The Impact of Life History Traits and Defensive Abilities on the Invasiveness of Ulex europaeus L.
Abstract
1. Introduction
2. Criteria for Selecting Literature
3. Growth
4. Reproduction
4.1. Seed Production and Dispersal
4.2. Seed Bank and Germination
4.3. Resprouting
5. Adaptivity
5.1. Genetic Variation
5.2. Habitats and Climate
6. Defensive Response to Biotic Stressors
6.1. Defensive Compounds Protect Against Pathogens and Herbivores
6.2. Defensive Compounds Protect Against Competing Plant Species
7. Synthesis
Funding
Institutional Review Statement
Data Availability Statement
Conflicts of Interest
References
- Richardson, R.G.; Hill, R. The biology of Australian weeds 34. Ulex europaeus L. Plant Prot. Q. 1998, 13, 46–58. [Google Scholar]
- Clements, D.R.; Peterson, D.J.; Prasad, R. The biology of Canadian weeds. 112. Ulex europaeus L. Can. J. Plant Sci. 2001, 81, 325–337. [Google Scholar] [CrossRef]
- Roberts, J.; Florentine, S. Biology, distribution and control of the invasive species Ulex europaeus (Gorse): A global synthesis of current and future management challenges and research gaps. Weed Res. 2021, 61, 272–281. [Google Scholar] [CrossRef]
- International Seed Morphology Association. Ulex europaeus L. Available online: https://seedidguide.idseed.org/fact_sheets/ulex-europaeus/ (accessed on 29 September 2025).
- Landscape South Australia: Gorse (Ulex europaeus). Available online: https://cdn.environment.sa.gov.au/landscape/docs/ki/pests-weeds-gorse-fact-04-2022.pdf (accessed on 29 September 2025).
- Trees and Shrubs Online, International Dendrology Society. Ulex europaeus L. Available online: https://www.treesandshrubsonline.org/articles/ulex/ulex-europaeus/ (accessed on 29 September 2025).
- US Forest Service, USDA. Ulex europaeus. Available online: https://www.fs.usda.gov/database/feis/plants/shrub/uleeur/all.html (accessed on 29 September 2025).
- León Cordero, R.; Torchelsen, F.P.; Overbeck, G.E.; Anand, M. Analyzing the landscape characteristics promoting the establishment and spread of gorse (Ulex europaeus) along roadsides. Ecosphere 2016, 7, e01201. [Google Scholar] [CrossRef]
- Atlan, A.; Udo, N. The invasive niche, a multidisciplinary concept illustrated by Gorse (Ulex europaeus). Diversity 2019, 11, 162. [Google Scholar] [CrossRef]
- Kariyawasam, C.S.; Ratnayake, S.S. Invasive ranges of Ulex europaeus (Fabaceae) in South Australia and Sri Lanka using species distribution modeling. Int. J. Sci. Res. 2019, 9, 91–100. [Google Scholar] [CrossRef]
- Osorio-Castiblanco, D.F. Biomass and bioethanol production of the shrub Ulex europaeus (Fabaceae) estimated with remote sensing imagery in the Andean paramos. Rev. Biol. Trop. 2024, 72, e56364. [Google Scholar] [CrossRef]
- Global Invasive Species Database. Ulex europaeus L. Available online: https://www.iucngisd.org/gisd/species.php?sc=69 (accessed on 29 September 2025).
- GBIF. Ulex europaeus L. Available online: https://www.gbif.org/species/2951984 (accessed on 29 September 2025).
- Price, L.W. Hedges and shelterbelts on the Canterbury Plains, New Zealand: Transformation of an antipodean landscape. Ann. Assoc. Am. Geogr. 1993, 83, 119–140. [Google Scholar] [CrossRef]
- Markin, G.P.M.; Dekker, L.A.; Lapp, J.A.; Nagata, R.F. Distribution of gorse (Ulex europaeus L.) a noxious weed in Hawaii. Newslett. Hawaii. Bot. Soc. 1988, 27, 110–117. [Google Scholar]
- Blaschke, P.M.; Hunter, G.G.; Eyles, G.O.; Van Berkel, P.R. Analysis of New Zealand’s vegetation cover using land resource inventory data. N. Z. J. Ecol. 1981, 4, 1–19. [Google Scholar]
- Magesan, G.N.; Wang, H.; Clinton, P.W. Nitrogen cycling in gorse-dominated ecosystems in New Zealand. N. Z. J. Ecol. 2012, 36, 21–28. [Google Scholar]
- Galappaththi, H.S.S.D.; de Silva, W.A.P.P.; Mccormick, A.C. A mini-review on the impact of common gorse in its introduced ranges. Trop. Ecol. 2023, 64, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.J.; Williams, P.A.; Timmins, S.M. Secondary forest succession differs through naturalised gorse and native kānuka near Wellington and Nelson. N. Z. J. Ecol. 2007, 31, 22–38. [Google Scholar]
- Lee, W.G.; Allen, R.B.; Johnson, P.N. Succession and dynamics of gorse (Ulex europaeus L.) communities in the dunedin ecological district South Island, New Zealand. N. Z. J. Bot. 1986, 24, 279–292. [Google Scholar] [CrossRef]
- Cordero, R.L.; Torchelsen, F.P.; Overbeck, G.E.; Anand, M. Invasive gorse (Ulex europaeus, Fabaceae) changes plant community structure in subtropical forest-grassland mosaics of southern Brazil. Biol. Invasions 2016, 18, 1629–1643. [Google Scholar] [CrossRef]
- Fuchs, M.A. Towards a Recovery Strategy for Garry Oak and Associated Ecosystems in Canada: Ecological Assessment and Literature Review; Environment Canada, Pacific and Yukon Region: Victoria, BC, Canada, 2001; pp. 1–106. [Google Scholar]
- Prasad, R. Ecology, biology and control of exotic-invasive weeds in forestry-management of gorse (Ulex europaeus L.) on Federal Lands in Victoria, British Columbia, Canada. In The View from the North, Proceedings of the Weeds Across Borders 2008 Conference, Banff, AL, Canada, 27–30 May 2008; Darbyshire, E.S., Prasad, R., Eds.; Alberta Invasive Plants Council: Lethbridge, AL, Canada, 2008. [Google Scholar]
- Leary, J.K.; Hue, N.V.; Singleton, P.W.; Borthakur, D. The major features of an infestation by the invasive weed legume gorse (Ulex europaeus) on volcanic soils in Hawaii. Biol. Fertil. Soils 2006, 42, 215–223. [Google Scholar] [CrossRef]
- Williams, P.A.; Karl, B.J. Birds and small mammals in kanuka (Kunzea ericoides) and gorse (Ulex europaeus) scrub and the resulting seed rain and seedling dynamics. N. Z. J. Ecol. 2002, 26, 31–41. [Google Scholar]
- Carlos, E.H.; Gibson, M. The habitat value of gorse ‘Ulex europaeus’ L. and hawthorn ‘Crataegus monogyna’ Jacq. for birds in Quarry Hills Bushland Park, Victoria. Vic. Nat. 2010, 127, 115–124. [Google Scholar]
- Somaweera, R.; Wijayathilaka, N.; Bowatte, G. Does the invasive shrub Ulex europaeus benefit an endemic Sri Lankan lizard. Herpetol. Conserv. Biol. 2012, 7, 219–226. [Google Scholar]
- Harris, R.J.; Toft, R.J.; Dugdale, J.S.; Williams, P.A.; Rees, J.S. Insect assemblages in a native (kanuka-Kunzea ericoides) and an invasive (gorse-Ulex europaeus) shrubland. N. Z. J. Ecol. 2004, 28, 35–47. [Google Scholar]
- Crews, T.E. The presence of nitrogen fixing legumes in terrestrial communities: Evolutionary vs ecological considerations. Biogeochemistry 1999, 46, 233–246. [Google Scholar] [CrossRef]
- Hietz, P.; Turner, B.L.; Wanek, W.; Richter, A.; Nock, C.A.; Wright, S.J. Long-term change in the nitrogen cycle of tropical forests. Science 2011, 334, 664–666. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.D.; Liu, B.; Bentley, B.L. The effects of nitrogen fixation, soil nitrate, and defoliation on the growth, alkaloids, and nitrogen levels of Lupinus succulentus (Fabaceae). Oecologia 1987, 74, 425–431. [Google Scholar] [CrossRef]
- Sparling, G.P.; Hart, P.B.S.; August, J.A.; Leslie, D.M. A comparison of soil and microbial carbon, nitrogen and phosphorus contents, and macro-aggregate stability of a soil under native forest and after clearance for pastures and plantation forest. Biol. Fertil. Soils 1994, 17, 91–100. [Google Scholar] [CrossRef]
- Rout, M.E.; Callaway, R.M. An invasive plant paradox. Science 2009, 324, 734–735. [Google Scholar] [CrossRef]
- Mason, N.W.H.; Mudge, P.L.; Palmer, D.; McLeod, M.; Ausseil, A.G.; Dymond, J. Catchment-scale contribution of invasive nitrogen fixing shrubs to nitrate leaching: A scoping study. J. Roy. Soc. N. Z. 2015, 46, 85–102. [Google Scholar] [CrossRef]
- Bateman, J.B.; Vitousek, P.M. Soil fertility response to Ulex europaeus invasion and restoration efforts. Biol. Invasions 2018, 20, 2777–2791. [Google Scholar] [CrossRef]
- Yelenik, S.G.; Stock, W.D.; Richardson, D.M. Functional group identity does not predict invader impacts: Differential effects of nitrogen-fixing exotic plants on ecosystem function. Biol. Invasions 2007, 9, 117–125. [Google Scholar] [CrossRef]
- Fenn, M.E.; Poth, M.A.; Aber, J.D.; Baron, J.S.; Bormann, B.T.; Johnson, D.W.; Lemly, A.D.; McNulty, S.G.; Stottlemyer, R. Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies. Ecol. Appl. 1998, 8, 706–733. [Google Scholar] [CrossRef]
- Camargo, J.A.; Alonso, Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 2006, 32, 831–849. [Google Scholar] [CrossRef]
- Anderson, S.A.; Anderson, W.R. Ignition and fire spread thresholds in gorse (Ulex europaeus). Int. J. Wildland Fire 2010, 19, 589–598. [Google Scholar] [CrossRef]
- Madrigal, J.; Marino, E.; Guijarro, M.; Hernando, C.; Díez, C. Evaluation of the flammability of gorse (Ulex europaeus L.) managed by prescribed burning. Ann. For. Sci. 2012, 69, 387–397. [Google Scholar] [CrossRef]
- Perry, G.L.; Wilmshurst, J.M.; McGlone, M.S. Ecology and long-term history of fire in New Zealand. N. Z. J. Ecol. 2014, 38, 157–176. [Google Scholar]
- Wyse, S.V.; Perry, G.L.; Curran, T.J. Shoot-level flammability of species mixtures is driven by the most flammable species: Implications for vegetation-fire feedbacks favoring invasive species. Ecosystems 2018, 21, 886–900. [Google Scholar] [CrossRef]
- Melnik, K.O.; Valencia, A.; Katurji, M.; Nilsson, D.; Baker, G.; Melnik, O.M.; Pearce, H.G.; Strand, T.M. Effect of live/dead condition, moisture content and particle size on flammability of gorse (Ulex europaeus) measured with a cone calorimeter. Int. J. Wildland Fire 2024, 33, WF23167. [Google Scholar] [CrossRef]
- IUCN. 100 of the World’s Worst Invasive Alien Species. Available online: https://portals.iucn.org/library/sites/library/files/documents/2000-126.pdf (accessed on 29 September 2025).
- Hill, R.L.; Ireson, J.; Sheppard, A.W.; Gourlay, A.H.; Norambuena, H.; Markin, G.P.; Kwong, R.; Coombs, E.M. A Global View of the Future for Biological Control of Gorse, Ulex europaeus L. In Proceedings of the XII International Symposium on Biological Control of Weeds, La Grande Motte, France, 22–27 April 2007; Julien, M.H., Sforza, R., Bon, M.C., Evans, H.C., Hatcher, P.E., Hinz, H.L., Rector, B.G., Eds.; CAB International: Wallingford, UK, 2008; pp. 685–698. [Google Scholar]
- Broadfield, N.; McHenry, M.T. A world of gorse: Persistence of Ulex europaeus in managed landscapes. Plants 2019, 8, 523. [Google Scholar] [CrossRef] [PubMed]
- González-Montelongo, C.; Padrón-Mederos, M.A.; Negrín-Pérez, Z.; González, M.; Arévalo, J.R. Management Strategies for Ulex europaeus L. Control in a Native Plant Community in Tenerife, Canary Islands. Agriculture 2024, 14, 1683. [Google Scholar] [CrossRef]
- Yamoah, E.; Jones, E.E.; Suckling, D.M.; Stewart, A. Suppression of emergence and growth of gorse (Ulex europaeus) seedlings by Fusarium tumidum. N. Z. J. Plant Prot. 2006, 59, 12–17. [Google Scholar] [CrossRef]
- Crisóstomo, J.A.; Freitas, H.; Rodríguez-Echeverría, S. Relative growth rates of three woody legumes: Implications in the process of ecological invasion. Web Ecol. 2007, 7, 22–26. [Google Scholar] [CrossRef]
- Millener, L.H. Day-length as related to vegetative development in Ulex europaeus I. The experimental approach. New Phytol. 1961, 60, 339–354. [Google Scholar] [CrossRef]
- Medina-Villar, S.; Vázquez de Aldana, B.R.; Herrero, A.; Pérez-Corona, M.E.; Gianoli, E. The green thorns of Ulex europaeus play both defensive and photosynthetic roles: Consequences for predictions of the enemy release hypothesis. Biol. Invasions 2022, 24, 385–398. [Google Scholar] [CrossRef]
- Egunjobi, J.K. Dry matter and nitrogen accumulation in secondary successions involving gorse (Ulex europaeus L.) and associated shrubs and trees. N. Z. J. Sci. 1969, 12, 175–193. [Google Scholar]
- McQueen, J.C.; Tozer, W.C.; Clarkson, B.D. Consequences of alien N2-ixers on vegetation succession in New Zealand. In Biological Invasions in New Zealand; Allen, R.B., Lee, W.G., Eds.; Ecological Studies; Springer: Berlin, Germany, 2006; Volume 186, pp. 295–306. [Google Scholar]
- Rodríguez-Echeverría, S. Rhizobial hitchhikers from down under: Invasional meltdown in a plant-bacteria mutualism? J. Biogeogr. 2010, 37, 1611–1622. [Google Scholar] [CrossRef]
- Watt, M.S.; Clinton, P.W.; Whitehead, D.; Richardson, B.; Mason, E.G.; Leckie, A.C. Above-ground biomass accumulation and nitrogen fixation of broom (Cytisus scoparius L.) growing with juvenile Pinus radiata on a dryland site. For. Ecol. Manag. 2003, 184, 93–104. [Google Scholar] [CrossRef]
- Evans, J.R. Improving photosynthesis. Plant Physiol. 2013, 162, 1780–1793. [Google Scholar] [CrossRef] [PubMed]
- Eberhard, S.; Finazzi, G.; Wollman, F.A. The dynamics of photosynthesis. Annu. Rev. Genet. 2008, 42, 463–515. [Google Scholar] [CrossRef] [PubMed]
- Tarayre, M.; Bowman, G.; Schermann-Legionnet, A.; Barat, M.; Atlan, A. Flowering phenology of Ulex europaeus: Ecological consequences of variation within and among populations. Evol. Ecol. 2007, 21, 395–409. [Google Scholar] [CrossRef]
- Atlan, A.; Barat, M.; Legionnet, A.S.; Parize, L.; Tarayre, M. Genetic variation in flowering phenology and avoidance of seed predation in native populations of Ulex europaeus. J. Evol. Biol. 2010, 23, 362–371. [Google Scholar] [CrossRef]
- BBC Gardeners’ World Magazine. Ulex europaeus. Available online: https://www.gardenersworld.com/how-to/grow-plants/ulex-europaeus/ (accessed on 29 September 2025).
- Kariyawasam, C.S.; Ratnayake, S.S. Reproductive biology of gorse, control cost (Fabaceae) in the mount lofty ranges of South Australia and Sri Lanka. Int. J. Sci. Res. Publ. 2019, 9, 91–100. [Google Scholar]
- Cadet, T. Etude sur la végétation des hautes altitudes de La Réunion (Océan Indien). Vegetatio 1974, 9, 121–130. [Google Scholar] [CrossRef]
- Markin, G.P.; Yoshioka, E. The phenology and growth rates of the weed gorse (Ulex europaeus) in Hawaii. Newsl. Hawaii. Bot. Soc. 1996, 35, 45–50. [Google Scholar]
- Hill, R.L.; Gourlay, A.H.; Martin, L. Seasonal and geographic variation in the predation of gorse seed, Ulex europaeus L. by the seed weevil Apion ulicis Forst. N. Z. J. Zool. 1991, 18, 37–43. [Google Scholar] [CrossRef]
- Renck, M.V.K.; Hoffmann, D.; Araújo-Hoffmann, F.P.D. Mutualistic interactions facilitating Ulex europaeus invasion in southern Brazil and its potential disruption of local ecosystems. Acta Bot. Bras. 2025, 39, e20240108. [Google Scholar] [CrossRef]
- Ireson, J.E.; Gourlay, A.H.; Kwong, R.M.; Holloway, R.J.; Chatterton, W.S. Host specificity, release and establishment of the gorse spider mite, Tetranychus lintearius Dufour (Acarina: Tetranychidae), for the biological control of gorse, Ulex europaeus L. (Fabaceae), in Australia. Biol. Contl. 2003, 26, 117–127. [Google Scholar] [CrossRef]
- Bowman, G.; Tarayre, M.; Atlan, A. How is the invasive gorse Ulex europaeus pollinated during winter? A lesson from its native range. Plant Ecol. 2008, 197, 197–206. [Google Scholar] [CrossRef]
- Atlan, A.; Schermann-Legionnet, A.; Udo, N.; Tarayre, M. Self-incompatibility in Ulex europaeus: Variations in native and invaded regions. Int. J. Plant Sci. 2015, 176, 515–524. [Google Scholar] [CrossRef]
- Moss, G.R. Gorse, a weed problem on thousands of acres of farmland. N. Z. J. Agric. 1960, 100, 561–567. [Google Scholar]
- Johnson, P.N. Vegetation recovery after fire on a southern New Zealand peatland. N. Z. J. Bot. 2001, 39, 251–267. [Google Scholar] [CrossRef]
- Mark, S.; Olesen, J.M. Importance of elaiosome size to removal of ant-dispersed seeds. Oecologia 1996, 107, 95–101. [Google Scholar] [CrossRef]
- Edwards, W.; Dunlop, M.; Rodgerson, L. The evolution of rewards: Seed dispersal, seed size and elaiosome size. J. Ecol. 2006, 94, 687–694. [Google Scholar] [CrossRef]
- Zabkiewicz, J.A.; Gaskin, R.E. Effects of fire on gorse seeds. In Proceedings of the 31st New Zealand Weed and Pest Control Conference, New Plymouth, New Zealand, 8–10 August 1978; Hartley, M.J., Ed.; The New Zealand Weed and Pest Control Society Inc.: Palmerston North, New Zealand, 1978; pp. 47–52. [Google Scholar]
- Bakker, M.R.; Udo, N.; Atlan, A.; Gire, C.; Gonzalez, M.; Graham, D.; Leckie, A.; Milin, S.; Niollet, S.; Xue, J.; et al. Explaining the larger seed bank of an invasive shrub in non-native versus native environments by differences in seed predation and plant size. Ann. Bot. 2019, 123, 917–927. [Google Scholar] [CrossRef]
- Hill, R.L.; Gourlay, A.H.; Barker, R.J. Survival of Ulex europaeus seeds in the soil at three sites in New Zealand. N. Z. J. Bot. 2001, 39, 235–244. [Google Scholar] [CrossRef]
- Ivens, G.W. Some aspects of seed ecology of gorse. In Proceedings of the 31st New Zealand Weed and Pest Control Conference, New Plymouth, New Zealand, 8–10 August 1978; Hartley, M.J., Ed.; The New Zealand Weed and Pest Control Society Inc.: Palmerston North, New Zealand, 1978; pp. 53–57. [Google Scholar]
- Sixtus, C.R.; Hill, G.D.; Scott, R.R. The effect of temperature and scarification method on gorse (Ulex europaeus L) seed germination. N. Z. Plant Prot. 2003, 56, 201–205. [Google Scholar] [CrossRef]
- Hanley, M.E. Thermal shock and germination in Nort-West European Genisteae: Implications for heathland management and invasive weed control using fire. Appl. Veg. Sci. 2009, 12, 385–390. [Google Scholar] [CrossRef]
- Udo, N.; Tarayre, M.; Atlan, A. Evolution of germination strategy in the invasive species Ulex europaeus. J. Plant Ecol. 2017, 10, 375–385. [Google Scholar]
- Rossiter, M. Incidence and consequences of inherited environmental effects. Annu. Rev. Ecol. Syst. 1996, 27, 451–476. [Google Scholar] [CrossRef]
- Skalova, H.; Moravcova, L.; Pyšek, P. Germination dynamics and seedling frost resistance of invasive and native Impatiens species reflect local climatic conditions. Perspect. Plant Ecol. Evol. Syst. 2011, 13, 173–180. [Google Scholar] [CrossRef]
- Dalling, J.W.; Davis, A.S.; Schutte, B.J.; Arnold, A.E. Seed survival in soil: Interacting effects of predation, dormancy and the soil microbial community: Seed survival in soil. J. Ecol. 2011, 99, 89–95. [Google Scholar] [CrossRef]
- Paulsen, T.R.; Colville, L.; Kranner, I.; Daws, M.I.; Högstedt, G.; Vandvik, V.; Thompson, K. Physical dormancy in seeds: A game of hide and seek? New Phytol. 2013, 198, 496–503. [Google Scholar] [CrossRef]
- Presotto, A.; Poverene, M.; Cantamutto, M. Seed dormancy and hybridization effect of the invasive species, Helianthus annuus. Ann. Appl. Biol. 2014, 164, 373–383. [Google Scholar] [CrossRef]
- Smýkal, P.; Vernoud, V.; Blair, M.W.; Soukup, A.; Thompson, R.D. The role of the testa during development and in establishment of dormancy of the legume seed. Front. Plant Sci. 2014, 5, 351. [Google Scholar] [CrossRef] [PubMed]
- The Open University. Fire Ecology. Available online: https://www.open.edu/openlearn/science-maths-technology/fire-ecology/content-section-1.4 (accessed on 29 September 2025).
- Natural England; Gov UK. Vegetation and Sub-Surface Fire Temperatures. Available online: https://publications.naturalengland.org.uk/file/6179118611955712 (accessed on 29 September 2025).
- Chicco, J.M.; Mandrone, G.; Vacha, D. Effects of wildfire on soils: Field studies and modelling on induced underground temperature variations. Front. Earth Sci. 2023, 11, 1307569. [Google Scholar] [CrossRef]
- Rolston, M.P.; Talbot, J. Soil temperatures and regrowth of gorse burnt after treatment with herbicides. N. Z. J. Exp. Agric. 1980, 8, 55–61. [Google Scholar] [CrossRef]
- Dent, J.M.; Buckley, H.L.; Lustig, A.; Curran, T.J. Flame temperatures saturate with increasing dead material in Ulex europaeus, but flame duration, fuel consumption and overall flammability continue to increase. Fire 2019, 2, 6. [Google Scholar] [CrossRef]
- Partridge, T.R. Soil seed banks of secondary vegetation on the Port Hills and Banks Peninsula, Canterbury, New Zealand, and their role in succession. N. Z. J. Bot. 1989, 27, 421–436. [Google Scholar]
- Prasad, R. Management and control of gorse and Scotch broom in British Columbia. In Technology Transfer Note Number 30; Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre: Victoria, BC, Canada, 2003; pp. 1–6. [Google Scholar]
- Thevenoux, R.; Tarayre, M.; Atlan, A. Controlling gorse: Resprouting of Ulex europaeus after cutting in plants from native and invaded regions. HAL Open Sci. 2022, halshs-03589606. [Google Scholar]
- Soto, B.; Basanta, R.; Diaz-Fierros, F. Effects of burning on nutrient balance in an area of gorse (Ulex europaeus L.) scrub. Sci. Total Environ. 1997, 204, 271–281. [Google Scholar] [CrossRef]
- Feoli-Chiapella, L.; Cristofolini, G. Serological contributions to the systematics of Ulex (Genisteae-Fabaceae) and allied genera. Nord. J. Bot. 1981, 1, 723–729. [Google Scholar] [CrossRef]
- Hornoy, B.; Tarayre, M.; Hervé, M.; Gigord, L.; Atlan, A. Invasive plants and enemy release: Evolution of trait means and trait correlations in Ulex europaeus. PLoS ONE 2011, 6, e26275. [Google Scholar]
- Hornoy, B.; Atlan, A.; Roussel, V.; Buckley, Y.M.; Tarayre, M. Two colonisation stages generate two different patterns of genetic diversity within native and invasive ranges of Ulex europaeus. Heredity 2013, 111, 355–363. [Google Scholar] [CrossRef]
- Bellot, S.; Dias, P.M.; Affagard, M.; Aïnouche, M.L.; Misset, M.T.; Aïnouche, A. Molecular phylogenetics shed light on polyploid speciation in gorses (Ulex, Fabaceae: Genisteae) and on the origin of the invasive Ulex europaeus. Bot. J. Linn. Soc. 2023, 202, 52–75. [Google Scholar] [CrossRef]
- Royal Botanical Gardens Kew. Ulex europaeus subsp. latebracteatus. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:77250542-1 (accessed on 29 September 2025).
- Ellstrand, N.C.; Schierenbeck, K.A. Hybridization as a stimulus for the evolution of invasiveness in plants? Proc. Nat. Acad. Sci. USA 2000, 97, 7043–7050. [Google Scholar] [CrossRef]
- Van de Peer, Y.; Mizrachi, E.; Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 2017, 18, 411–424. [Google Scholar] [CrossRef]
- Feliner, G.N.; Casacuberta, J.; Wendel, J.F. Genomics of evolutionary novelty in hybrids and polyploids. Front. Genet. 2020, 11, 792. [Google Scholar] [CrossRef] [PubMed]
- Moura, R.F.; Queiroga, D.; Vilela, E.; Moraes, A.P. Polyploidy and high environmental tolerance increase the invasive success of plants. J. Plant Res. 2021, 134, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Hozawa, M.; Nawata, E. Assessment of the genetic diversity of Ulex europaeus in Maui, California, Hawaii and New Zealand by a method of microsatellite markers. Biol. Life Sci. Forum 2021, 4, 5. [Google Scholar]
- Gay, J.C. L’outre-mer Français; Un Espace Singulier: Paris, France, 2003; pp. 1–222. [Google Scholar]
- Isern, T.D. A good servant but a tyrannous master: Gorse in New Zealand. Soc. Sci. J. 2007, 44, 179–186. [Google Scholar] [CrossRef]
- Pryor, M.R.; Dana, R.H. Gorse control. Calif. Dept. Agric. Bull. 1982, 41, 43–45. [Google Scholar]
- Loveman, B. Chile: The Legacy of Hispanic Capitalism; Oxford University Press: New York, NY, USA, 2001; pp. 1–424. [Google Scholar]
- Ellstrand, N.C.; Elam, D.R. Population genetic consequences of small population size: Implications for plant conservation. Annu. Rev. Ecol. Syst. 1993, 24, 217–242. [Google Scholar] [CrossRef]
- Bouzat, J.L. Conservation genetics of population bottlenecks: The role of chance, selection, and history. Conserv. Genet. 2010, 11, 463–478. [Google Scholar] [CrossRef]
- Baker, H.G. Patterns of plant invasion in North America. In Ecology of Biological Invasions of North America and Hawaii; Mooney, H.A., Drake, J.A., Eds.; Ecological Studies; Springer: New York, NY, USA, 1986; Volume 58, pp. 44–57. [Google Scholar]
- Pojar, J.; MacKinnon, A. Plants of the Pacific Northwest Coast: Washington, Oregon, British Columbia and Alaska; Lone Pine Publishing: Redmond, WA, USA, 1994; pp. 1–526. [Google Scholar]
- King, S.; Drlik, T.; Simon, L.; Quarles, W. Integrated weed management of gorse. IPM Pract. 1996, 18, 1–9. [Google Scholar]
- Hoshovsky, M.C. Ulex europaea L. In Invasive Plants of California’s Wildlands; Bossard, C.C., Randall, J.M., Hoshovsky, M.C., Eds.; University of California Press: Berkeley, CA, USA, 2000; pp. 317–321. [Google Scholar]
- Hickman, J.C. The Jepson Manual: Higher Plants of California; University of California Press: Berkeley, CA, USA, 1993; pp. 1–1400. [Google Scholar]
- MacCarter, L.E.; Gaynor, D.L. Gorse: A subject for biological control in New Zealand. N. Z. J. Exp. Agric. 1980, 8, 321–330. [Google Scholar] [CrossRef]
- Altamirano, A.; Cely, J.P.; Etter, A.; Miranda, A.; Fuentes-Ramirez, A.; Acevedo, P.; Salas, C.; Vargas, R. The invasive species Ulex europaeus (Fabaceae) shows high dynamism in a fragmented landscape of south-central Chile. Environ. Monit. Assess. 2016, 188, 495. [Google Scholar] [CrossRef] [PubMed]
- Ángel-Vallejo, M.C.; Aguirre-Acosta, N.; Rodríguez-Rey, G.T.; García-Marín, E.J.; Álvarez-Mejía, L.M.; Feuillet-Hurtado, C. Distribution models in invasive plants with climatic niche expansion: A case study of Ulex europaeus L. in Colombian Andes. Biol. Invasions 2024, 26, 1919–1930. [Google Scholar] [CrossRef]
- Christina, M.; Limbada, F.; Atlan, A. Climatic niche shift of an invasive shrub (Ulex europaeus): A global scale comparison in native and introduced regions. J. Plant Ecol. 2020, 13, 42–50. [Google Scholar] [CrossRef]
- Christina, M.; Gire, C.; Bakker, M.R.; Lckie, A.; Xue, J.; Clinton, P.W.; Negrin-Perez, Z.; Sierra, J.R.A.; Domec, J.C.; Gonzalez, M.M. Native and invasive seedling drought resistance under elevated temperature in common gorse populations. J. Plant Ecol. 2023, 16, rtac097. [Google Scholar] [CrossRef]
- Grubb, P.J.; Green, H.T.; Merrifield, R.C.J. The ecology of chalk heath: Its relevance to the calcicole-calcifuge and soil acidification problems. J. Ecol. 1968, 57, 175–212. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Marrs, R.H.; Le Duc, M.G.; Auld, M.H.D. A study of succession on lowland heaths in Dorset, southern England: Changes in vegetation and soil chemical properties. J. Appl. Ecol. 1997, 34, 1426–1444. [Google Scholar] [CrossRef]
- Abe, S.; Motai, H.; Tanaka, H.; Shibata, M.; Kominami, Y.; Nakashizuka, T. Population maintenance of the short-lived shrub Sambucus in a deciduous forest. Ecology 2008, 89, 1155–1167. [Google Scholar] [CrossRef]
- Delerue, F.; Gonzalez, M.; Atlan, A.; Pellerin, S.; Augusto, L. Plasticity of reproductive allocation of a woody species (Ulex europaeus) in response to variation in resource availability. Ann. For. Sci. 2013, 70, 219–228. [Google Scholar] [CrossRef]
- Atlan, A.; Hornoy, B.; Delerue, F.; Gonzalez, M.; Pierre, J.S.; Tarayre, M. Phenotypic plasticity in reproductive traits of the perennial shrub Ulex europaeus in response to shading: A multi-year monitoring of cultivated clones. PLoS ONE 2015, 10, e0137500. [Google Scholar] [CrossRef] [PubMed]
- Valladares, F.; Hernández, L.G.; Dobarro, I.; García-Pérez, C.; Sanz, R.; Pugnaire, F.I. The ratio of leaf to total photosynthetic area influences shade survival and plastic response to light of green-stemmed leguminous shrub seedlings. Ann. Bot. 2003, 91, 577–584. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Defense molecules of the invasive plant species Ageratum conyzoides. Molecules 2024, 29, 4673. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Invasive Characteristics and Impacts of Ambrosia trifida. Agronomy 2024, 14, 2868. [Google Scholar] [CrossRef]
- Karban, R.; Myers, J.H. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst. 1989, 20, 331–348. [Google Scholar] [CrossRef]
- Maron, J.L.; Crone, E. Herbivory: Effects on plant abundance, distribution and population growth. Proc. R. Soc. B Biol. Sci. 2006, 273, 2575–2584. [Google Scholar] [CrossRef]
- Gong, B.; Zhang, G. Interactions between plants and herbivores: A review of plant defense. Acta Ecol. Sin. 2014, 34, 325–336. [Google Scholar] [CrossRef]
- Rojas, C.M.; Senthil-Kumar, M.; Tzin, V.; Mysore, K.S. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front. Plant Sci. 2014, 5, 17. [Google Scholar] [CrossRef]
- Pandey, P.; Irulappan, V.; Bagavathiannan, M.V.; Senthil-Kumar, M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 2017, 8, 537. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Allelopathy of knotweeds as invasive plants. Plants 2022, 11, 3. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. The mechanisms of Sphagneticola trilobata invasion as one of the most aggressive invasive plant species. Diversity 2025, 17, 698. [Google Scholar] [CrossRef]
- Carvajal, M.; Vergara, A.; Osorio, M.; Sánchez, E.; Ramírez, I.; Velásquez, A.; Seeger, M. Anti-phytopathogenic activities and chemical composition of Ulex europaeus L. extracts. Agric. Nat. Resour. 2021, 55, 1039–1048. [Google Scholar] [CrossRef]
- Van der Wolf, J.M.; De Haan, E.G.; Kastelein, P.; Krijger, M.; De Haas, B.H.; Velvis, H.; Mendes, O.; Kooman-Gersmann, M.; Van Der Zouwen, P.S. Virulence of Pectobacterium carotovorum subsp. brasiliense on potato compared with that of other Pectobacterium and Dickeya species under climatic conditions prevailing in the Netherlands. Plant Pathol. 2017, 66, 571–583. [Google Scholar] [CrossRef]
- Xiao, K.; Liu, T.; Yin, P.; Ren, X.; Liang, J.; Zhan, W.; Zhang, J.; Wang, B.; Wong, P.K. Effective photocatalytic inactivation of the plant-pathogen Rhizobium radiobacter by carbon-based material: Mechanism and agriculture application. Chem. Eng. J. 2021, 407, 127047. [Google Scholar] [CrossRef]
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A. Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef]
- Hardham, A.R.; Blackman, L.M. Phytophthora cinnamomi. Mol. Plant Pathol. 2018, 19, 260–285. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, X.; Xie, L.; Deng, M.; Chen, H.; Song, J.; Long, J.; Li, X.; Luo, J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol. Res. 2021, 164, 105373. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.; Nag, A.; Khatua, S.; Sen, S.; Chakraborty, N.; Naskar, A.; Acharya, K.; Calina, D.; Sharif-Rad, J. Anticancer activity and other biomedical properties of β-sitosterol: Bridging phytochemistry and current pharmacological evidence for future translational approaches. Phytother. Res. 2024, 38, 592–619. [Google Scholar] [CrossRef]
- Rajeswaran, S.; Rajan, D.K. Neophytadiene: Biological activities and drug development prospects. Phytomedicine 2025, 143, 156872. [Google Scholar] [CrossRef]
- Viet, T.D.; Anh, L.H.; Xuan, T.D.; Dong, N.D. The pharmaceutical potential of α-and β-amyrins. Nutraceuticals 2025, 5, 21. [Google Scholar] [CrossRef]
- Máximo, P.; Lourenço, A.; Tei, A.; Wink, M. Chemotaxonomy of Portuguese Ulex: Quinolizidine alkaloids as taxonomical markers. Phytochemistry 2006, 67, 1943–1949. [Google Scholar] [CrossRef]
- Hornoy, B.; Atlan, A.; Tarayre, M.; Dugravot, S.; Wink, M. Alkaloid concentration of the invasive plant species Ulex europaeus in relation to geographic origin and herbivory. Naturwissenschaften 2012, 99, 883–892. [Google Scholar] [CrossRef] [PubMed]
- López-Rodríguez, A.; Hernández, M.; Carrillo-Galvez, A.; Becerra, J.; Hernández, V. Phytotoxic activity of Ulex europaeus, an invasive plant on Chilean ecosystems: Separation and identification of potential allelochemicals. Nat. Prod. Res. 2023, 37, 769–775. [Google Scholar] [CrossRef]
- Wink, M. The role of quinolizidine alkaloids in plant insect interactions. In Insect-Plant Interactions; Bernays, E.A., Ed.; CRC Press: Boca Raton, FL, USA, 1992; Volume IV, pp. 133–169. [Google Scholar]
- Wanchun, L.; Yunshou, L.; Liyi, M.; Shin-Foon, C. Toxicity of cytisine against the mustard aphid Lipaphis erysimi Kaltenbach (Homoptera: Aphididae) and its effect on esterases. Pest. Biochem. Physiol. 1999, 65, 1–5. [Google Scholar] [CrossRef]
- Li, T.; Yuan, L.; Huang, Y.; Zhang, A.; Jiang, D.; Yan, S. Assessment of cytisine as an insecticide candidate for Hyphantria cunea management: Toxicological, biochemical, and control potential insights. Pest. Biochem. Physiol. 2023, 196, 105638. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Zhang, Q.; Cao, Y.; Dong, L.; Suo, F.; Dong, J.; Zhang, L.; Ma, S. CaMKK as a potential target for the natural product insecticide cytisine against Megoura japonica Matsumura. J. Agric. Food Chem. 2025, 73, 12261–12271. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.T.; Cook, D.; Panter, K.E.; Gardner, D.R.; Ralphs, M.H.; Motteram, E.S.; Pfister, J.A.; Gay, C.C. Lupine induced “crooked calf disease” in Washington and Oregon: Identification of the alkaloid profiles in Lupinus sulfureus, Lupinus leucophyllus, and Lupinus sericeus. J. Agric. Food Chem. 2007, 55, 10649–10655. [Google Scholar] [CrossRef]
- Lee, S.T.; Panter, K.E.; Pfister, J.A.; Gardner, D.R.; Welch, K.D. The effect of body condition on serum concentrations of two teratogenic alkaloids (anagyrine and ammodendrine) from lupines (Lupinus species) that cause crooked calf disease. J. Anim. Sci. 2008, 86, 2771–2778. [Google Scholar] [CrossRef]
- Akinboye, A.J.; Kim, K.; Choi, S.; Yang, I.; Lee, J.G. Alkaloids in food: A review of toxicity, analytical methods, occurrence and risk assessments. Food Sci. Biotechnol. 2023, 32, 1133–1158. [Google Scholar] [CrossRef]
- Wink, M. Quinolizidine alkaloids. In Methods in Plant Biochemistry; Waterman, P., Ed.; Academic Press: London, UK, 1993; Volume 8, pp. 197–239. [Google Scholar]
- Wink, M. Quinolizidine and pyrrolizidine alkaloid chemical ecology–a mini-review on their similarities and differences. J. Chem. Ecol. 2019, 45, 109–115. [Google Scholar] [CrossRef]
- Cely-Veloza, W.; Kato, M.J.; Coy-Barrera, E. Quinolizidine-type alkaloids: Chemodiversity, occurrence, and bioactivity. ACS Omega 2023, 8, 27862–27893. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.L.; Boissard, C.; Juan, A.J.; Hewitt, C.N.; Gallagher, M. Biogenic emissions of volatile organic compounds from gorse (Ulex europaeus): Diurnal emission fluxes at Kelling Heath, England. J. Geophys. Res. Atmos. 1997, 102, 18903–18915. [Google Scholar] [CrossRef]
- Boissard, C.; Cao, X.L.; Juan, C.Y.; Hewitt, C.N.; Gallagher, M. Seasonal variations in VOC emission rates from gorse (Ulex europaeus). Atmos. Environ. 2001, 35, 917–927. [Google Scholar] [CrossRef]
- Paré, P.W.; Tumlinson, J.H. Plant volatiles as a defense against insect herbivores. Plant Physiol. 1999, 121, 325–332. [Google Scholar] [CrossRef]
- Fürstenberg-Hägg, J.; Zagrobelny, M.; Bak, S. Plant defense against insect herbivores. Int. J. Mol. Sci. 2013, 14, 10242–10297. [Google Scholar] [CrossRef]
- Riedlmeier, M.; Ghirardo, A.; Wenig, M.; Knappe, C.; Koch, K.; Georgii, E.; Dey, S.; Parker, J.E.; Schnitzler, J.P.; Vlot, A.C. Monoterpenes support systemic acquired resistance within and between plants. Plant Cell 2017, 29, 1440–1459. [Google Scholar] [CrossRef]
- Spínola, V.; Llorent-Martínez, E.J.; Gouveia-Figueira, S.; Castilho, P.C. Ulex europaeus: From noxious weed to source of valuable isoflavones and flavanones. Ind. Crops Prod. 2016, 90, 9–27. [Google Scholar] [CrossRef]
- Treutter, D. Significance of flavonoids in plant resistance: A review. Environ. Chemi. Lett. 2006, 4, 147–157. [Google Scholar] [CrossRef]
- Steinkellner, S.; Lendzemo, V.; Langer, I.; Schweiger, P.; Khaosaad, T.; Toussaint, J.P.; Vierheilig, H. Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 2007, 12, 1290–1306. [Google Scholar] [CrossRef] [PubMed]
- Ramaroson, M.L.; Koutouan, C.; Helesbeux, J.J.; Le Clerc, V.; Hamama, L.; Geoffriau, E.; Briard, M. Role of phenylpropanoids and flavonoids in plant resistance to pests and diseases. Molecules 2022, 27, 8371. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Defensive molecules momilactones A and B: Function, biosynthesis, induction and occurrence. Toxins 2023, 15, 241. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Mechanisms and impact of Acacia mearnsii invasion. Diversity 2025, 17, 553. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. The invasive mechanism and impact of Arundo donax, one of the world’s 100 worst invasive alien species. Plants 2025, 14, 2175. [Google Scholar] [CrossRef]
- Rice, E.L. Allelopathy, 2nd ed.; Academic Press: Orlando, FL, USA, 1984; pp. 1–422. [Google Scholar]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef]
- Belz, R.G. Allelopathy in crop/weed interactions-An update. Pest. Manag. Sci. 2007, 63, 308–326. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Allelopathy and allelochemicals of Imperata cylindrica as an invasive plant species. Plants 2022, 11, 2551. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. The impact and invasive mechanisms of Pueraria montana var. lobata, one of the world’s worst alien species. Plants 2023, 12, 3066. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H. Invasive mechanisms of one of the world’s worst alien plant species Mimosa pigra and its management. Plants 2023, 12, 1960. [Google Scholar] [CrossRef] [PubMed]
- Clements, D.R.; Kato-Noguchi, H. Defensive mechanisms of Mikania micrantha likely enhance its invasiveness as one of the world’s worst alien species. Plants 2025, 14, 269. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Suzuki, M.; Noguchi, K.; Suenaga, K.; Laosinwattana, C. A potent phytotoxic substance in Aglaia odorata Lour. Chem. Biodivers. 2016, 13, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H. Phytotoxic substances involved in teak allelopathy and agroforestry. Appl. Sci. 2021, 11, 3314. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Isolation and identification of allelochemicals and their activities and functions. J. Pesti. Sci. 2024, 49, 1–14. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Defensive compounds Involved in the invasiveness of Tithonia diversifolia. Molecules 2025, 30, 1946. [Google Scholar] [CrossRef]
- Guedes, L.M.; de Oliveira, D.C.; Sanhueza, C.; Moreira, A.S.; Aguilera, N. Invasive Teline monspessulana and Ulex europaeus allelochemicals induce differential responses regarding the growth and physiological performance of two native Chilean tree species. Acta Physiol. Plant. 2024, 46, 32. [Google Scholar] [CrossRef]
- Rodríguez-Cerda, L.; Guedes, L.M.; Torres, S.; Gavilán, E.; Aguilera, N. Phenolic antioxidant protection in the initial growth of Cryptocarya alba: Two different responses against two invasive Fabaceae. Plants 2023, 12, 3584. [Google Scholar] [CrossRef] [PubMed]
- Hozawa, M.; Nawata, E. The interaction between leaf allelopathy and symbiosis with Rhizobium of Ulex europaeus on Hawaii Island. Plants 2020, 9, 226. [Google Scholar] [CrossRef] [PubMed]
- Hozawa, M.; Nawata, E. Allelopathic effects of leaf litter leachates of Ulex europaeus on other species and its own seed germination. Allelopath. J. 2020, 49, 217–228. [Google Scholar] [CrossRef]
- Fujii, Y.; Shibuya, T.; Nakatani, K.; Itani, T.; Hiradate, S.; Parvez, M. Assessment method for allelopathic effect from leaf litter leachates. Weed Biol. Manag. 2004, 4, 19–23. [Google Scholar] [CrossRef]
- Pardo-Muras, M.; Puig, C.G.; Souza-Alonso, P.; Pedrol, N. The phytotoxic potential of the flowering foliage of gorse (Ulex europaeus) and scotch broom (Cytisus scoparius), as pre-emergent weed control in maize in a glasshouse pot experiment. Plants 2020, 9, 203. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Muras, M.; Puig, C.G.; Souto, X.C.; Pedrol, N. Water-soluble phenolic acids and flavonoids involved in the bioherbicidal potential of Ulex europaeus and Cytisus scoparius. S. Afr. J. Bot. 2020, 133, 201–211. [Google Scholar] [CrossRef]
- Pardo-Muras, M.; Puig, C.G.; López-Nogueira, A.; Cavaleiro, C.; Pedrol, N. On the bioherbicide potential of Ulex europaeus and Cytisus scoparius: Profiles of volatile organic compounds and their phytotoxic effects. PLoS ONE 2018, 13, e0205997. [Google Scholar] [CrossRef]
- Pardo-Muras, M.G.; Puig, C.; Pedrol, N. Cytisus scoparius and Ulex europaeus produce volatile organic compounds with powerful synergistic herbicidal effects. Molecules 2019, 24, 4539. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Wang, Q.; Ruan, X.; Pan, C.D.; Jiang, D.A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef]
- Widhalm, J.R.; Dudareva, N. A familiar ring to it: Biosynthesis of plant benzoic acids. Mol. Plant 2015, 8, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kato, M. Compounds involved in the invasive characteristics of Lantana camara. Molecules 2025, 30, 411. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kurniadie, D. The invasive mechanisms of the noxious alien plant species Bidens pilosa. Plants 2024, 13, 356. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Evolution of the defense compounds against biotic stressors in the invasive plant species Leucaena leucocephala. Molecules 2025, 30, 2453. [Google Scholar] [CrossRef]
- Dalton, B.R. The occurrence and behavior of plant phenolic acids in soil environments and their potential involvement in allelochemical interference interactions: Methodological limitations in establishing conclusive proof of allelopathy. In Principals and Practices in Plant Ecology: Allelochemical Interactions; Inderjit, Dakshini, K.M.M., Foy, C.L., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 57–74. [Google Scholar]
- Inderjit. Plant phenolics in allelopathy. Bot. Rev. 1996, 62, 186–202. [Google Scholar] [CrossRef]
- Einhellig, F.A. Mode of action of allelochemical action of phenolic compounds. In Chemistry and Mode of Action of Allelochemicals; Macías, F.A., Galindo, J.C.G., Molino, J.M.G., Cutler, H.G., Eds.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2004; pp. 217–238. [Google Scholar]
- Kato-Noguchi, H.; Kurniadie, D. Allelopathy and allelopathic substances of mango (Mangifera indica L.). Weed Biol. Manag. 2020, 20, 131–138. [Google Scholar] [CrossRef]
- Weston, L.A.; Mathesius, U. Flavonoids: Their structure, biosynthesis and role in the rhizosphere, including allelopathy. J. Chem. Ecol. 2013, 39, 283–297. [Google Scholar] [CrossRef]
- Nishida, N.; Tamotsu, S.; Nagata, N.; Saito, C.; Sakai, A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J. Chem. Ecol. 2005, 31, 1187–1203. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.P.; Batish, D.R.; Kaur, S.; Arora, K.; Kohli, R.K. α-Pinene inhibits growth and induces oxidative stress in roots. Ann. Bot. 2006, 98, 1261–1269. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Evolution of the secondary metabolites in invasive plant species Chromolaena odorata for the defense and allelopathic functions. Plants 2023, 12, 521. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Invasive characteristics of Robinia pseudoacacia and its impacts on the species diversity. Diversity 2024, 16, 773. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Bioactive compounds involved in the formation of the sparse understory vegetation in pine forests. Curr. Org. Chem. 2021, 25, 1731–1738. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Pesticidal activity of citrus fruits for the development of sustainable fruit-processing waste management and agricultural production. Plants 2025, 14, 754. [Google Scholar] [CrossRef] [PubMed]
- Scriber, J.M. Evolution of insect-plant relationships: Chemical constraints, coadaptation, and concordance of insect/plant traits. Entomol. Exp. Appl. 2002, 104, 217–235. [Google Scholar] [CrossRef]
- Bronstein, J.L.; Alarcón, R.; Geber, M. The evolution of plant–insect mutualisms. New Phytol. 2005, 172, 412–428. [Google Scholar] [CrossRef] [PubMed]
- Clayton, D.H.; Bush, S.E.; Johnson, K.P. Coevolution of Life on Hosts: Integrating Ecology and History; University of Chicago Press: Chicago, IL, USA, 2015; pp. 1–320. [Google Scholar]


| Characteristic | Reference |
|---|---|
| Growth ability | |
| [7,20,48,49,50,51] |
| [24,52] |
| Reproduction | |
| [1,2,3] |
| [58,59,60,61,62,63,64,65,66,67] |
| [65,68] |
| [2,4] |
| [61,73,74] |
| [73,74,75,76,77,78,79] |
| [39,40,41,42,43,70,73,91,92,93,94] |
| High adaptability to different conditions | |
| [95,96,97,98] |
| [1,6,7,35,111,112,113,114,115,116,117,118] |
| [1,7,46,119,120] |
| [124,125,126] |
| [1,2,3,50] |
| High defense ability against pathogens, herbivory, and competitive plant species | |
| [136,145,146,147,157,159,163] |
| [158,159,163,182,183,184,186,187,188,189] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato-Noguchi, H.; Kato, M. The Impact of Life History Traits and Defensive Abilities on the Invasiveness of Ulex europaeus L. Diversity 2025, 17, 805. https://doi.org/10.3390/d17110805
Kato-Noguchi H, Kato M. The Impact of Life History Traits and Defensive Abilities on the Invasiveness of Ulex europaeus L. Diversity. 2025; 17(11):805. https://doi.org/10.3390/d17110805
Chicago/Turabian StyleKato-Noguchi, Hisashi, and Midori Kato. 2025. "The Impact of Life History Traits and Defensive Abilities on the Invasiveness of Ulex europaeus L." Diversity 17, no. 11: 805. https://doi.org/10.3390/d17110805
APA StyleKato-Noguchi, H., & Kato, M. (2025). The Impact of Life History Traits and Defensive Abilities on the Invasiveness of Ulex europaeus L. Diversity, 17(11), 805. https://doi.org/10.3390/d17110805

