floating objects, transported in ocean currents. |
| Divergence | An evolutionary process whereby a single species or genetic lineage evolves into two or more separate species or genetic lineages. |
| Eocene | Of Earth’s Cenozoic history, 34–55 million years before present. |
| Epigenetic | A change to gene expression that does not involve alterations to the DNA sequence itself. Such change can be caused by environmental conditions, may come about through chemical modifications (such as DNA methylation or histone modification) and may be heritable. |
| Extinction | (a) Of a species or biological entity, when that distinctly identifiable taxon can no longer be found anywhere; (b) in a reticulate system, the loss or discontinuation of all phylogenetic lineages of that taxon. In the latter case it is theoretical concept and is not practical to observe. In the former case, it might be possible to observe the extinction of a recognised species or biological entity but it is possible that certain genetic lineages associated with that taxon would be preserved in sibling species elsewhere. |
| Gene flow | The movement of genetic information within and between species. |
| Gene leakage | A gradual transfer of genetic information from one species to another. |
| Genetic diversity | A measure of genetic variation within a population, species or geographic area. The measure may be defined by number and variety of alleles, heterozygosity, nucleotide diversity, chromosome structure or the effects on phenotypic or ecological consequences. Increasingly, numbers of more and less distinct genetic lineages relating to different habitats and environmental conditions may provide a measure of diversity analogous to species diversity, albeit at a sub-species level. |
| Geographic reticulation | Geographic variation in the morphological and genetic distance among related species resulting from variation in interspecific gene flow. |
| Gonochoric species | About three-quarters of all zooxanthellate corals are hermaphroditic; the remainder are gonochoric, having separate male and female colonies, albeit with some fascinating exceptions. |
| Grey zone of speciation | An intermediate phase in the process of species formation where some signs of divergence are present but separation is incomplete such that populations cannot be readily classified into one or more than one species. The phase is characterised by incomplete lineage sorting, ongoing gene flow, variable reproductive barriers and hybridisation, and morphological uncertainties. |
| Holotype | A single specimen designated by a taxonomist to represent a new species and on which a species name is based. |
| Hybrid | A natural or artificial taxon or group of individuals derived by combining two different parent species. |
| Hybridisation | The natural or artificial genetic mixing of separate species via reproduction to form a new organism combining genetic elements of each parent. |
| ICZN | International Commission of Zoological Nomenclature. |
| Introgression | The transfer of genetic material between species following hybridisation by repeated backcrossing to the parent species. |
| Lectotype | A specimen chosen from the original material used to describe a species, if the author of the name has not designated a type or if the type is inadequate or missing (for corals, most commonly applies to older descriptions where designation of a holotype was not mandatory and a lectotype has subsequently been designated from original specimens). See also neotype. |
| Mass bleaching | The bleaching of corals on a mass scale. |
| Mesophotic coral ecosystems | Ecosystems where light limitations affect coral diversity, reproduction and growth. Mesophotic habitats are generally defined as those below 30 m down to >200 m depth. The diversity of coral communities in the mesophotic zone depends heavily on water clarity. |
| Microstructure | The smallest components of coral skeletal architecture. |
| Molecular taxonomy | Taxonomy based on the study of genetic relationships within and between groups of organisms. |
| Monophyletic | A monophyletic group of organisms shares a common recent ancestor and includes all descendants of that common ancestor. See also paraphyletic and polyphyletic. |
| Morphological taxonomy | Taxonomy based on the study of morphological relationships within and between groups of organisms. |
| Neo-Darwinian evolution | Darwin’s concept of evolution in the light of genetics, unknown in Darwin’s time. |
| Neotype | A new specimen chosen by a taxonomic specialist to represent a species when no original type material is available or when original material is inadequate or missing. |
| Nomenclature | The process of naming species. |
| Nomenclatural priority | A principle of the ICZN that where various names apply to the same biological entity, the oldest available name should take priority. Note, however, that the ICZN offers alternatives to maintain taxonomic stability where a more recent name has been used consistently for decades or where there is some uncertainty over the identity, description or specimens of the oldest name. In these circumstances a more recent name can be validated. |
| Nominal species | A taxon at species level that has been formally described and given a scientific name (whether or not it is later found to be valid, a synonym or unrecognisable). |
| Operational taxonomic unit (OTU) | A practical classification unit used in taxonomy to distinguish it from other similarly determined taxonomic units. Historically OTUs were morphologically recognisable populations or groups of individuals that were distinct from other such groups but which had not necessarily been formally defined as species. In modern usage, OTUs are more commonly defined by clustering algorithms based on similarities in DNA sequences. In either case OTU’s may or may not correspond directly to named species and depend on the criteria for clustering and/or recognition. |
| Palaeozoic | The first of the three geological eras of the Phanerozoic, 252–538 million years ago. |
| Panmictic | A panmictic population is one in which individuals are highly connected and where there are limited selection pressures or migration barriers, resulting in little genetic differentiation across the distribution range. |
| Paraphyletic | A paraphyletic group of organisms shares a common recent ancestor but does not include all descendants of that common ancestor. See also monophyletic and polyphyletic. |
| Paratype | A specimen of the original type series from which a species has been described other than the designated holotype. See also syntype. |
| Phylogeny | Representation of evolutionary history and relationships among taxa. |
| Polyphyletic species | A polyphyletic species is one whose members have mixed evolutionary origins. In a non-reticulate system, polyphyly suggests convergent evolution where certain traits are under selection pressure and are developed independently in two unrelated lineages. In a reticulate system such as for corals, however, it can indicate historical separation followed by more recent genetic exchange. It does not necessarily indicate that such a species has been incorrectly delineated or that separating a polyphyletic species into further components is appropriate. Instead, additional study will almost certainly reveal further lineage mixing and highlight the complex influences of reticulation on speciation and evolutionary history. |
| Repackaging | In a reticulate system, the convergence and/or mixing of lineages which were formerly parts of other lineages. |
| Reticulate evolution | Evolution dominated by sequential divergence and convergence of lineages through episodic gene flow. |
| Reticulate pathways | The evolutionary pathway of a species that is interlinked with that of other species by the interweaving of lineages through time. |
| Sibling species | Two or more species which have parent species in common. Similar species that are assumed to be the product of relatively recent speciation. |
| Sister species | Similar species which are presumed to have a common parent species. |
| Species complex | A group of named species whose identities and/or genetic signatures may be distinct in some localities but less distinct or indistinguishable in others due to reticulate intermixing through time and/or space (see also complex species). |
| Species | Named human constructs used to denote an operational taxonomic unit. The use of species names is regulated by the International Commission of Zoological Nomenclature. Species names can apply to museum specimens, described taxonomic units or biological entities. The term ‘species’ is used in a general way in this article and on the website. The term ‘valid species’ on the other hand, is a taxon which the authors believe is a valid biological entity, recognisable in the field, and which has a valid name. |
| Species diversity | The number of species in a given geographic area. |
| Subsequent designation | The designation of a type subsequent to the original description. This is most commonly done by a later author. This is an occasional source of error. |
| Symbiosis | The close association between two organisms where there is substantial mutual benefit as in the association between corals and their zooxanthellae. |
| Sympatric | Entities that occur within the same or overlapping geographic areas (see also co-occurrence, which has a more confined meaning). |
| Syngameon | The term syngameon is defined in different ways by different authors (see discussion in the main text). When used by us, it refers to two or more distinguishable taxa (normally at species level, but may conceptually be at lineage level) which are known or suspected to exchange genetic material through hybridisation. Gene transfer may be frequent, rare or indirect (i.e., via an intermediate taxon) and hybridisation may be present in some geographic areas and not in others. Syngameons are not defined by their reproductive isolation from other syngameons, rather they are ‘recognised’ by their hybridisation linkages. The species involved do not need to belong to the same genus although this is likely to be more common. |
| Synonym | A name given to a taxon (e.g., a species) that is not the currently accepted name for that taxon. Normally the accepted name will be designated by priority (the earliest validly published name) and any subsequent names given to taxa which are found to be the same will become synonyms. In a neo-Darwinian world a junior synonym is conceptualised as being the ‘same’ as the senior synonym. In a reticulate world, a junior synonym may represent a geographic or genomic variant of the senior synonym—‘part of the same’ but, in some cases, at least somewhat ‘distinguishably different’. |
| Syntype | Any of two or more specimens listed in an original description of a nominal species when a holotype is not designated. |
| Taxonomy | The scientific discipline of classifying and naming organisms based on shared characteristics and evolutionary relationships. |
| Type locality | The place where a type specimen was originally found. |
| Vicariance | A biogeographic process where a physical barrier (such as a change in ocean currents) geographically separates two populations of a formerly continuous species leading to genetic divergence and speciation over time. |
| WoRMS | World Register of Marine Species. A nomenclatural website. |
| Zooxanthellae | Photosynthetic single-celled dinoflagellates that live symbiotically within corals and other marine organisms. |
| Zooxanthellate species | Species which have zooxanthellae. |
References
- Veron, J.E.N. Corals in Space and Time; Cornell University Press: New York, NY, USA, 1995; 321p. [Google Scholar]
- ICZN. International Code of Zoological Nomenclature, 4th ed.; International Trust for Zoological Nomenclature: London, UK, 1999; 306p. [Google Scholar]
- Stebbins, G.L. Variation and Evolution in Plants; Columbia University Press: New York, NY, USA, 1950; 643p. [Google Scholar]
- Grant, V. Plant Speciation, 2nd ed.; Columbia University Press: New York, NY, USA, 1981; 563p. [Google Scholar]
- Hatta, M.; Fukami, H.; Wang, W.; Omori, M.; Shimoike, K.; Hayashibara, T.; Ina, Y.; Sugiyama, T. Reproductive and genetic evidence for a reticulate evolutionary history of mass-spawning corals. Mol. Biol. Evol. 1999, 16, 1607–1613. [Google Scholar] [CrossRef]
- Veron, J.E.N. Corals of the World; Australian Institute of Marine Science: Townsville, QLD, Australia, 2000; Volumes 1–3, 1410p. [Google Scholar]
- Riginos, C.; Popovic, I.; Meziere, Z.; Garcia, V.; Byrne, I.; Howitt, S.M.; Ishida, H.; Bairos-Novak, K.; Humanes, A.; Scharfenstein, H. Cryptic species and hybridisation in corals: Challenges and opportunities for conservation and restoration. Peer Community J. 2024, 4, e106. [Google Scholar] [CrossRef]
- Veron, J.E.N.; Pichon, M. Scleractinia of Eastern Australia. Part I. Families Thamnasteriidae, Astrocoeniidae, Pocilloporidae; Australian Institute of Marine Science Monograph Series; Australian Institute of Marine Science: Townsville, QLD, Australia, 1976; Volume 1, 86p, Available online: https://www.biodiversitylibrary.org/page/39919739 (accessed on 20 August 2025).
- Schmidt-Roach, S.; Lundgren, P.; Miller, K.J.; Gerlach, G.; Noreen, A.M.; Andreakis, N. Assessing hidden species diversity in the coral Pocillopora damicornis from eastern Australia. Coral Reefs 2013, 32, 161–172. [Google Scholar] [CrossRef]
- Veron, J.E.N.; Stafford-Smith, M.G.; Turak, E.; DeVantier, L.M. CoralsOfTheWorld.org 2016. Available online: https://www.coralsoftheworld.org/page/home/?version=0.01 (accessed on 20 October 2025).
- Jackson, J.B.C. Modes of dispersal of clonal benthic invertebrates: Consequences for species’ distributions and genetic structure of local populations. Bull. Mar. Sci. 1986, 39, 588–606. [Google Scholar]
- Combosch, D.J.; Vollmer, S.V. Mixed asexual and sexual reproduction in the Indo-Pacific reef coral Pocillopora damicornis. Ecol. Evol. 2013, 3, 3379–3387. [Google Scholar] [CrossRef]
- Highsmith, R.C. Passive colonization and asexual colony multiplication in the massive coral Porites lutea Milne Edwards and Haime. J. Exp. Mar. Biol. Ecol. 1980, 47, 55–67. [Google Scholar] [CrossRef]
- Highsmith, R.C. Reproduction by fragmentation in corals. Mar. Ecol. Prog. Ser. 1982, 7, 207–226. [Google Scholar] [CrossRef]
- Potts, D.C.; Done, T.J.; Isdale, P.J.; Fisk, D.A. Dominance of a coral community by the genus Porites (Scleractinia). Mar. Ecol. Prog. Ser. 1985, 23, 79–84. [Google Scholar] [CrossRef]
- DeVantier, L.; Endean, R. Observations of colony fission following ledge formation in massive reef corals of the genus Porites. Mar. Ecol. Prog. Ser. 1989, 58, 191–195. [Google Scholar] [CrossRef]
- Sammarco, P.W. Polyp bail-out: An escape response to environmental stress and a new means of reproduction in corals. Mar. Ecol. Prog. Ser. 1982, 10, 57–65. [Google Scholar] [CrossRef]
- Kvitt, H.; Kramarsky-Winter, E.; Maor-Landaw, K.; Zandbank, K.; Kushmaro, A.; Rosenfeld, H.; Fine, M.; Tchernov, D. Breakdown of coral colonial form under reduced pH conditions is initiated in polyps and mediated through apoptosis. Proc. Natl. Acad. Sci. USA 2015, 112, 2082–2086. [Google Scholar] [CrossRef]
- Fordyce, A.J.; Camp, E.F.; Ainsworth, T.D. Polyp bailout in Pocillopora damicornis following thermal stress. F1000Research 2017, 6, 687. [Google Scholar] [CrossRef]
- Schweinsberg, M.; Gösser, F.; Tollrian, R. The history, biological relevance, and potential applications for polyp bailout in corals. Ecol. Evol. 2021, 11, 8424–8440. [Google Scholar] [CrossRef]
- Chuang, P.-S.; Yamada, Y.; Liu, P.-Y.; Tang, S.-L.; Mitarai, S. Bacterial community shifts during polyp bail-out induction in Pocillopora corals. Microbiol. Spectr. 2023, 11, e00257-23. [Google Scholar] [CrossRef]
- Gösser, F.; Raulf, A.; Mosig, A.; Tollrian, R.; Schweinsberg, M. Signaling pathways of heat- and hypersalinity-induced polyp bailout in Pocillopora acuta. Coral Reefs 2021, 40, 1713–1728. [Google Scholar] [CrossRef]
- Chuang, P.-S.; Ishikawa, K.; Mitarai, S. Morphological and genetic recovery of coral polyps after bail-out. Front. Mar. Sci. 2021, 8, 609287. [Google Scholar] [CrossRef]
- Chuang, P.-S.; Mitarai, S. Genetic changes involving the coral gastrovascular system support the transition between colonies and bailed-out polyps: Evidence from a Pocillopora acuta transcriptome. BMC Genom. 2021, 22, 694. [Google Scholar] [CrossRef]
- Harrison, P.L. Sexual reproduction of scleractinian corals. In Coral Reefs: An Ecosystem in Transition; Dubinsky, Z., Stambler, N., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 59–85. [Google Scholar]
- Guest, J.R.; Baird, A.H.; Goh, B.P.; Chou, L.M. Sexual systems in scleractinian corals: An unusual pattern in the reef-building species Diploastrea heliopora. Coral Reefs 2012, 31, 705–713. [Google Scholar] [CrossRef]
- Inoha, K.; Isomura, N.; Morita, M.; Kurihara, H. Combination of hermaphroditic and gonochoric sexual modes in the coral Porites cylindrica. Coral Reefs 2024, 43, 1831–1841. [Google Scholar] [CrossRef]
- Jokiel, P.L. Long distance dispersal of reef corals by rafting. Coral Reefs 1984, 3, 113–116. [Google Scholar] [CrossRef]
- Graham, E.M.; Baird, A.H.; Connolly, S.R. Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 2008, 27, 529–539. [Google Scholar] [CrossRef]
- Randall, C.J.; Giuliano, C.; Stephenson, B.; Whitman, T.N.; Page, C.A.; Treml, E.A.; Logan, M.; Negri, A.P. Larval precompetency and settlement behaviour in 25 Indo-Pacific coral species. Commun. Biol. 2024, 7, 142. [Google Scholar] [CrossRef]
- Rosser, N.L.; Edyvane, K.; Malina, A.C.; Underwood, J.N.; Johnson, M.S. Geography and spawning season drive genetic divergence among populations of the hard coral Acropora tenuis from Indonesia and Western Australia. Coral Reefs 2020, 39, 989–999. [Google Scholar] [CrossRef]
- Duvane, J.A.; Dupont, S.; Sola, E.; Ortega-Martinez, O.; Pereyra, R.T. Genetic diversity and structure among Acropora austera populations in Mozambique suggest low resilience potential of one of the world’s most charismatic coral reefs. Coral Reefs 2025, 44, 1185–1195. [Google Scholar] [CrossRef]
- Denis, H.; Prata, K.E.; Ishida, H.; Popovic, I.; Mocellin, V.J.L.; Boussion, M.; Byrne, I.; Purcell, S.W.; Bay, L.K.; Lecellier, G.; et al. Long-distance gene flow and contrasting population structures of reef-building corals and their algal symbionts inform adaptive potential across the Western Pacific. bioRxiv 2025. [Google Scholar] [CrossRef]
- Afiq-Rosli, L.; Wainwright, B.J.; Lee, J.N.; Waheed, Z.; Chou, L.M.; Huang, D. Contrasting patterns of population genomic structure between broadcast-spawning and brooding corals in Southeast Asia. Divers. Distrib. 2024, 30, e13940. [Google Scholar] [CrossRef]
- Duijser, C.M.; Nitschke, M.R.; Rassmussen, S.H.; Camp, E.F. Pocillopora host–symbiont interactions along an extreme environmental gradient. Coral Reefs 2025, 44, 1341–1353. [Google Scholar] [CrossRef]
- Burt, A.J.; Vogt-Vincent, N.; Johnson, H.; Sendell-Price, A.; Kelly, S.; Clegg, S.M.; Head, C.; Bunbury, N.; Fleischer-Dogley, F.; Jeremie, M.-M. Integration of population genetics with oceanographic models reveals strong connectivity among coral reefs across Seychelles. Sci. Rep. 2024, 14, 4936. [Google Scholar] [CrossRef] [PubMed]
- Vogt-Vincent, N.S.; Burt, A.J.; van der Ven, R.M.; Johnson, H.L. Coral reef potential connectivity in the southwest Indian Ocean. Coral Reefs 2024, 43, 1037–1051. [Google Scholar] [CrossRef]
- van der Ven, R.M.; Flot, J.-F.; Buitrago-López, C.; Kochzius, M. Population genetics of the brooding coral Seriatopora hystrix reveals patterns of strong genetic differentiation in the Western Indian Ocean. Heredity 2021, 126, 351–365. [Google Scholar] [CrossRef]
- Harrison, P.L.; Wallace, C.C. Reproduction, dispersal and recruitment of scleractinian corals. In Ecosystems of the World: Coral Reefs; Dubinsky, Z., Ed.; Elsevier: Amsterdam, The Netherlands, 1990; Volume 25, pp. 133–207. [Google Scholar]
- Thomas, L.; Underwood, J.N.; Adam, A.A.S.; Richards, Z.T.; Dugal, L.; Miller, K.J.; Gilmour, J.P. Contrasting patterns of genetic connectivity in brooding and spawning corals across a remote atoll system in northwest Australia. Coral Reefs 2020, 39, 55–60. [Google Scholar] [CrossRef]
- Harii, S.; Kayanne, H.; Takigawa, H.; Hayashibara, T.; Yamamoto, M. Larval survivorship, competency periods and settlement of two brooding corals, Heliopora coerulea and Pocillopora damicornis. Mar. Biol. 2002, 141, 39–46. [Google Scholar] [CrossRef]
- Ramírez-Portilla, C.; Baird, A.H.; Cowman, P.F.; Quattrini, A.M.; Harii, S.; Sinniger, F.; Flot, J.-F. Solving the coral species delimitation conundrum. Syst. Biol. 2022, 71, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Dobzhansky, T. Genetics and the Origin of Species; Columbia University Press: New York, NY, USA, 1937; 364p. [Google Scholar]
- Mayr, E. Systematics and the Origin of Species; Columbia University Press: New York, NY, USA, 1942; 334p. [Google Scholar]
- Mayr, E. Animal Species and Evolution; Harvard University Press: Cambridge, MA, USA, 1963; 797p. [Google Scholar]
- Paterson, H.E. The recognition concept of species. In Species and Speciation; Vrba, E., Ed.; Transvaal Museum Monograph No. 4; Transvaal Museum: Pretoria, South Africa, 1985; pp. 21–30. [Google Scholar]
- Butlin, R.; Debelle, A.; Kerth, C.; Snook, R.R.; Beukeboom, L.W.; Castillo Cajas, R.F.; Diao, W.; Maan, M.E.; Paolucci, S.; Weissing, F.J.; et al. What do we need to know about speciation? Trends Ecol. Evol. 2012, 27, 27–39. [Google Scholar] [CrossRef]
- Adavoudi, R.; Pilot, M. Consequences of hybridization in mammals: A systematic review. Genes. 2022, 13, 50. [Google Scholar] [CrossRef]
- Stankowski, S.; Shipilina, D.; Westram, A.M. Hybrid zones. eLS 2021, 2, a0029355. [Google Scholar] [CrossRef]
- Brauer, C.J.; Sandoval-Castillo, J.; Gates, K.; Hammer, M.P.; Unmack, P.J.; Bernatchez, L.; Beheregaray, L.B. Natural hybridization reduces vulnerability to climate change. Nat. Clim. Chang. 2023, 13, 282–289. [Google Scholar] [CrossRef]
- Skovrind, M.; Castruita, J.A.S.; Haile, J.; Treadaway, E.C.; Gopalakrishnan, S.; Westbury, M.V.; Heide-Jørgensen, M.P.; Szpak, P.; Lorenzen, E.D. Hybridization between two high Arctic cetaceans confirmed by genomic analysis. Sci. Rep. 2019, 9, 7729. [Google Scholar] [CrossRef]
- Porretta, D.; Canestrelli, D. The ecological importance of hybridization. Trends Ecol. Evol. 2023, 38, 1097–1108. [Google Scholar] [CrossRef]
- Huxel, G.R. Rapid displacement of native species by invasive species: Effects of hybridization. Biol. Conserv. 1999, 89, 143–152. [Google Scholar] [CrossRef]
- Largiadèr, C.R. Hybridization and introgression between native and alien species. In Biological Invasions; Nentwig, W., Ed.; Springer: Berlin, Germany, 2008; pp. 275–292. [Google Scholar]
- Viard, F.; Riginos, C.; Bierne, N. Anthropogenic hybridization at sea: Three evolutionary questions relevant to invasive species management. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190547. [Google Scholar] [CrossRef]
- Hellberg, M.E.; Prada, C.; Tan, M.H.; Forsman, Z.H.; Baums, I.B. Getting a grip at the edge: Recolonization and introgression in eastern Pacific Porites corals. J. Biogeogr. 2016, 43, 2147–2159. [Google Scholar] [CrossRef]
- Hobbs, J.-P.A.; Richards, Z.T.; Popovic, I.; Lei, C.; Staeudle, T.M.; Montanari, S.R.; DiBattista, J.D. Hybridisation and the evolution of coral reef biodiversity. Coral Reefs 2022, 41, 535–549. [Google Scholar] [CrossRef]
- Lamb, A.M.; Peplow, L.M.; Chan, W.Y.; Crane, Z.J.; Everson, G.A.; Harrison, P.L.; Hite, T.E.; Hoffmann, A.A.; Humphrey, C.A.; Koukoumaftsis, L.P. Fertile hybrids could aid coral adaptation. Ecol. Evol. 2024, 14, e70570. [Google Scholar] [CrossRef]
- Voolstra, C.R.; Hume, B.C.; Armstrong, E.J.; Mitushasi, G.; Porro, B.; Oury, N.; Agostini, S.; Boissin, E.; Poulain, J.; Carradec, Q. Disparate genetic divergence patterns in three corals across a pan-Pacific environmental gradient highlight species-specific adaptation. npj Biodivers. 2023, 2, 20. [Google Scholar] [CrossRef] [PubMed]
- Oury, N.; Noël, C.; Mona, S.; Aurelle, D.; Magalon, H. From genomics to integrative species delimitation? The case study of the Indo-Pacific Pocillopora corals. Mol. Phylogenet. Evol. 2023, 184, 107803. [Google Scholar] [CrossRef] [PubMed]
- De Queiroz, K. The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations. In Endless Forms: Species and Speciation; Howard, D.J., Berlocher, S.H., Eds.; Oxford University Press: New York, NY, USA, 1998; pp. 57–75. [Google Scholar]
- van Oppen, M.J.H.; Willis, B.L.; van Vugt, H.W.J.A.; Miller, D.J. Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Mol. Ecol. 2000, 9, 1363–1373. [Google Scholar] [CrossRef]
- Vollmer, S.V.; Palumbi, S.R. Hybridization and the evolution of reef coral diversity. Science 2002, 296, 2023–2025. [Google Scholar] [CrossRef]
- Kitchen, S.A.; Ratan, A.; Bedoya-Reina, O.C.; Burhans, R.; Fogarty, N.D.; Miller, W.; Baums, I.B. Genomic variants among threatened Acropora corals. G3 Genes Genomes Genet. 2019, 9, 1633–1646. [Google Scholar] [CrossRef]
- Precht, W.F.; Vollmer, S.V.; Modys, A.B.; Kaufman, L. Fossil Acropora prolifera (Lamarck, 1816) reveals coral hybridization is not only a recent phenomenon. Proc. Biol. Soc. Wash. 2019, 132, 40–55. [Google Scholar] [CrossRef]
- Baums, I.B.; Miller, M.W.; Hellberg, M.E. Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol. Ecol. 2005, 14, 1377–1390. [Google Scholar] [CrossRef]
- Japaud, A.; Bouchon, C.; Magalon, H.; Fauvelot, C. Geographic distances and ocean currents influence Caribbean Acropora palmata population connectivity in the Lesser Antilles. Conserv. Genet. 2019, 20, 447–466. [Google Scholar] [CrossRef]
- Kitchen, S.A.; Osborne, C.C.; Fogarty, N.D.; Baums, I.B. Morphotype is not linked to mitochondrial haplogroups of Caribbean acroporid hybrids. Coral Reefs 2022, 41, 829–836. [Google Scholar] [CrossRef]
- Isomura, N.; Iwao, K.; Morita, M.; Fukami, H. Spawning and fertility of F1 hybrids of the coral genus Acropora in the Indo-Pacific. Coral Reefs 2016, 35, 851–855. [Google Scholar] [CrossRef]
- Kitanobo, S.; Isomura, N.; Fukami, H.; Iwao, K.; Morita, M. The reef-building coral Acropora conditionally hybridize under sperm limitation. Biol. Lett. 2016, 12, 20160511. [Google Scholar] [CrossRef]
- Fukami, H.; Iwao, K.; Kumagai, N.H.; Morita, M.; Isomura, N. Maternal inheritance of F1 hybrid morphology and colony shape in the coral genus Acropora. PeerJ 2019, 7, e6429. [Google Scholar] [CrossRef]
- Kitanobo, S.; Iwao, K.; Fukami, H.; Isomura, N.; Morita, M. First evidence for backcrossing of F1 hybrids in Acropora corals under sperm competition. Sci. Rep. 2022, 12, 5356. [Google Scholar] [CrossRef]
- Hernández-Agreda, A.; Huckeba, J.; Prata, K.E.; Vermeij, M.J.A.; Bongaerts, P. Hybridization and inbreeding affect the survival of a critically endangered coral. Curr. Biol. 2024, 34, 5120–5129.e4. [Google Scholar] [CrossRef] [PubMed]
- Willis, B.L.; Babcock, R.C.; Harrison, P.L.; Wallace, C.C. Experimental hybridization and breeding incompatibilities within the mating systems of mass spawning reef corals. Coral Reefs 1997, 16 (Suppl. S1), S53–S65. [Google Scholar] [CrossRef]
- Willis, B.L.; van Oppen, M.J.H.; Miller, D.J.; Vollmer, S.V.; Ayre, D.J. The role of hybridization in the evolution of reef corals. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 489–517. [Google Scholar] [CrossRef]
- Márquez, L.; van Oppen, M.; Willis, B.; Reyes, A.; Miller, D. The highly cross-fertile coral species, Acropora hyacinthus and Acropora cytherea, constitute statistically distinguishable lineages. Mol. Ecol. 2002, 11, 1339–1349. [Google Scholar] [CrossRef]
- Márquez, L.; van Oppen, M.; Willis, B.; Miller, D. Sympatric populations of the highly cross-fertile coral species Acropora hyacinthus and Acropora cytherea are genetically distinct. Proc. R. Soc. Lond. B Biol. Sci. 2002, 269, 1289–1294. [Google Scholar] [CrossRef]
- Furukawa, M.; Kitanobo, S.; Ohki, S.; Teramoto, M.M.; Hanahara, N.; Morita, M. Integrative taxonomic analyses reveal that rapid genetic divergence drives Acropora speciation. Mol. Phylogenet. Evol. 2024, 195, 108063. [Google Scholar] [CrossRef] [PubMed]
- Rose, N.H.; Bay, R.A.; Morikawa, M.K.; Thomas, L.; Sheets, E.A.; Palumbi, S.R. Genomic analysis of distinct bleaching tolerances among cryptic coral species. Proc. R. Soc. B Biol. Sci. 2021, 288, 20210678. [Google Scholar] [CrossRef] [PubMed]
- Ladner, J.T.; Palumbi, S.R. Extensive sympatry, cryptic diversity and introgression throughout the geographic distribution of two coral species complexes. Mol. Ecol. 2012, 21, 2224–2238. [Google Scholar] [CrossRef] [PubMed]
- Rassmussen, S.H.; Cowman, P.F.; Baird, A.H.; Crosbie, A.J.; Quattrini, A.M.; Bonito, V.; Sinniger, F.; Harii, S.; Cabaitan, P.C.; Fadli, N.; et al. The tables have turned: Taxonomy, systematics and biogeography of the Acropora hyacinthus (Scleractinia: Acroporidae) complex. Invertebr. Syst. 2025, 39, IS24049. [Google Scholar] [CrossRef]
- Mao, Y.; Economo, E.P.; Satoh, N. The roles of introgression and climate change in the rise to dominance of Acropora corals. Curr. Biol. 2018, 28, 3373–3382.e5. [Google Scholar] [CrossRef]
- Richards, Z.T.; van Oppen, M.J.H.; Wallace, C.C.; Willis, B.L.; Miller, D.J. Some rare Indo-Pacific coral species are probable hybrids. PLoS ONE 2008, 3, e3240. [Google Scholar] [CrossRef]
- van Oppen, M.J.H.; Willis, B.L.; van Rheede, T.; Miller, D.J. Spawning times, reproductive compatibilities and genetic structuring in the Acropora aspera group: Evidence for natural hybridization and semi-permeable species boundaries in corals. Mol. Ecol. 2002, 11, 1363–1376. [Google Scholar] [CrossRef]
- Forsman, Z.; Knapp, I.; Tisthammer, K.; Eaton, D.; Belcaid, M.; Toonen, R. Coral hybridization or phenotypic variation? Genomic data reveal gene flow between Porites lobata and P. compressa. Mol. Phylogenet. Evol. 2017, 111, 132–148. [Google Scholar] [CrossRef]
- Miller, K.; Babcock, R. Conflicting morphological and reproductive species boundaries in the coral genus Platygyra. Biol. Bull. 1997, 192, 98–110. [Google Scholar] [CrossRef]
- Miller, K.J.; Benzie, J.A.H. No clear genetic distinction between morphological species within the coral genus Platygyra. Bull. Mar. Sci. 1997, 61, 907–917. [Google Scholar]
- Miller, K. Morphological variation in the coral genus Platygyra: Environmental influences and taxonomic implications. Mar. Ecol. Prog. Ser. 1994, 110, 19–28. [Google Scholar] [CrossRef]
- Miller, K.; Ayre, D. The role of sexual and asexual reproduction in structuring high latitude populations of the reef coral Pocillopora damicornis. Heredity 2004, 92, 557–568. [Google Scholar] [CrossRef]
- Pinzón, J.H.; Sampayo, E.; Cox, E.; Chauka, L.J.; Chen, C.A.; Voolstra, C.R.; LaJeunesse, T.C. Blind to morphology: Genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J. Biogeogr. 2013, 40, 1595–1608. [Google Scholar] [CrossRef]
- Oury, N.; Gélin, P.; Magalon, H. Cryptic species and genetic connectivity among populations of the coral Pocillopora damicornis (Scleractinia) in the tropical southwestern Pacific. Mar. Biol. 2020, 167, 46. [Google Scholar] [CrossRef]
- Gélin, P.; Postaire, B.; Fauvelot, C.; Magalon, H. Reevaluating species number, distribution and endemism of the coral genus Pocillopora Lamarck, 1816 using species delimitation methods and microsatellites. Mol. Phylogenet. Evol. 2017, 109, 430–446. [Google Scholar] [CrossRef] [PubMed]
- Gélin, P.; Fauvelot, C.; Bigot, L.; Baly, J.; Magalon, H. From population connectivity to the art of striping Russian dolls: The lessons from Pocillopora corals. Ecol. Evol. 2018, 8, 1411–1426. [Google Scholar] [CrossRef]
- Johnston, E.C.; Burgess, S.C. Pocillopora tuahiniensis: A new species of scleractinian coral (Scleractinia, Pocilloporidae) from French Polynesia. Zootaxa 2023, 5369, 117–124. [Google Scholar] [CrossRef]
- Bridge, T.C.; Cowman, P.F.; Quattrini, A.M.; Bonito, V.E.; Sinniger, F.; Harii, S.; Head, C.E.; Hung, J.Y.; Halafihi, T.; Rongo, T. A tenuis relationship: Traditional taxonomy obscures systematics and biogeography of the Acropora tenuis (Scleractinia: Acroporidae) species complex. Zool. J. Linn. Soc. 2023, 202, zlad062. [Google Scholar] [CrossRef]
- Ladner, J.T. Hidden Diversity in Corals and Their Endosymbionts. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2012. [Google Scholar]
- Stefani, F.; Benzoni, F.; Yang, S.-Y.; Pichon, M.; Galli, P.; Chen, C. Comparison of morphological and genetic analyses reveals cryptic divergence and morphological plasticity in Stylophora (Cnidaria, Scleractinia). Coral Reefs 2011, 30, 1033–1049. [Google Scholar] [CrossRef]
- Flot, J.-F.; Blanchot, J.; Charpy, L.; Cruaud, C.; Licuanan, W.Y.; Nakano, Y.; Payri, C.; Tillier, S. Incongruence between morphotypes and genetically delimited species in the coral genus Stylophora: Phenotypic plasticity, morphological convergence, morphological stasis or interspecific hybridization? BMC Ecol. 2011, 11, 22. [Google Scholar] [CrossRef] [PubMed]
- Capel, K.C.C.; Ayalon, I.; Simon-Blecher, N.; Zweifler Zvifler, A.; Benichou, I.J.; Eyal, G.; Avisar, D.; Roth, J.; Bongaerts, P.; Levy, O. Depth-structured lineages in the coral Stylophora pistillata of the Northern Red Sea. npj Biodivers. 2025, 4, 13. [Google Scholar] [CrossRef]
- Meziere, Z.; Popovic, I.; Prata, K.; Ryan, I.; Pandolfi, J.; Riginos, C. Exploring coral speciation: Multiple sympatric Stylophora pistillata taxa along a divergence continuum on the Great Barrier Reef. Evol. Appl. 2024, 17, e13644. [Google Scholar] [CrossRef]
- Roux, C.; Fraïsse, C.; Romiguier, J.; Anciaux, Y.; Galtier, N.; Bierne, N. Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLoS Biol. 2016, 14, e2000234. [Google Scholar] [CrossRef]
- Nakajima, Y.; Zayasu, Y.; Shinzato, C.; Satoh, N.; Mitarai, S. Genetic differentiation and connectivity of morphological types of the broadcast-spawning coral Galaxea fascicularis in the Nansei Islands, Japan. Ecol. Evol. 2016, 6, 1457–1469. [Google Scholar] [CrossRef]
- Wepfer, P.H.; Nakajima, Y.; Sutthacheep, M.; Radice, V.Z.; Richards, Z.; Ang, P.; Terraneo, T.; Sudek, M.; Fujimura, A.; Toonen, R.J. Evolutionary biogeography of the reef-building coral genus Galaxea across the Indo-Pacific Ocean. Mol. Phylogenet. Evol. 2020, 151, 106905. [Google Scholar] [CrossRef] [PubMed]
- Weil, E.; Knowlton, N. A multi-character analysis of the Caribbean coral Montastraea annularis (Ellis and Solander, 1786) and its two sibling species, M. faveolata (Ellis and Solander, 1786) and M. franksi (Gregory, 1895). Bull. Mar. Sci. 1994, 55, 151–175. [Google Scholar]
- Szmant, A.; Weil, E.; Miller, M.; Colon, D. Hybridization within the species complex of the scleractinian coral Montastraea annularis. Mar. Biol. 1997, 129, 561–572. [Google Scholar] [CrossRef]
- Dziedzic, K.E.; Elder, H.; Tavalire, H.; Meyer, E. Heritable variation in bleaching responses and its functional genomic basis in reef-building corals (Orbicella faveolata). Mol. Ecol. 2019, 28, 2238–2253. [Google Scholar] [CrossRef]
- Gómez-Corrales, M.; Prada, C. Cryptic lineages respond differently to coral bleaching. Mol. Ecol. 2020, 29, 4265–4273. [Google Scholar] [CrossRef]
- Prata, K.E.; Riginos, C.; Gutenkunst, R.N.; Latijnhouwers, K.R.W.; Sánchez, J.A.; Englebert, N.; Hay, K.B.; Bongaerts, P. Deep connections: Divergence histories with gene flow in mesophotic Agaricia corals. Mol. Ecol. 2022, 31, 2511–2527. [Google Scholar] [CrossRef]
- Diekmann, O.; Bak, R.; Stam, W.; Olsen, J. Molecular genetic evidence for probable reticulate speciation in the coral genus Madracis from a Caribbean fringing reef slope. Mar. Biol. 2001, 139, 221–233. [Google Scholar] [CrossRef]
- Alvarado-Cerón, V.; Muñiz-Castillo, A.I.; León-Pech, M.G.; Prada, C.; Arias-González, J.E. A decade of population genetics studies of scleractinian corals: A systematic review. Mar. Environ. Res. 2023, 183, 105781. [Google Scholar] [CrossRef]
- Pinsky, M.L.; Clark, R.D.; Bos, J.T. Coral reef population genomics in an age of global change. Annu. Rev. Genet. 2023, 57, 87–115. [Google Scholar] [CrossRef]
- Baird, A.H.; Guest, J.R.; Willis, B.L. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 551–571. [Google Scholar] [CrossRef]
- CoralTraits.org. Coral Traits Database. Available online: https://coraltraits.org (accessed on 20 August 2025).
- Brazeau, D.A.; Gleason, D.F.; Morgan, M.E. Self-fertilization in brooding hermaphroditic Caribbean corals: Evidence from molecular markers. J. Exp. Mar. Biol. Ecol. 1998, 231, 225–238. [Google Scholar] [CrossRef]
- Okubo, N.; Isomura, N.; Motokawa, T.; Hidaka, M. Possible self-fertilization in the brooding coral Acropora (Isopora) brueggemanni. Zool. Sci. 2007, 24, 277–280. [Google Scholar] [CrossRef]
- Sherman, C.D.H. Mating system variation in the hermaphroditic brooding coral, Seriatopora hystrix. Heredity 2008, 100, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Warner, P.A.; Willis, B.L.; van Oppen, M.J.H. Sperm dispersal distances estimated by parentage analysis in a brooding scleractinian coral. Mol. Ecol. 2016, 25, 1398–1415. [Google Scholar] [CrossRef] [PubMed]
- Hagedorn, M.; Page, C.A.; O’Neil, K.L.; Flores, D.M.; Tichy, L.; Conn, T.; Chamberland, V.F.; Lager, C.; Zuchowicz, N.; Lohr, K.; et al. Assisted gene flow using cryopreserved sperm in critically endangered coral. Proc. Natl. Acad. Sci. USA 2021, 118, e2110559118. [Google Scholar] [CrossRef]
- Heyward, A.J.; Babcock, R.C. Self- and cross-fertilization in scleractinian corals. Mar. Biol. 1986, 90, 191–195. [Google Scholar] [CrossRef]
- Woolsey, E.S.; Byrne, M.; Baird, A.H. The effects of temperature on embryonic development and larval survival in two scleractinian corals. Mar. Ecol. Prog. Ser. 2013, 493, 179–184. [Google Scholar] [CrossRef]
- Bassim, K.; Sammarco, P.W.; Snell, T. Effects of temperature on success of (self and non-self) fertilization and embryogenesis in Diploria strigosa (Cnidaria, Scleractinia). Mar. Biol. 2002, 140, 479–488. [Google Scholar] [CrossRef]
- Henley, E.M.; Quinn, M.; Bouwmeester, J.; Daly, J.; Lager, C.; Zuchowicz, N.; Bailey, D.W.; Hagedorn, M. Contrasting reproductive strategies of two Hawaiian Montipora corals. Sci. Rep. 2022, 12, 12255. [Google Scholar] [CrossRef]
- Yasuda, N.; Kitano, Y.F.; Taninaka, H.; Nagai, S.; Mezaki, T.; Yamashita, H. Genetic structure of the Goniopora lobata and G. djiboutiensis species complex is better explained by oceanography than by morphological characteristics. Front. Mar. Sci. 2021, 8, 592608. [Google Scholar] [CrossRef]
- Furukawa, M.; Ohki, S.; Kitanobo, S.; Fukami, H.; Morita, M. Differences in spawning time drive cryptic speciation in the coral Acropora divaricata. Mar. Biol. 2020, 167, 72. [Google Scholar] [CrossRef]
- Isomura, N.; Iwao, K.; Fukami, H. Possible natural hybridization of two morphologically distinct species of Acropora (Cnidaria, Scleractinia) in the Pacific: Fertilization and larval survival rates. PLoS ONE 2013, 8, e56701. [Google Scholar] [CrossRef][Green Version]
- LaJeunesse, T.C.; Parkinson, J.E.; Gabrielson, P.W.; Jeong, H.J.; Reimer, J.D.; Voolstra, C.R.; Santos, S.R. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 2018, 28, 2570–2580.e6. [Google Scholar] [CrossRef]
- Guinotte, J.M.; Buddemeier, R.W.; Kleypas, J.A. Future coral reef habitat marginality: Temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 2003, 22, 551–558. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Mumby, P.J.; Hooten, A.J.; Steneck, R.S.; Greenfield, P.; Gomez, E.; Harvell, C.D.; Sale, P.F.; Edwards, A.J.; Caldeira, K.; et al. Coral reefs under rapid climate change and ocean acidification. Science 2007, 318, 1737–1742. [Google Scholar] [CrossRef]
- Taylor, D. Symbiotic marine algae: Taxonomy and biological fitness. In Symbiosis in the Sea; Vernberg, C., Ed.; University of South Carolina Press: Columbia, SC, USA, 1974; pp. 245–262. [Google Scholar]
- Muscatine, L. The role of symbiotic algae in carbon and energy flux in reef corals. In Ecosystems of the World: Coral Reefs; Dubinsky, Z., Ed.; Elsevier: Amsterdam, The Netherlands, 1990; Volume 25, pp. 75–87. [Google Scholar]
- Baker, A.C. Zooxanthellae. In Encyclopedia of Modern Coral Reefs; Hopley, D., Ed.; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2011; pp. 1189–1192. [Google Scholar]
- Galand, P.E.; Ruscheweyh, H.-J.; Salazar, G.; Hochart, C.; Henry, N.; Hume, B.C.C.; Oliveira, P.H.; Perdereau, A.; Labadie, K.; Belser, C.; et al. Diversity of the Pacific Ocean coral reef microbiome. Nat. Commun. 2023, 14, 3039. [Google Scholar] [CrossRef]
- Muscatine, L.; Porter, J.W. Reef corals: Mutualistic symbioses adapted to nutrient-poor environments. BioScience 1977, 27, 454–460. [Google Scholar] [CrossRef]
- Rowan, R. Review—Diversity and ecology of zooxanthellae on coral reefs. J. Phycol. 1998, 34, 407–417. [Google Scholar] [CrossRef]
- Wiedenmann, J.; D’Angelo, C.; Mardones, M.L.; Moore, S.; Benkwitt, C.E.; Graham, N.A.J.; Hambach, B.; Wilson, P.A.; Vanstone, J.; Eyal, G.; et al. Reef-building corals farm and feed on their photosynthetic symbionts. Nature 2023, 620, 1018–1024. [Google Scholar] [CrossRef]
- Titlyanov, F.A.; Titlyanova, T.V.; Leletkin, V.A.; Tsukahara, J.; Van Woesik, R.; Yamazato, K. Degradation of zooxanthellae and regulation of their density in hermatypic corals. Mar. Ecol. Prog. Ser. 1996, 139, 167–178. [Google Scholar] [CrossRef]
- Trench, R.K. Diversity of symbiotic dinoflagellates and the evolution of microalgal–invertebrate symbioses. In Proceedings of the 8th International Coral Reef Symposium, Panama City, Panama, 24–29 June 1996; Volume 2, pp. 1275–1286. [Google Scholar]
- Iglesias-Prieto, R.; Beltran, V.; LaJeunesse, T.; Reyes-Bonilla, H.; Thome, P. Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc. R. Soc. Lond. B Biol. Sci. 2004, 271, 1757–1763. [Google Scholar] [CrossRef] [PubMed]
- Cunning, R.; Silverstein, R.N.; Baker, A.C. Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc. R. Soc. B Biol. Sci. 2015, 282, 20141725. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.; Roik, A.; Porter, A.; Zubier, K.; Mudarris, M.S.; Ormond, R.; Voolstra, C.R. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar. Pollut. Bull. 2016, 105, 629–640. [Google Scholar] [CrossRef]
- Sweet, M.; Bythell, J. The role of viruses in coral health and disease. J. Invertebr. Pathol. 2017, 147, 136–144. [Google Scholar] [CrossRef]
- Quigley, K.M.; Willis, B.L.; Kenkel, C.D. Transgenerational inheritance of shuffled symbiont communities in the coral Montipora digitata. Sci. Rep. 2019, 9, 5005. [Google Scholar] [CrossRef]
- Johnston, E.C.; Cunning, R.; Burgess, S.C. Cophylogeny and specificity between cryptic coral species (Pocillopora spp.) at Mo’orea and their symbionts (Symbiodiniaceae). Mol. Ecol. 2022, 31, 5368–5385. [Google Scholar] [CrossRef]
- Bonacolta, A.M.; Weiler, B.A.; Porta-Fitó, T.; Sweet, M.; Keeling, P.; del Campo, J. Beyond the Symbiodiniaceae: Diversity and role of microeukaryotic coral symbionts. Coral Reefs 2023, 42, 567–577. [Google Scholar] [CrossRef]
- Dunphy, C.M.; Gouhier, T.C.; Chu, N.D.; Vollmer, S.V. Structure and stability of the coral microbiome in space and time. Sci. Rep. 2019, 9, 6785. [Google Scholar] [CrossRef]
- Terraneo, T.I.; Fusi, M.; Hume, B.C.C.; Arrigoni, R.; Voolstra, C.R.; Benzoni, F.; Forsman, Z.H.; Berumen, M.L. Environmental latitudinal gradients and host-specificity shape Symbiodiniaceae distribution in Red Sea Porites corals. J. Biogeogr. 2019, 46, 2323–2335. [Google Scholar] [CrossRef]
- Buerger, P.; Alvarez-Roa, C.; Coppin, C.W.; Pearce, S.L.; Chakravarti, L.J.; Oakeshott, J.G.; Edwards, O.R.; van Oppen, M.J.H. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci. Adv. 2020, 6, eaba2498. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.D.; Cohen, A.L.; Rotjan, R.D.; Mangubhai, S.; Sandin, S.A.; Smith, J.E.; Thorrold, S.R.; Dissly, L.; Mollica, N.R.; Obura, D. Increasing coral reef resilience through successive marine heatwaves. Geophys. Res. Lett. 2021, 48, e2021GL094128. [Google Scholar] [CrossRef]
- Butler, C.C.; Turnham, K.E.; Lewis, A.M.; Nitschke, M.R.; Warner, M.E.; Kemp, D.W.; Hoegh-Guldberg, O.; Fitt, W.K.; van Oppen, M.J.H.; LaJeunesse, T.C. Formal recognition of host-generalist species of dinoflagellate (Cladocopium, Symbiodiniaceae) mutualistic with Indo-Pacific reef corals. J. Phycol. 2023, 59, 698–711. [Google Scholar] [CrossRef] [PubMed]
- Quigley, K.M.; Alvarez-Roa, C.; Raina, J.-B.; Pernice, M.; van Oppen, M.J.H. Heat-evolved microalgal symbionts increase thermal bleaching tolerance of coral juveniles without a trade-off against growth. Coral Reefs 2023, 42, 1227–1232. [Google Scholar] [CrossRef]
- Starko, S.; Fifer, J.E.; Claar, D.C.; Davies, S.W.; Cunning, R.; Baker, A.C.; Baum, J.K. Marine heatwaves threaten cryptic coral diversity and erode associations among coevolving partners. Sci. Adv. 2023, 9, eadf0954. [Google Scholar] [CrossRef]
- Grupstra, C.G.B.; Meyer-Kaiser, K.S.; Bennett, M.-J.; Andres, M.O.; Juszkiewicz, D.J.; Fifer, J.E.; Da-Anoy, J.P.; Gomez-Campo, K.; Martinez-Rugerio, I.; Aichelman, H.E.; et al. Holobiont traits shape climate change responses in cryptic coral lineages. Glob. Chang. Biol. 2024, 30, e17578. [Google Scholar] [CrossRef]
- Buddemeier, R.W.; Fautin, D.G. Coral bleaching as an adaptive mechanism. BioScience 1993, 43, 320–326. [Google Scholar] [CrossRef]
- Buddemeier, R.W.; Smith, S.V. Coral adaptation and acclimatization: A most ingenious paradox. Am. Zool. 1999, 39, 1–9. [Google Scholar] [CrossRef]
- Kemp, D.W.; Hernandez-Pech, X.; Iglesias-Prieto, R.; Fitt, W.K.; Schmidt, G.W. Community dynamics and physiology of Symbiodinium spp. before, during, and after a coral bleaching event. Limnol. Oceanogr. 2014, 59, 788–797. [Google Scholar] [CrossRef]
- Silverstein, R.N.; Cunning, R.; Baker, A.C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Chang. Biol. 2015, 21, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; López, E.H.; Morikawa, M.K.; Palumbi, S.R. Transcriptomic resilience, symbiont shuffling, and vulnerability to recurrent bleaching in reef-building corals. Mol. Ecol. 2019, 28, 3371–3382. [Google Scholar] [CrossRef] [PubMed]
- Claar, D.C.; Starko, S.; Tietjen, K.L.; Epstein, H.E.; Cunning, R.; Cobb, K.M.; Baker, A.C.; Gates, R.D.; Baum, J.K. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat. Commun. 2020, 11, 6097. [Google Scholar] [CrossRef]
- Sivaguru, M.; Todorov, L.G.; Miller, C.A.H.; Fouke, C.E.; Munro, C.M.O.; Fouke, K.W.; Fouke, K.E.; Baughman, M.E.; Fouke, B.W. Corals regulate the distribution and abundance of Symbiodiniaceae and biomolecules in response to changing water depth and sea surface temperature. Sci. Rep. 2021, 11, 2230. [Google Scholar] [CrossRef] [PubMed]
- Palacio-Castro, A.M.; Smith, T.B.; Brandtneris, V.; Snyder, G.A.; van Hooidonk, R.; Maté, J.L.; Manzello, D.; Glynn, P.W.; Fong, P.; Baker, A.C. Increased dominance of heat-tolerant symbionts creates resilient coral reefs in near-term ocean warming. Proc. Natl. Acad. Sci. USA 2023, 120, e2202388120. [Google Scholar] [CrossRef]
- Quigley, K.M.; Ramsby, B.; Laffy, P.; Harris, J.; Mocellin, V.J.L.; Bay, L.K. Symbioses are restructured by repeated mass coral bleaching. Sci. Adv. 2022, 8, eabq8349. [Google Scholar] [CrossRef]
- Dinsdale, E.A.; Pantos, O.; Smriga, S.; Edwards, R.A.; Angly, F.; Wegley, L.; Hatay, M.; Hall, D.; Brown, E.; Haynes, M.; et al. Microbial ecology of four coral atolls in the Northern Line Islands. PLoS ONE 2008, 3, e1584. [Google Scholar] [CrossRef] [PubMed]
- Vega Thurber, R.; Willner-Hall, D.; Rodriguez-Mueller, B.; Desnues, C.; Edwards, R.A.; Angly, F.; Dinsdale, E.; Kelly, L.; Rohwer, F. Metagenomic analysis of stressed coral holobionts. Environ. Microbiol. 2009, 11, 2148–2163. [Google Scholar] [CrossRef]
- Mason, B.; Hayward, D.C.; Moya, A.; Cooke, I.; Sorenson, A.; Brunner, R.; Andrade, N.; Huerlimann, R.; Bourne, D.G.; Schaeffer, P. Microbiome manipulation by corals and other Cnidaria via quorum quenching. Curr. Biol. 2024, 34, 3226–3232.e3225. [Google Scholar] [CrossRef]
- Trench, R.K. The cell biology of plant–animal symbiosis. Annu. Rev. Plant Biol. 1979, 30, 485–531. [Google Scholar] [CrossRef]
- Baker, A.C. Flexibility and specificity in coral–algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 661–689. [Google Scholar] [CrossRef]
- Byler, K.A.; Carmi-Veal, M.; Fine, M.; Goulet, T.L. Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PLoS ONE 2013, 8, e59596. [Google Scholar] [CrossRef] [PubMed]
- Quigley, K.M.; Warner, P.A.; Bay, L.K.; Willis, B.L. Unexpected mixed-mode transmission and moderate genetic regulation of Symbiodinium communities in a brooding coral. Heredity 2018, 121, 524–536. [Google Scholar] [CrossRef]
- Apprill, A.; Marlow, H.Q.; Martindale, M.Q.; Rappé, M.S. The onset of microbial associations in the coral Pocillopora meandrina. ISME J. 2009, 3, 685–699. [Google Scholar] [CrossRef]
- Padilla-Gamiño, J.L.; Pochon, X.; Bird, C.; Concepcion, G.T.; Gates, R.D. From parent to gamete: Vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef-building coral Montipora capitata. PLoS ONE 2012, 7, e38440. [Google Scholar] [CrossRef]
- Leite, D.C.A.; Leão, P.; Garrido, A.G.; Lins, U.; Santos, H.F.; Pires, D.O.; Castro, C.B.; van Elsas, J.D.; Zilberberg, C.; Rosado, A.S.; et al. Broadcast spawning coral Mussismilia hispida can vertically transfer its associated bacterial core. Front. Microbiol. 2017, 8, 176. [Google Scholar] [CrossRef]
- Quigley, K.M.; Willis, B.L.; Bay, L.K. Heritability of the Symbiodinium community in vertically- and horizontally-transmitting broadcast spawning corals. Sci. Rep. 2017, 7, 8219. [Google Scholar] [CrossRef]
- Guo, M.; Jiang, L.; Zhou, G.; Lian, J.; Yu, X.; Huang, H. Diversity and dynamics of multiple symbionts contribute to early development of broadcast-spawning reef-building coral Dipsastraea veroni. Appl. Environ. Microbiol. 2025, 91, e02359-24. [Google Scholar] [CrossRef]
- DeCarlo, T.M.; Harrison, H.B.; Gajdzik, L.; Alaguarda, D.; Rodolfo-Metalpa, R.; D’Olivo, J.; Liu, G.; Patalwala, D.; McCulloch, M.T. Acclimatization of massive reef-building corals to consecutive heatwaves. Proc. R. Soc. B Biol. Sci. 2019, 286, 20190235. [Google Scholar] [CrossRef] [PubMed]
- Quigley, K.M.; Randall, C.J.; van Oppen, M.J.H.; Bay, L.K. Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles. Biol. Open 2020, 9, bio047316. [Google Scholar] [CrossRef] [PubMed]
- Putnam, H.M. Avenues of reef-building coral acclimatization in response to rapid environmental change. J. Exp. Biol. 2021, 224, jeb239319. [Google Scholar] [CrossRef]
- Rubin, E.T.; Enochs, I.C.; Foord, C.; Mayfield, A.B.; Kolodziej, G.; Basden, I.; Manzello, D.P. Molecular mechanisms of coral persistence within highly urbanized locations in the Port of Miami, Florida. Front. Mar. Sci. 2021, 8, 695236. [Google Scholar] [CrossRef]
- Hackerott, S.; Martell, H.A.; Eirin-Lopez, J.M. Coral environmental memory: Causes, mechanisms, and consequences for future reefs. Trends Ecol. Evol. 2021, 36, 1011–1023. [Google Scholar] [CrossRef]
- Aranda Lastra, M. Epigenetics and acquired tolerance to environmental stress. In Coral Reef Conservation and Restoration in the Omics Age; van Oppen, M.J., Aranda Lastra, M., Eds.; Springer: Cham, Switzerland, 2022; pp. 135–150. [Google Scholar]
- Liew, Y.J.; Zoccola, D.; Li, Y.; Tambutté, E.; Venn, A.A.; Michell, C.T.; Cui, G.; Deutekom, E.S.; Kaandorp, J.A.; Voolstra, C.R.; et al. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci. Adv. 2018, 4, eaar8028. [Google Scholar] [CrossRef]
- Liew, Y.J.; Howells, E.J.; Wang, X.; Michell, C.T.; Burt, J.A.; Idaghdour, Y.; Aranda, M. Intergenerational epigenetic inheritance in reef-building corals. Nat. Clim. Chang. 2020, 10, 254–259. [Google Scholar] [CrossRef]
- Goulet, T.L. Most corals may not change their symbionts. Mar. Ecol. Prog. Ser. 2006, 321, 1–7. [Google Scholar] [CrossRef]
- Voolstra, C.R.; Suggett, D.J.; Peixoto, R.S.; Parkinson, J.E.; Quigley, K.M.; Silveira, C.B.; Sweet, M.; Muller, E.M.; Barshis, D.J.; Bourne, D.G.; et al. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Earth Environ. 2021, 2, 747–762. [Google Scholar] [CrossRef]
- Rowan, R.; Knowlton, N. Intraspecific diversity and ecological zonation in coral–algal symbiosis. Proc. Natl. Acad. Sci. USA 1995, 92, 2850–2853. [Google Scholar] [CrossRef]
- Chen, B.; Wei, Y.; Yu, K.; Liang, Y.; Yu, X.; Liao, Z.; Qin, Z.; Xu, L.; Bao, Z. The microbiome dynamics and interaction of endosymbiotic Symbiodiniaceae and fungi are associated with thermal bleaching susceptibility of coral holobionts. Appl. Environ. Microbiol. 2024, 90, e01939-23. [Google Scholar] [CrossRef]
- Aichelman, H.E.; Benson, B.E.; Gomez-Campo, K.; Martinez-Rugerio, M.I.; Fifer, J.E.; Tsang, L.; Hughes, A.M.; Bove, C.B.; Nieves, O.C.; Pereslete, A.M.; et al. Cryptic coral diversity is associated with symbioses, physiology, and response to thermal challenge. Sci. Adv. 2025, 11, eadr5237. [Google Scholar] [CrossRef]
- Forsman, Z.H.; Ritson-Williams, R.; Tisthammer, K.H.; Knapp, I.S.S.; Toonen, R.J. Host–symbiont coevolution, cryptic structure, and bleaching susceptibility in a coral species complex (Scleractinia; Poritidae). Sci. Rep. 2020, 10, 16995. [Google Scholar] [CrossRef]
- Smith, E.G.; Hazzouri, K.M.; Choi, J.Y.; Delaney, P.; Al-Kharafi, M.; Howells, E.J.; Aranda, M.; Burt, J.A. Signatures of selection underpinning rapid coral adaptation to the world’s warmest reefs. Sci. Adv. 2022, 8, eabl7287. [Google Scholar] [CrossRef]
- Kenkel, C.D.; Setta, S.P.; Matz, M.V. Heritable differences in fitness-related traits among populations of the mustard hill coral, Porites astreoides. Heredity 2015, 115, 509–516. [Google Scholar] [CrossRef]
- Fisch, J.; Drury, C.; Towle, E.K.; Winter, R.N.; Miller, M.W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 2019, 38, 863–876. [Google Scholar] [CrossRef]
- Rosenberg, E.; Koren, O.; Reshef, L.; Efrony, R.; Zilber-Rosenberg, I. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 2007, 5, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Zilber-Rosenberg, I.; Rosenberg, E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol. Rev. 2008, 32, 723–735. [Google Scholar] [CrossRef]
- Leggat, W.; Ainsworth, T.; Bythell, J.; Dove, S.; Gates, R.; Hoegh-Guldberg, O.; Iglesias-Prieto, R.; Yellowlees, D. The hologenome theory disregards the coral holobiont. Nat. Rev. Microbiol. 2007, 5, 826. [Google Scholar] [CrossRef]
- Rosenberg, E.; Koren, O.; Reshef, L.; Efrony, R.; Zilber-Rosenberg, I. The hologenome theory disregards the coral holobiont: Reply from Rosenberg et al. Nat. Rev. Microbiol. 2007, 5, 826. [Google Scholar] [CrossRef]
- Douglas, A.E.; Werren, J.H. Holes in the hologenome: Why host–microbe symbioses are not holobionts. mBio 2016, 7, e02099-15. [Google Scholar] [CrossRef] [PubMed]
- Roughgarden, J.; Gilbert, S.F.; Rosenberg, E.; Zilber-Rosenberg, I.; Lloyd, E.A. Holobionts as units of selection and a model of their population dynamics and evolution. Biol. Theory 2018, 13, 44–65. [Google Scholar] [CrossRef]
- Shinzato, C.; Mungpakdee, S.; Satoh, N.; Shoguchi, E. A genomic approach to coral–dinoflagellate symbiosis: Studies of Acropora digitifera and Symbiodinium minutum. Front. Microbiol. 2014, 5, 336. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Agrawal, S.; Aranda, M.; Baumgarten, S.; Belcaid, M.; Drake, J.L.; Erwin, D.; Foret, S.; Gates, R.D.; Gruber, D.F.; et al. Comparative genomics explains the evolutionary success of reef-forming corals. eLife 2016, 5, e13288. [Google Scholar] [CrossRef] [PubMed]
- Gacesa, R.; Hung, J.Y.; Bourne, D.G.; Long, P.F. Horizontal transfer of a natterin-like toxin-encoding gene within the holobiont of the reef-building coral Acropora digitifera (Cnidaria: Anthozoa: Scleractinia) and across multiple animal lineages. J. Venom. Res. 2020, 10, 7–12. [Google Scholar]
- Cooke, I.; Ying, H.; Forêt, S.; Bongaerts, P.; Strugnell, J.M.; Simakov, O.; Zhang, J.; Field, M.A.; Rodriguez-Lanetty, M.; Bell, S.C. Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef-specific symbionts. Sci. Adv. 2020, 6, eabc6318. [Google Scholar] [CrossRef]
- Rinkevich, B. Coral chimerism as an evolutionary rescue mechanism to mitigate global climate change impacts. Glob. Chang. Biol. 2019, 25, 1198–1206. [Google Scholar] [CrossRef]
- Oury, N.; Magalon, H. Investigating the potential roles of intra-colonial genetic variability in Pocillopora corals using genomics. Sci. Rep. 2024, 14, 6437. [Google Scholar] [CrossRef]
- van Oppen, M.J.H.; Souter, P.; Howells, E.J.; Heyward, A.; Berkelmans, R. Novel genetic diversity through somatic mutations: Fuel for adaptation of reef corals? Diversity 2011, 3, 405–423. [Google Scholar] [CrossRef]
- Rinkevich, B.; Weissman, I.L. Chimeras in colonial invertebrates: A synergistic symbiosis or somatic- and germ-cell parasitism? Symbiosis 1987, 4, 117–134. [Google Scholar]
- Frank, U.; Oren, U.; Loya, Y.; Rinkevich, B. Alloimmune maturation in the coral Stylophora pistillata is achieved through three distinctive stages, 4 months post-metamorphosis. Proc. R. Soc. Lond. B Biol. Sci. 1997, 264, 99–104. [Google Scholar] [CrossRef]
- Schweinsberg, M.; Weiss, L.C.; Striewski, S.; Tollrian, R.; Lampert, K.P. More than one genotype: How common is intracolonial genetic variability in scleractinian corals? Mol. Ecol. 2015, 24, 2673–2685. [Google Scholar] [CrossRef]
- Rinkevich, B.; Shaish, L.; Douek, J.; Ben-Shlomo, R. Venturing in coral larval chimerism: A compact functional domain with fostered genotypic diversity. Sci. Rep. 2016, 6, 19493. [Google Scholar] [CrossRef]
- Rinkevich, B.; Shashar, N.; Liberman, T. Nontransitive xenogeneic interactions between four common Red Sea sessile invertebrates. In Proceedings of the 7th International Coral Reef Symposium, Guam, Micronesia, 22–27 June 1992; pp. 833–839. [Google Scholar]
- Hidaka, M.; Yurugi, K.; Sunagawa, S.; Kinzie, R.A., III. Contact reactions between young colonies of the coral Pocillopora damicornis. Coral Reefs 1997, 16, 13–20. [Google Scholar] [CrossRef]
- Rinkevich, B.; Loya, Y. Intraspecific competitive networks in the Red Sea coral Stylophora pistillata. Coral Reefs 1983, 1, 161–172. [Google Scholar] [CrossRef]
- Willis, B.L.; Ayre, D.J. Asexual reproduction and genetic determination of growth form in the coral Pavona cactus: Biochemical genetic and immunogenic evidence. Oecologia 1985, 65, 516–525. [Google Scholar] [CrossRef]
- Nozawa, Y.; Hirose, M. When does the window close? The onset of allogeneic fusion 2–3 years post-settlement in the scleractinian coral Echinophyllia aspera. Zool. Stud. 2011, 50, 396–404. [Google Scholar]
- Carpenter, K.E.; Abrar, M.; Aeby, G.; Aronson, R.B.; Banks, S.; Bruckner, A.; Chiriboga, A.; Cortés, J.; Delbeek, J.C.; DeVantier, L.; et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 2008, 321, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Huang, D. Threatened reef corals of the world. PLoS ONE 2012, 7, e34459. [Google Scholar] [CrossRef]
- IUCN. The IUCN Red List of Threatened Species. 2025. Available online: https://www.iucnredlist.org (accessed on 20 October 2025).
- Cavada-Blanco, F.; Croquer, A.; Vermeij, M.; Goergen, L.; Rodriguez, R. Dendrogyra cylindrus: Extinction risk assessment. In IUCN Red List of Threatened Species; Universiteit van Amsterdam: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Sheppard, C.; Sheppard, A.; Fenner, D. Coral mass mortalities in the Chagos Archipelago over 40 years: Regional species and assemblage extinctions and indications of positive feedbacks. Mar. Pollut. Bull. 2020, 154, 111075. [Google Scholar] [CrossRef]
- Logan, C.A.; Dunne, J.P.; Ryan, J.S.; Baskett, M.L.; Donner, S.D. Quantifying global potential for coral evolutionary response to climate change. Nat. Clim. Chang. 2021, 11, 537–542. [Google Scholar] [CrossRef]
- Kenkel, C.D.; Matz, M.V. Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat. Ecol. Evol. 2016, 1, 0014. [Google Scholar] [CrossRef]
- Lachs, L.; Donner, S.D.; Mumby, P.J.; Bythell, J.C.; Humanes, A.; East, H.K.; Guest, J.R. Emergent increase in coral thermal tolerance reduces mass bleaching under climate change. Nat. Commun. 2023, 14, 4939. [Google Scholar] [CrossRef] [PubMed]
- Lachs, L.; Bozec, Y.-M.; Bythell, J.C.; Donner, S.D.; East, H.K.; Edwards, A.J.; Golbuu, Y.; Gouezo, M.; Guest, J.R.; Humanes, A. Natural selection could determine whether Acropora corals persist under expected climate change. Science 2024, 386, 1289–1294. [Google Scholar] [CrossRef] [PubMed]
- Dixon, A.M.; Forster, P.M.; Heron, S.F.; Stoner, A.M.K.; Beger, M. Future loss of local-scale thermal refugia in coral reef ecosystems. PLoS Clim. 2022, 1, e0000004. [Google Scholar] [CrossRef]
- Lachs, L.; Humanes, A.; Mumby, P.J.; Donner, S.D.; Bythell, J.; Beauchamp, E.; Bukurou, L.; Buzzoni, D.; de la Torre Cerro, R.; East, H.K.; et al. High coral heat tolerance at local-scale thermal refugia. PLoS Clim. 2024, 3, e0000453. [Google Scholar] [CrossRef]
- Serrano, X.; Baums, I.; O’Reilly, K.; Smith, T.; Jones, R.; Shearer, T.; Nunes, F.; Baker, A. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol. Ecol. 2014, 23, 4226–4240. [Google Scholar] [CrossRef]
- Humanes, A.; Lachs, L.; Beauchamp, E.A.; Bythell, J.C.; Edwards, A.J.; Golbuu, Y.; Martinez, H.M.; Palmowski, P.; Treumann, A.; van der Steeg, E.; et al. Within-population variability in coral heat tolerance indicates climate adaptation potential. Proc. R. Soc. B Biol. Sci. 2022, 289, 20220872. [Google Scholar] [CrossRef]
- van Oppen, M.J.H.; Oliver, J.K.; Putnam, H.M.; Gates, R.D. Building coral reef resilience through assisted evolution. Proc. Natl. Acad. Sci. USA 2015, 112, 2307–2313. [Google Scholar] [CrossRef]
- Cruz, D.W.d.; Harrison, P.L. Enhanced larval supply and recruitment can replenish reef corals on degraded reefs. Sci. Rep. 2017, 7, 13985. [Google Scholar] [CrossRef]
- Montilla, L.M.; Ascanio, A.; Verde, A.; Croquer, A. Systematic review and meta-analysis of 50 years of coral disease research visualized through the scope of network theory. PeerJ 2019, 7, e7041. [Google Scholar] [CrossRef]
- Burke, S.; Pottier, P.; Macartney, E.L.; Drobniak, S.M.; Lagisz, M.; Ainsworth, T.; Nakagawa, S. Mapping literature reviews on coral health: Protocol for a review map, critical appraisal and bibliometric analysis. Ecol. Solut. Evid. 2022, 3, e12190. [Google Scholar] [CrossRef]
- Muller, E.M.; Sartor, C.; Alcaraz, N.I.; van Woesik, R. Spatial epidemiology of the Stony Coral Tissue Loss Disease in Florida. Front. Mar. Sci. 2020, 7, 163. [Google Scholar] [CrossRef]
- Neely, K.L.; Macaulay, K.A.; Hower, E.K.; Dobler, M.A. Effectiveness of topical antibiotics in treating corals affected by Stony Coral Tissue Loss Disease. PeerJ 2020, 8, e9289. [Google Scholar] [CrossRef] [PubMed]
- MacKnight, N.J.; Dimos, B.A.; Beavers, K.M.; Muller, E.M.; Brandt, M.E.; Mydlarz, L.D. Disease resistance in coral is mediated by distinct adaptive and plastic gene expression profiles. Sci. Adv. 2022, 8, eabo6153. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, S.V.; Kline, D.I. Natural disease resistance in threatened staghorn corals. PLoS ONE 2008, 3, e3718. [Google Scholar] [CrossRef] [PubMed]
- Veron, J.E.N.; Stafford-Smith, M.G.; DeVantier, L.M.; Turak, E. Overview of distribution patterns of zooxanthellate Scleractinia. Front. Mar. Sci. 2015, 1, 81. [Google Scholar] [CrossRef]
- DeVantier, L.; Turak, E. Species richness and relative abundance of reef-building corals in the Indo-West Pacific. Diversity 2017, 9, 25. [Google Scholar] [CrossRef]
- Veron, J.E.N.; Stafford-Smith, M.G.; DeVantier, L.M.; Turak, E. CoralsOfTheWorld.org Version 2026.00 in prep. Available online in 2026.
- Veron, J.E.N.; Wallace, C. Scleractinia of Eastern Australia. Part V. Family Acroporidae; Australian Institute of Marine Science Monograph Series; Australian Institute of Marine Science: Townsville, QLD, Australia, 1984; Volume 6, 485p, Available online: https://www.biodiversitylibrary.org/page/39933506 (accessed on 20 August 2025).
- Veron, J.E.N. Corals of Australia and the Indo-Pacific; University of Hawai’i Press: Honolulu, HI, USA, 1986; 642p. [Google Scholar]
- Underwood, J.N. Genetic diversity and divergence among coastal and offshore reefs in a hard coral depend on geographic discontinuity and oceanic currents. Evol. Appl. 2009, 2, 222–233. [Google Scholar] [CrossRef]
- Turak, E.; DeVantier, L. Reef-building corals of the upper mesophotic zone of the Central Indo-West Pacific. In Mesophotic Coral Ecosystems; Loya, Y., Puglise, K.A., Bridge, T.C., Eds.; Coral Reefs of the World; Springer International Publishing: Cham, Switzerland, 2019; Volume 12, Chapter 34; pp. 621–651. [Google Scholar]
- Loya, Y.; Puglise, K.A.; Bridge, T.C. (Eds.) Mesophotic Coral Ecosystems; Coral Reefs of the World; Springer International Publishing: Cham, Switzerland, 2019; Volume 12, 1024p. [Google Scholar]
- Malik, A.; Einbinder, S.; Martinez, S.; Tchernov, D.; Haviv, S.; Almuly, R.; Zaslansky, P.; Polishchuk, I.; Pokroy, B.; Stolarski, J.; et al. Molecular and skeletal fingerprints of scleractinian coral biomineralization: From the sea surface to mesophotic depths. Acta Biomater. 2021, 120, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Luck, D.G.; Forsman, Z.H.; Toonen, R.J.; Leicht, S.J.; Kahng, S.E. Polyphyly and hidden species among Hawai‘i’s dominant mesophotic coral genera, Leptoseris and Pavona (Scleractinia: Agariciidae). PeerJ 2013, 1, e132. [Google Scholar] [CrossRef]
- Gijsbers, J.C.; Englebert, N.; Prata, K.E.; Pichon, M.; Dinesen, Z.; Brunner, R.; Eyal, G.; González-Zapata, F.L.; Kahng, S.E.; Latijnhouwers, K.R.W.; et al. Global phylogenomic assessment of Leptoseris and Agaricia reveals substantial undescribed diversity at mesophotic depths. BMC Biol. 2023, 21. [Google Scholar] [CrossRef]
- Gallery, D.N.; Rippe, J.P.; Matz, M.V. Decrypting corals: Does regulatory evolution underlie environmental specialisation of coral cryptic lineages? Molec. Ecol. 2025, 34, e17546. [Google Scholar] [CrossRef]
- Rippe, J.P.; Dixon, G.; Fuller, Z.L.; Liao, Y.; Matz, M. Environmental specialization and cryptic genetic divergence in two massive coral species from the Florida Keys Reef Tract. Mol. Ecol. 2021, 30, 3468–3484. [Google Scholar] [CrossRef]
- Bongaerts, P.; Cooke, I.R.; Ying, H.; Wels, D.; den Haan, S.; Hernandez-Agreda, A.; Brunner, C.A.; Dove, S.; Englebert, N.; Eyal, G. Morphological stasis masks ecologically divergent coral species on tropical reefs. Curr. Biol. 2021, 31, 2286–2298.e8. [Google Scholar] [CrossRef]
- Zapata, F.; Jiménez, I. Species delimitation: Inferring gaps in morphology across geography. Syst. Biol. 2012, 61, 179. [Google Scholar] [CrossRef] [PubMed]
- Więcław, H.; Bosiacka, B.; Hrivnák, R.; Dajdok, Z.; Mesterházy, A.; Koopman, J. Morphological variability of Carex buekii (Cyperaceae) as a function of soil conditions: A case study of the Central European populations. Sci. Rep. 2022, 12, 15894. [Google Scholar] [CrossRef] [PubMed]
- Seka, D.; Kouago, B.A.; Bonny, B.S. Assessment of the variability of the morphological traits and differentiation of Cucurbita moschata in Côte d’Ivoire. Sci. Rep. 2023, 13, 30295. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Zayasu, Y.; Nakajima, Y.; Arakaki, N.; Suzuki, G.; Satoh, N.; Shinzato, C. Genomic analysis of a reef-building coral, Acropora digitifera, reveals complex population structure and a migration network in the Nansei Islands, Japan. Mol. Ecol. 2022, 31, 5270–5284. [Google Scholar] [CrossRef]
- Wang, S.; Yoder, A.D. Synergies between speciation and conservation science yield novel insights for mitigating the biodiversity crisis of the Anthropocene. Proc. Natl. Acad. Sci. USA 2025, 122, e2500713122. [Google Scholar] [CrossRef]
- Yang, H.; Lohmann, G.; Wei, W.; Dima, M.; Ionita, M.; Liu, J. Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Oceans 2016, 121, 4928–4945. [Google Scholar] [CrossRef]
- Fifer, J.E.; Yasuda, N.; Yamakita, T.; Bove, C.B.; Davies, S.W. Genetic divergence and range expansion in a western North Pacific coral. Sci. Total Environ. 2022, 813, 152423. [Google Scholar] [CrossRef]
- Johannes, R.; Wiebe, W.; Crossland, C.; Rimmer, D.; Smith, S. Latitudinal limits of coral reef growth. Mar. Ecol. Prog. Ser. 1983, 11, 105–111. [Google Scholar] [CrossRef]
- Kleypas, J.A.; McManus, J.W.; Menez, L.A.B. Environmental limits to coral reef development: Where do we draw the line? Am. Zool. 1999, 39, 146–159. [Google Scholar] [CrossRef]
- Abrego, D.; Howells, E.J.; Smith, S.D.; Madin, J.S.; Sommer, B.; Schmidt-Roach, S.; Cumbo, V.R.; Thomson, D.P.; Rosser, N.L.; Baird, A.H. Factors limiting the range extension of corals into high-latitude reef regions. Diversity 2021, 13, 632. [Google Scholar] [CrossRef]
- O’Connell, M.J.; Fowler, A.M.; Allan, S.J.; Beretta, G.A.; Booth, D.J. Subtropical coral expansion into SE Australia: A haven for both temperate and expatriating tropical reef fishes. Coral Reefs 2023, 42, 1257–1262. [Google Scholar] [CrossRef]
- Riginos, C.; Hock, K.; Matias, A.M.; Mumby, P.J.; van Oppen, M.J.H.; Lukoschek, V. Asymmetric dispersal is a critical element of concordance between biophysical dispersal models and spatial genetic structure in Great Barrier Reef corals. Divers. Distrib. 2019, 25, 1684–1696. [Google Scholar] [CrossRef]
- Kamata, M.; Kitano, Y.F.; Iguchi, A.; Nozawa, Y.; Nagai, S.; Chen, C.A.; Wada, N.; Tang, S.-L.; Yamakita, T.; Taninaka, H.; et al. Genetic divergence of Pocillopora damicornis between temperate and subtropical regions: The need to monitor hidden genetic lineage distribution with regard to migration-load risks under climate change. Bull. Mar. Sci. 2025, 101, 91–104. [Google Scholar] [CrossRef]
- Veron, J.E.N. Hermatypic Corals of Japan; Australian Institute of Marine Science: Townsville, QLD, Australia, 1992; Volume 9, 244p. [Google Scholar]
- Fujii, T. Catalaphyllia jardinei (Saville-Kent, 1893). In Online Monograph of Zooxanthellate Corals of Japan; JST: Tokyo, Japan, 2024. [Google Scholar]
- Veron, J.E.N.; How, R.A.; Done, T.J.; Zell, L.D.; Dodkin, M.J.; O’Farrell, A.F. Corals of the Solitary Islands, New South Wales. Aust. J. Mar. Freshw. Res. 1974, 25, 193–208. [Google Scholar] [CrossRef]
- Van Woesik, R. Coral communities at high latitude are not pseudopopulations: Evidence of spawning at 32° N, Japan. Coral Reefs 1995, 14, 119–120. [Google Scholar] [CrossRef]
- Harrison, P.L. Coral spawn slicks at Lord Howe Island, Tasman Sea, Australia; the world’s most southerly coral reef. Coral Reefs 2008, 27, 35. [Google Scholar] [CrossRef]
- Yamashiro, H.; Nishihira, M. Radial skeletal dissolution to promote vegetative reproduction in a solitary coral Diaseris distorta. Experientia 1994, 50, 497–498. [Google Scholar] [CrossRef]
- Yamashiro, H.; Nishihira, M. Experimental study of growth and asexual reproduction in Diaseris distorta (Michelin, 1843), a free-living fungiid coral. J. Exp. Mar. Biol. Ecol. 1998, 225, 253–267. [Google Scholar] [CrossRef]
- Yamashiro, H.; Hidaka, M.; Poung-In, S. Morphological studies on skeletons of Diaseris fragilis, a free-living coral which reproduces asexually by natural autotomy. Galaxea 1989, 8, 283–294. [Google Scholar]
- Hoeksema, B.W. Impact of budding on free-living corals at East Kalimantan, Indonesia. Coral Reefs 2004, 23, 492. [Google Scholar] [CrossRef]
- Hoeksema, B.W.; Gittenberger, A. High densities of mushroom coral fragments at West Halmahera, Indonesia. Coral Reefs 2010, 29, 691. [Google Scholar] [CrossRef][Green Version]
- Grupstra, C.G.; Gómez-Corrales, M.; Fifer, J.E.; Aichelman, H.E.; Meyer-Kaiser, K.S.; Prada, C.; Davies, S.W. Integrating cryptic diversity into coral evolution, symbiosis and conservation. Nat. Ecol. Evol. 2024, 8, 622–636. [Google Scholar] [CrossRef] [PubMed]
- Mallet, J. A species definition for the modern synthesis. Trends Ecol. Evol. 1995, 10, 294–299. [Google Scholar] [CrossRef] [PubMed]
- De Queiroz, K. Species concepts and species delimitation. Syst. Biol. 2007, 56, 879–886. [Google Scholar] [CrossRef]
- Stat, M.; Baker, A.C.; Bourne, D.G.; Correa, A.M.S.; Forsman, Z.; Huggett, M.J.; Pochon, X.; Skillings, D.; Toonen, R.J.; van Oppen, M.J.H.; et al. Molecular delineation of species in the coral holobiont. Adv. Mar. Biol. 2012, 63, 1–65. [Google Scholar]
- Huang, M.; Lawes, M.J.; Zhou, W.; Wei, F. Integrating hotspot dynamics and centers of diversity: A review of Indo-Australian Archipelago biogeographic evolution and conservation. Mar. Life Sci. Technol. 2025, 7, 420–433. [Google Scholar] [CrossRef]
- Lotsy, J.P. Species or linneon. Genetica 1925, 7, 487–506. [Google Scholar] [CrossRef]
- Suarez-Gonzalez, A.; Lexer, C.; Cronk, Q.C. Adaptive introgression: A plant perspective. Biol. Lett. 2018, 14, 20170688. [Google Scholar] [CrossRef]
- Cannon, C.H.; Petit, R.J. The oak syngameon: More than the sum of its parts. New Phytol. 2020, 226, 978–983. [Google Scholar] [CrossRef]
- Buck, R.; Flores-Rentería, L. The syngameon enigma. Plants 2022, 11, 895. [Google Scholar] [CrossRef]
- Boecklen, W.J. Topology of syngameons. Ecol. Evol. 2017, 7, 10486–10491. [Google Scholar] [CrossRef] [PubMed]
- Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 2005, 20, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Zlatarski, V.N.; Martínez Estalella, N. Les Scléractiniaires de Cuba avec des Données sur les Organismes Associés; Académie Bulgare des Sciences: Sofia, Bulgaria, 1982; 472p. [Google Scholar]
- Hoeksema, B.W.; Moka, W. Species assemblages and phenotypes of mushroom corals (Fungiidae) related to coral reef habitats in the Flores Sea. Neth. J. Sea Res. 1989, 23, 149–160. [Google Scholar] [CrossRef]
- Wells, J.W. Recent corals of the Marshall Islands. Prof. Pap. U.S. Geol. Surv. 1954, 260, 385–486, pls. 94–185. [Google Scholar]
- Wallace, C.C. Staghorn Corals of the World: A Revision of the Genus Acropora; CSIRO Publishing: Collingwood, VIC, Australia, 1999; 422p. [Google Scholar]
- Dana, J.D. Zoophytes; Lea and Blanchard: Philadelphia, PA, USA, 1846; Volume 7, 740p. [Google Scholar]
- Milne Edwards, H.; Haime, J. Recherches sur les polypiers; Quatrième mémoire. Monographie des astréides (1). Astréens (Astreinae). Ann. Sci. Nat. Ser. 3 1849, 11, 233–312. [Google Scholar]
- Milne Edwards, H. Troisième sous-ordre. Zoanthaires Sclérodermés (Zoantharia Sclerodermata) ou Madréporaires. In Histoire Naturelle des Coralliaires ou Polypes Proprement Dits; Milne Edwards, H., Ed.; Librairie Encyclopédique de Roret: Paris, France, 1857; Tome 2; 633p. [Google Scholar]
- Brook, G. Descriptions of new species of Madrepora in the collection of the British Museum. Ann. Mag. Nat. Hist. 1891, 6, 458–465. [Google Scholar] [CrossRef]
- Brook, G. Preliminary descriptions of new species of Madrepora in the collection of the British Museum. Part II. Ann. Mag. Nat. Hist. 1892, 6, 451–465. [Google Scholar] [CrossRef]
- Brook, G. The Genus Madrepora. Cat. Madreporarian Corals Br. Mus. (Nat. Hist.) 1893, 1, 1–212. [Google Scholar]
- Bernard, H.M. The Genus Turbinaria. The Genus Astraeopora. Cat. Madreporarian Corals Br. Mus. (Nat. Hist.) 1896, 2, 1–106. [Google Scholar]
- Bernard, H.M. The Genus Montipora. The Genus Anacropora. Cat. Madreporarian Corals Br. Mus. (Nat. Hist.) 1897, 3, 1–192. [Google Scholar]
- Bernard, H.M. On the Madreporaria collected by Mr. C.W. Andrews at Christmas Island. Proc. Zool. Soc. Lond. 1900, 70, 119–127. [Google Scholar]
- Veron, J.E.N.; Pichon, M.; Wijsman-Best, M. Scleractinia of Eastern Australia. Part II. Families Faviidae, Trachyphylliidae; Australian Institute of Marine Science Monograph Series; Australian Institute of Marine Science: Townsville, QLD, Australia, 1977; Volume 3, 233p, Available online: https://www.biodiversitylibrary.org/page/39926438 (accessed on 20 August 2025).
- Veron, J.E.N.; Pichon, M. Scleractinia of Eastern Australia. Part III. Families Agariciidae, Siderastreidae, Fungiidae, Oculinidae, Merulinidae, Mussidae, Pectiniidae, Caryophylliidae, Dendrophylliidae; Australian Institute of Marine Science Monograph Series; Australian Institute of Marine Science: Townsville, QLD, Australia, 1980; Volume 4, 422p, Available online: https://www.biodiversitylibrary.org/page/39939812 (accessed on 20 August 2025).
- Veron, J.E.N.; Pichon, M. Scleractinia of Eastern Australia. Part IV. Family Poritidae; Australian Institute of Marine Science Monograph Series; Australian Institute of Marine Science: Townsville, QLD, Australia, 1982; Volume 5, 159p, Available online: https://www.biodiversitylibrary.org/page/39927540 (accessed on 20 August 2025).
- Bouwmeester, J.; Benzoni, F.; Baird, A.H.; Berumen, M.L. Cyphastrea kausti sp. n. (Cnidaria, Anthozoa, Scleractinia), a New Species of Reef Coral from the Red Sea. ZooKeys 2015, 496, 1–13. [Google Scholar] [CrossRef]
- Baird, A.H.; Hoogenboom, M.O.; Huang, D. Cyphastrea salae, a new species of hard coral from Lord Howe Island, Australia (Scleractinia, Merulinidae). ZooKeys 2017, 662, 49–66. [Google Scholar] [CrossRef]
- Arrigoni, R.; Berumen, M.L.; Mariappan, K.G.; Beck, P.S.; Hulver, A.M.; Montano, S.; Pichon, M.; Strona, G.; Terraneo, T.I.; Benzoni, F. Towards a rigorous species delimitation framework for scleractinian corals based on RAD sequencing: The case study of Leptastrea from the Indo-Pacific. Coral Reefs 2020, 39, 1001–1025. [Google Scholar] [CrossRef]
- Arrigoni, R.; Benzoni, F.; Huang, D.; Fukami, H.; Chen, C.A.; Berumen, M.L.; Hoogenboom, M.; Thomson, D.P.; Hoeksema, B.W.; Budd, A.F.; et al. When forms meet genes: Revision of the scleractinian genera Micromussa and Homophyllia (Lobophylliidae) with a description of two new species and one new genus. Contrib. Zool. 2016, 85, 387–422. [Google Scholar] [CrossRef]
- Ng, C.S.L.; Jain, S.S.; Nguyen, N.T.H.; Sam, S.Q.; Kikuzawa, Y.P.; Chou, L.M.; Huang, D. New genus and species record of reef coral Micromussa amakusensis in the southern South China Sea. Mar. Biodivers. Rec. 2019, 12, 17. [Google Scholar] [CrossRef]
- Arrigoni, R.; Berumen, M.L.; Chen, C.A.; Terraneo, T.I.; Baird, A.H.; Payri, C.; Benzoni, F. Species delimitation in the reef coral genera Echinophyllia and Oxypora (Scleractinia, Lobophylliidae) with a description of two new species. Mol. Phylogenet. Evol. 2016, 105, 146–159. [Google Scholar] [CrossRef]
- CITES. Convention on International Trade in Endangered Species of Wild Fauna and Flora; CITES: Geneva, Switzerland, 2025; Available online: https://cites.org/eng (accessed on 20 October 2025).
- Veron, J.E.N. The potential of type species to destabilise the taxonomy of zooxanthellate Scleractinia. Zootaxa 2015, 4048, 433–435. [Google Scholar] [CrossRef] [PubMed]
- Wallace, C.C.; Done, B.J.; Muir, P.R. Revision and catalogue of worldwide staghorn corals Acropora and Isopora (Scleractinia: Acroporidae). Mem. Qld. Mus. 2012, 57, 1–255. [Google Scholar]
- WoRMS. World Register of Marine Species. Available online: https://www.marinespecies.org (accessed on 20 October 2025).
- Roberty, S.; Vega de Luna, F.; Pierangelini, M.; Bomhals, J.; Plumier, J.-C.; Levy, O.; Cardol, P. Shallow and mesophotic colonies of the coral Stylophora pistillata share similar regulatory strategies of photosynthetic electron transport but differ in their sensitivity to light. Coral Reefs 2023, 42, 645–659. [Google Scholar] [CrossRef]
- Ricardo, G.F.; Doropoulos, C.; Babcock, R.C.; Adam, A.A.S.; Buccheri, E.; Robledo, N.; Uribe-Palomino, J.; Mumby, P.J. Spawning asynchrony and mixed reproductive strategies in a common mass spawning coral. Ecol. Evol. 2025, 15, e71654. [Google Scholar] [CrossRef]
- Frade, P.R.; Hoey, J.A.; Goodbody-Gringley, G.; Latijnhouwers, K.R.; Silberhumer, H.E.; Muir, P.; Bongaerts, P. Hybridization as driving force for cryptic species diversity in the Caribbean coral genus Madracis. Sci. Rep. 2025, 15, 33359. [Google Scholar] [CrossRef]
- Helmkampf, M.; Coulmance, F.; Heckwolf, M.J.; Acero, P.A.; Balard, A.; Bista, I.; Dominguez, O.D.; Frandsen, P.B.; Torres-Oliva, M.; Santaquiteria, A.; et al. Radiation with reproductive isolation in the near-absence of phylogenetic signal. Sci. Adv. 2025, 11, eadt0973. [Google Scholar] [CrossRef]
- Arrigoni, R.; Benzoni, F.; Terraneo, T.I.; Caragnano, A.; Berumen, M.L. Recent origin and semi-permeable species boundaries in the scleractinian coral genus Stylophora from the Red Sea. Sci. Rep. 2016, 6, 34612. [Google Scholar] [CrossRef]
- Keshavmurthy, S.; Yang, S.-Y.; Alamaru, A.; Chuang, Y.-Y.; Pichon, M.; Obura, D.; Fontana, S.; De Palmas, S.; Stefani, F.; Benzoni, F. DNA barcoding reveals the coral “laboratory-rat”, Stylophora pistillata encompasses multiple identities. Sci. Rep. 2013, 3, 1520. [Google Scholar] [CrossRef]
- Meziere, Z.; Rich, W.A.; Carvalho, S.; Benzoni, F.; Morán, X.A.G.; Berumen, M.L. Stylophora under stress: A review of research trends and impacts of stressors on a model coral species. Sci. Total Environ. 2022, 816, 151639. [Google Scholar] [CrossRef]
- Klueter, A.; Andreakis, N. Assessing genetic diversity in the scleractinian coral Stylophora pistillata (Esper 1797) from the Central Great Barrier Reef and the Coral Sea. Syst. Biodivers. 2013, 11, 67–76. [Google Scholar] [CrossRef]
- Buitrago-López, C.; Cárdenas, A.; Hume, B.C.; Gosselin, T.; Staubach, F.; Aranda, M.; Barshis, D.J.; Sawall, Y.; Voolstra, C.R. Disparate population and holobiont structure of pocilloporid corals across the Red Sea gradient demonstrate species-specific evolutionary trajectories. Mol. Ecol. 2023, 32, 2151–2173. [Google Scholar] [CrossRef] [PubMed]
- Rachmilovitz, E.N.; Douek, J.; Rinkevich, B. Population genetics assessment of the model coral species Stylophora pistillata from Eilat, the Red Sea. J. Mar. Sci. Eng. 2024, 12, 315. [Google Scholar] [CrossRef]
- Takabayashi, M.M.; Carter, D.D.; Lopez, J.J.; Hoegh-Guldberg, O.O. Genetic variation of the scleractinian coral Stylophora pistillata, from western Pacific reefs. Coral Reefs 2003, 22, 17–22. [Google Scholar] [CrossRef]
- Monroe, A. Genetic Differentiation Across Multiple Spatial Scales of the Red Sea of the Corals Stylophora pistillata and Pocillopora verrucosa. Master’s Thesis, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 2015; 45p. [Google Scholar]
- Smith-Keune, C.; van Oppen, M. Genetic structure of a reef-building coral from thermally distinct environments on the Great Barrier Reef. Coral Reefs 2006, 25, 493–502. [Google Scholar] [CrossRef]
- Dixon, G.B.; Davies, S.W.; Aglyamova, G.V.; Meyer, E.; Bay, L.K.; Matz, M.V. Genomic determinants of coral heat tolerance across latitudes. Science 2015, 348, 1460–1462. [Google Scholar] [CrossRef] [PubMed]
- Warner, P.A.; van Oppen, M.J.H.; Willis, B.L. Unexpected cryptic species diversity in the widespread coral Seriatopora hystrix masks spatial-genetic patterns of connectivity. Mol. Ecol. 2015, 24, 2993–3008. [Google Scholar] [CrossRef]
- Sturm, A.B.; Eckert, R.J.; Carreiro, A.M.; Simões, N.; Voss, J.D. Depth-dependent genetic structuring of a depth-generalist coral and its Symbiodiniaceae algal communities at Campeche Bank, Mexico. Front. Mar. Sci. 2022, 9, 835789. [Google Scholar] [CrossRef]
- Jia, S.; Wu, Z.; Li, Y.; Wang, Y.; Cai, Z.; Shen, J.; Wang, D.; Chen, S. Environmental heterogeneity contributes to population genetic diversity and spatial genetic structure of coral–algal symbiosis of Platygyra daedalea in the northern South China Sea. Ecol. Indic. 2023, 154, 110599. [Google Scholar] [CrossRef]
- Black, K.L.; Rippe, J.P.; Matz, M.V. Environmental drivers of genetic divergence in two corals from the Florida Keys. Evol. Appl. 2025, 18, e70126. [Google Scholar] [CrossRef]
- Cabacungan, G.N.; Waduwara Kankanamalage, T.N.; Azam, A.F.; Collins, M.R.; Arratia, A.R.; Gutting, A.N.; Matz, M.V.; Black, K.L. Cryptic coral community composition across environmental gradients. PLoS ONE 2025, 20, e0318653. [Google Scholar] [CrossRef]
- Benzoni, F.; Stefani, F. Porites fontanesii, a new species of hard coral (Scleractinia, Poritidae) from the southern Red Sea, the Gulf of Tadjoura, and the Gulf of Aden, and its phylogenetic relationships within the genus. Zootaxa 2012, 3447, 56–68. [Google Scholar] [CrossRef]
- Pichon, M.; Chuang, Y.Y.; Chen, C.A. Pseudosiderastrea formosa sp. nov. (Cnidaria: Anthozoa: Scleractinia) a new coral species endemic to Taiwan. Zool. Stud. 2012, 51, 93–98. [Google Scholar]
- Schmidt-Roach, S.; Miller, K.; Andreakis, N. Pocillopora aliciae: A new species of scleractinian coral (Scleractinia, Pocilloporidae) from subtropical Eastern Australia. Zootaxa 2013, 3626, 576–582. [Google Scholar] [CrossRef]
- Benzoni, F.; Arrigoni, R.; Waheed, Z.; Stefani, F.; Hoeksema, B.W. Phylogenetic relationships and revision of the genus Blastomussa (Cnidaria: Anthozoa: Scleractinia) with description of a new species. Raffles Bull. Zool. 2014, 62, 358–378. [Google Scholar]
- Terraneo, T.I.; Berumen, M.L.; Arrigoni, R.; Waheed, Z.; Bouwmeester, J.; Caragnano, A.; Stefani, F.; Benzoni, F. Pachyseris inattesa sp. n. (Cnidaria, Anthozoa, Scleractinia): A new reef coral species from the Red Sea and its phylogenetic relationships. ZooKeys 2014, 433, 1–30. [Google Scholar] [CrossRef]
- Schmidt-Roach, S.; Miller, K.J.; Lundgren, P.; Andreakis, N. With eyes wide open: A revision of species within and closely related to the Pocillopora damicornis species complex (Scleractinia; Pocilloporidae) using morphology and genetics Zool. J. Linn. Soc. 2014, 170, 1–30. [Google Scholar] [CrossRef]
- Arrigoni, R.; Berumen, M.L.; Huang, D.; Terraneo, T.I.; Benzoni, F. Cyphastrea (Cnidaria: Scleractinia: Merulinidae) in the Red Sea: Phylogeny and a new reef coral species. Invertebr. Syst. 2017, 31, 141–156. [Google Scholar] [CrossRef]
- Arrigoni, R.; Berumen, M.L.; Stolarski, J.; Terraneo, T.I.; Benzoni, F. Uncovering hidden coral diversity: A new cryptic lobophylliid scleractinian from the Indian Ocean. Cladistics 2019, 35, 301–328. [Google Scholar] [CrossRef]
- Terraneo, T.I.; Benzoni, F.; Baird, A.H.; Arrigoni, R.; Berumen, M.L. Morphology and molecules reveal two new species of Porites (Scleractinia, Poritidae) from the Red Sea and the Gulf of Aden. Syst. Biodivers. 2019, 17, 491–508. [Google Scholar] [CrossRef]
- Kishi, D.; Nomura, K.; Nozawa, Y.; Arakaki, S.; Fukami, H. Paragoniastrea variabilis Kishi, Nomura & Fukami, sp. nov. (Cnidaria, Anthozoa, Scleractinia), a new coral species previously considered as a variant of Paragoniastrea deformis, from Japan and northern Taiwan. ZooKeys 2024, 1205, 205–222. [Google Scholar] [CrossRef]
- Mao, Y. Genomic insights into hybridization of reef corals. Coral Reefs 2020, 39, 61–67. [Google Scholar] [CrossRef]
- Verrill, A.E. Synopsis of the polyps and corals of the North Pacific Exploring Expedition, 1853–1856, with descriptions of some additional species from the West Coast of North America. III. Madreporaria. Commun. Essex Inst. 1866, 5, 17–32. [Google Scholar]
- Bernard, H.M. The Family Poritidae. I. The Genus Goniopora. Cat. Madreporarian Corals Br. Mus. (Nat. Hist.) 1903, 4, 1–206. [Google Scholar]
- Bernard, H.M. The Family Poritidae. II. The Genus Porites. Cat. Madreporarian Corals Br. Mus. (Nat. Hist.) 1905, 5, 1–303. [Google Scholar]
- Bernard, H.M. The Family Poritidae. II. The Genus Porites Part II. Porites of the Atlantic and West Indies, with the European fossil forms. The Genus Goniopora, a supplement to Volume IV. Cat. Madreporarian Corals Br. Mus. (Nat. Hist.) 1906, 6, 1–173. [Google Scholar]
- Bernard, H.M. On the structure of Porites, with preliminary notes on the soft parts. J. Linn. Soc. Lond. Zool. 1900, 27, 487–503. [Google Scholar] [CrossRef]
- Bernard, H.M. The prototheca of the Madreporaria, with special reference to the genera Calostylis Linds. and Moseleya Quelch. J. Nat. Hist. 1904, 13, 1–33. [Google Scholar] [CrossRef]
- Huang, D.; Benzoni, F.; Fukami, H.; Knowlton, N.; Smith, N.D.; Budd, A.F. Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). Zool. J. Linn. Soc. 2014, 171, 277–355. [Google Scholar] [CrossRef]
- Huang, D.; Arrigoni, R.; Benzoni, F.; Fukami, H.; Knowlton, N.; Smith, N.D.; Stolarski, J.; Chou, L.M.; Budd, A.F. Taxonomic classification of the reef coral family Lobophylliidae (Cnidaria: Anthozoa: Scleractinia). Zool. J. Linn. Soc. 2016, 178, 436–481. [Google Scholar] [CrossRef]
- Fautin, D.G. Hexacorallians of the World. 2013. Available online: http://ipt.iobis.org/caribbeanobis/resource?r=hexacoralliansoftheworld (accessed on 20 October 2025).
- Atlas of Living Australia. Available online: http://www.ala.org.au (accessed on 20 August 2025).
- CORDIO. Coastal Oceans Research and Development—Indian Ocean; CORDIO: Mombasa, Kenya, 1999; Available online: https://cordioea.net (accessed on 20 August 2025).
- Reeflex. Interactive Online Encyclopedia for Marine Life and Its Husbandry; Reeflex: Rome, Italy, 2000; Available online: https://www.reeflex.net (accessed on 20 August 2025).
- Veron, J.E.N.; Turak, E.; DeVantier, L.M.; Stafford-Smith, M.G. New and revised genera and species of reef-building corals from the Indo-Pacific. in prep.
- GenBank. National Center for Biotechnology Information; GenBank: Bethesda, MD, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/genbank (accessed on 20 August 2025).
- Han, T.; Liao, X.; Guo, Z.; Chen, J.-Y.; He, C.; Lu, Z. Comparative transcriptome analysis reveals deep molecular landscapes in stony coral Montipora clade. Front. Genet. 2023, 14, 1297483. [Google Scholar] [CrossRef]
- Hennig, W. Grundzüge Einer Theorie der Phylogenetischen Systematik; Deutscher Zentralverlag: Berlin, Germany, 1950; 370p. [Google Scholar]
- Hennig, W. Phylogenetic Systematics; University of Illinois Press: Urbana, IL, USA, 1966; 265p. [Google Scholar]
- Mayr, E. The Growth of Biological Thought: Diversity, Evolution, and Inheritance; Harvard University Press: Cambridge, MA, USA, 1982; 974p. [Google Scholar]
- Rieppel, O. Willi Hennig’s dichotomization of nature. Cladistics 2011, 27, 103–112. [Google Scholar] [CrossRef] [PubMed]
- McDade, L.A. Hybrids and phylogenetic systematics II. The impact of hybrids on cladistic analysis. Evolution 1992, 46, 1329–1346. [Google Scholar] [CrossRef]
- Hull, D.L. The limits of cladism. Syst. Biol. 1979, 28, 416–440. [Google Scholar] [CrossRef]
- Reeves, P.A.; Richards, C.M. Distinguishing terminal monophyletic groups from reticulate taxa: Performance of phenetic, tree-based and network procedures. Syst. Biol. 2007, 56, 302–320. [Google Scholar] [CrossRef]
- Degnan, J.H.; Rosenberg, N.A. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 2009, 24, 332–340. [Google Scholar] [CrossRef]
- Mallet, J.; Besansky, N.; Hahn, M.W. How reticulated are species? BioEssays 2016, 38, 140–149. [Google Scholar] [CrossRef]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef]
- Gittenberger, A.; Reijnen, B.T.; Hoeksema, B.W. A molecularly based phylogeny reconstruction of mushroom corals (Scleractinia: Fungiidae) with taxonomic consequences and evolutionary implications for life history traits. Contrib. Zool. 2011, 80, 107–132. [Google Scholar] [CrossRef]
- Arrigoni, R.; Richards, Z.T.; Chen, C.A.; Baird, A.H. Taxonomy and phylogenetic relationships of the coral genera Australomussa and Parascolymia (Scleractinia, Lobophylliidae). Contrib. Zool. 2014, 83, 195–210. [Google Scholar] [CrossRef]
- Oku, Y.; Naruse, T.; Fukami, H. Morpho-molecular evidence for polymorphism in the mushroom coral Cycloseris hexagonalis (Scleractinia: Fungiidae), with a new phylogenetic position and the establishment of a new genus for the species. Zool. Sci. 2017, 34, 242–251. [Google Scholar] [CrossRef]
- Wells, J.W. Scleractinia. In Treatise on Invertebrate Paleontology, Part F: Coelenterata; Moore, R.C., Ed.; Geological Society of America and University of Kansas Press: Lawrence, KS, USA, 1956; pp. 328–444. [Google Scholar]
- Chevalier, J.-P. Les scléractiniaires de la Mélanésie Française. I Expédition Française sur les récifs coralliens de la Nouvelle-Calédonie; Singer-Polignac: Paris, France, 1971; Volume 5, 307p. [Google Scholar]
- Chevalier, J.-P. Les scléractiniaires de la Mélanésie Française. II Expédition Française sur les récifs coralliens de la Nouvelle-Calédonie; Singer-Polignac: Paris, France, 1975; Volume 7, 407p. [Google Scholar]
- Stolarski, J.; Kitahara, M.V.; Miller, D.J.; Cairns, S.D.; Mazur, M.; Meibom, A. The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evol. Biol. 2011, 11, 316. [Google Scholar] [CrossRef]
- Stolarski, J.; Bosellini, F.R.; Wallace, C.C.; Gothmann, A.M.; Mazur, M.; Domart-Coulon, I.; Gutner-Hoch, E.; Neuser, R.D.; Levy, O.; Shemesh, A. A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change. Sci. Rep. 2016, 6, 27579. [Google Scholar] [CrossRef]
- Nicolle, D.; Ritter, M.K.; Jones, R.C.; Phillips, G.P.; French, M.E.; Cumming, R.; Bell, S.A.J. The genus problem—Eucalyptus as a model system for minimising taxonomic disruption. Taxon 2024, 74, 495–506. [Google Scholar] [CrossRef]
- Benzoni, F.; Arrigoni, R.; Stefani, F.; Reijnen, B.T.; Montano, S. Phylogenetic position and taxonomy of Cycloseris explanulata and C. wellsi (Scleractinia: Fungiidae): Lost mushroom corals find their way home. Contrib. Zool. 2012, 81, 125–146. [Google Scholar] [CrossRef]
- Huang, D.; Licuanan, W.; Baird, A.; Fukami, H. Cleaning up the “Bigmessidae”: Molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae. BMC Evol. Biol. 2011, 11, 37. [Google Scholar] [CrossRef]
- Budd, A.F.; Fukami, H.; Smith, N.D.; Knowlton, N. Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool. J. Linn. Soc. 2012, 166, 465–529. [Google Scholar] [CrossRef]
- Huang, D.; Benzoni, F.; Arrigoni, R.; Baird, A.H.; Berumen, M.L.; Bouwmeester, J.; Chou, L.M.; Fukami, H.; Licuanan, W.Y.; Lovell, E.R.; et al. Towards a phylogenetic classification of reef corals: The Indo-Pacific genera Merulina, Goniastrea and Scapophyllia (Scleractinia, Merulinidae). Zool. Scr. 2014, 43, 531–548. [Google Scholar] [CrossRef]
- Arrigoni, R.; Stefani, F.; Pichon, M.; Galli, P.; Benzoni, F. Molecular phylogeny of the Robust clade (Faviidae, Mussidae, Merulinidae, and Pectiniidae): An Indian Ocean perspective. Mol. Phylogenet. Evol. 2012, 65, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Fukami, H.; Chen, C.A.; Budd, A.F.; Collins, A.; Wallace, C.; Chuang, Y.-Y.; Chen, C.; Dai, C.-F.; Iwao, K.; Sheppard, C.; et al. Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS ONE 2008, 3, e3222. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, T.W. Recent Madreporaria of the Hawaiian Islands and Laysan. Bull. U.S. Natl. Mus. 1907, 59, 1–427. [Google Scholar] [CrossRef]
- Vaughan, T.W.; Wells, J.W. Revision of the suborders, families, and genera of the Scleractinia. Geol. Soc. Am. Spec. Pap. 1943, 44, 1–363. [Google Scholar] [CrossRef]
- Verrill, A.E. Synopsis of the polyps and corals of the North Pacific Exploring Expedition, under Commodore C. Ringgold and Captain John Rodgers, U.S.N., from 1853 to 1856. Collected by Dr. Wm. Stimpson, naturalist to the expedition. With descriptions of some additional species from the west coast of North America. Part 4. Actiniaria, continued. Commun. Essex Inst. 1869, 6, 51–104. [Google Scholar]
- Quelch, J.J. Report on the reef-corals collected by H.M.S. Challenger during the years 1873–1876. Rep. Sci. Results Voy. H.M.S. Challenger Zool. 1886, 46, 1–203. [Google Scholar]
- Chevalier, J.-P.; Beauvais, L. Ordre des Scléractiniaires. XI Systématique. In Traité de Zoologie: Anatomie, Systématique, Biologie. Cnidaires, Anthozoaires; Grassé, P.-P., Ed.; Masson: Paris, France, 1987; Volume 3, pp. 679–764. [Google Scholar]
- Wijsman-Best, M. Biological results of the Snellius expedition: XXVII. Faviidae collected by the Snellius expedition. II. The genera Favites, Goniastrea, Platygyra, Oulophyllia, Leptoria, Hydnophora and Caulastrea. Zool. Meded. 1976, 48, 45–63. [Google Scholar]
- Mitsuki, Y.; Isomura, N.; Nozawa, Y.; Tachikawa, H.; Huang, D.; Fukami, H. Distinct species hidden in the widely distributed coral Coelastrea aspera (Cnidaria, Anthozoa, Scleractinia). Invertebr. Syst. 2021, 35, 876–891. [Google Scholar] [CrossRef]
- Arrigoni, R.; Huang, D.; Berumen, M.L.; Budd, A.F.; Montano, S.; Richards, Z.T.; Terraneo, T.I.; Benzoni, F. Integrative systematics of the scleractinian coral genera Caulastraea, Erythrastrea and Oulophyllia. Zool. Scr. 2021, 50, 509–527. [Google Scholar] [CrossRef]
- Scheer, G.; Pillai, C.S.G. Report on the Stony Corals from the Red Sea; Zoologica: Hong Kong, China, 1983; Heft 133; pp. 1–198. [Google Scholar]
- Ma, T.Y.H. Effect of Water Temperature on Growth Rate of Corals; The World Book Co.: Taipei, Taiwan, 1959; Volume 1, 116p. [Google Scholar]
- Arrigoni, R.; Kitano, Y.F.; Stolarski, J.; Hoeksema, B.W.; Fukami, H.; Stefani, F.; Galli, P.; Montano, S.; Castoldi, E.; Benzoni, F. A phylogeny reconstruction of the Dendrophylliidae (Cnidaria, Scleractinia) based on molecular and micromorphological criteria, and its ecological implications. Zool. Scr. 2014, 43, 661–688. [Google Scholar] [CrossRef]
- Mehrotra, R.; Chavanich, S.; Monchanin, C.; Jualaong, S.; Hoeksema, B.W. Biodiversity, ecology, and taxonomy of sediment-dwelling Dendrophylliidae (Anthozoa, Scleractinia) in the Gulf of Thailand. Contrib. Zool. 2023, 92, 468–509. [Google Scholar] [CrossRef]
- Kitano, Y.F.; Benzoni, F.; Arrigoni, R.; Shirayama, Y.; Wallace, C.C.; Fukami, H. A phylogeny of the family Poritidae (Cnidaria, Scleractinia) based on molecular and morphological analyses. PLoS ONE 2014, 9, e98406. [Google Scholar] [CrossRef]
- Claereboudt, M.R.; Al-Amri, I.S. Calathiscus tantillus, a new genus and new species of scleractinian coral (Scleractinia, Poritidae) from the Gulf of Oman. Zootaxa 2004, 532, 1–8. [Google Scholar] [CrossRef]
- Arrigoni, R.; Terraneo, T.I.; Galli, P.; Benzoni, F. Lobophylliidae (Cnidaria, Scleractinia) reshuffled: Pervasive non-monophyly at genus level. Mol. Phylogenet. Evol. 2014, 73, 60–64. [Google Scholar] [CrossRef]
- Arrigoni, R.; Berumen, M.L.; Terraneo, T.I.; Caragnano, A.; Bouwmeester, J.; Benzoni, F. Forgotten in the taxonomic literature: Resurrection of the scleractinian coral genus Sclerophyllia (Scleractinia, Lobophylliidae) from the Arabian Peninsula and its phylogenetic relationships. Syst. Biodivers. 2015, 13, 140–163. [Google Scholar] [CrossRef]
- Terraneo, T.I.; Benzoni, F.; Arrigoni, R.; Berumen, M.L.; Mariappan, K.G.; Antony, C.P.; Harrison, H.B.; Payri, C.; Huang, D.; Baird, A.H. A genomic approach to Porites (Anthozoa: Scleractinia) megadiversity from the Indo-Pacific. Mol. Phylogenet. Evol. 2025, 203, 108238. [Google Scholar] [CrossRef]
- Studer, T. Zweite Abtheilung der Anthozoa polyactinia, welche während der Reise S.M.S. Corvette Gazelle um die Erde gesammelt wurden. Monatsber. Königl. Preuss. Akad. Wiss. Berl. 1878, 25, 524–550. [Google Scholar]
- Shirai, S. (Ed.) Ecological Encyclopedia of the Ryukyu Islands (Revised Edition); Okinawa Kyoiku Shuppan: Okinawa, Japan, 1980; 636p. [Google Scholar]
- Cowman, P.F.; Quattrini, A.M.; Bridge, T.C.L.; Watkins-Colwell, G.J.; Fadli, N.; Grinblat, M.; Roberts, T.E.; McFadden, C.S.; Miller, D.J.; Baird, A.H. An enhanced target-enrichment bait set for Hexacorallia provides phylogenomic resolution of the staghorn corals (Acroporidae) and close relatives. Mol. Phylogenet. Evol. 2020, 153, 106944. [Google Scholar] [CrossRef] [PubMed]
- Quek, Z.R.; Jain, S.S.; Richards, Z.T.; Arrigoni, R.; Benzoni, F.; Hoeksema, B.W.; Carvajal, J.I.; Wilson, N.G.; Baird, A.H.; Kitahara, M.V. A hybrid-capture approach to reconstruct the phylogeny of Scleractinia (Cnidaria: Hexacorallia). Mol. Phylogenet. Evol. 2023, 186, 107867. [Google Scholar] [CrossRef]
- ICZN. Coral taxon names published in Corals of the World by J.E.N. Veron (2000): Potential availability confirmed under Article 86.1.2. Bull. Zool. Nomencl. 2011, 68, 162–166. [Google Scholar]
- Torrado, H.; Rios, D.; Primov, K.; Burdick, D.R.; Bentlage, B.; Lemer, S.; Combosch, D. Evolutionary genomics of two co-occurring congeneric fore reef coral species on Guam (Mariana Islands). Genome Biol. Evol. 2025, 17, evae278. [Google Scholar] [CrossRef]
- Randall, R.H.; Myers, R.F. The Corals: Guide to the Coastal Resources of Guam; University of Guam Press: Mangilao, Guam, 1983; 128p. [Google Scholar]
- Nunes, F.; Fukami, H.; Vollmer, S.V.; Norris, R.D.; Knowlton, N. Re-evaluation of the systematics of the endemic corals of Brazil by molecular data. Coral Reefs 2008, 27, 423–432. [Google Scholar] [CrossRef]
- Hodgson, G. A new species of Montastrea (Cnidaria, Scleractinia) from the Philippines. Pac. Sci. 1985, 39, 283–290. [Google Scholar]
- Benzoni, F.; Stefani, F.; Pichon, M.; Galli, P. The name game: Morpho-molecular species boundaries in the genus Psammocora (Cnidaria, Scleractinia). Zool. J. Linn. Soc. 2010, 160, 421–456. [Google Scholar] [CrossRef]
- Oury, N.; Berumen, M.L.; Paulay, G.; Benzoni, F. One species to rule them all: Genomics sheds light on the Pocillopora species diversity and distinctiveness around the Arabian Peninsula. Coral Reefs 2025, 44, 983–998. [Google Scholar] [CrossRef]
- Ahrens, D.; Fujisawa, T.; Krammer, H.-J.; Eberle, J.; Fabrizi, S.; Vogler, A.P. Rarity and incomplete sampling in DNA-based species delimitation. Syst. Biol. 2016, 65, 478–494. [Google Scholar] [CrossRef]
- Johnston, E.C.; Wyatt, A.S.; Leichter, J.J.; Burgess, S.C. Niche differences in co-occurring cryptic coral species (Pocillopora spp.). Coral Reefs 2022, 41, 767–778. [Google Scholar] [CrossRef]
- Rosser, N.L.; Veron, J.E.N. Australian corals thriving out of water in an extreme environment. Coral Reefs 2011, 30, 21. [Google Scholar] [CrossRef][Green Version]

































































Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veron, J.E.N.; Stafford-Smith, M.G.; DeVantier, L.M.; Turak, E. Review of Coral Taxonomy, Evolution and Diversity. Diversity 2025, 17, 823. https://doi.org/10.3390/d17120823
Veron JEN, Stafford-Smith MG, DeVantier LM, Turak E. Review of Coral Taxonomy, Evolution and Diversity. Diversity. 2025; 17(12):823. https://doi.org/10.3390/d17120823
Chicago/Turabian StyleVeron, John E. N., Mary G. Stafford-Smith, Lyndon M. DeVantier, and Emre Turak. 2025. "Review of Coral Taxonomy, Evolution and Diversity" Diversity 17, no. 12: 823. https://doi.org/10.3390/d17120823
APA StyleVeron, J. E. N., Stafford-Smith, M. G., DeVantier, L. M., & Turak, E. (2025). Review of Coral Taxonomy, Evolution and Diversity. Diversity, 17(12), 823. https://doi.org/10.3390/d17120823
