The Correlation Between High-Fluoride Hot Springs and Microbial Community Structure and Diversity
Abstract
1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Sample Collection and Testing
2.3. Data Processing
3. Results and Discussion
3.1. Hydrochemical Features
3.2. Microbial Community Structure
3.2.1. Alpha Diversity Analysis
3.2.2. Microbial Community Composition Analysis
3.2.3. Beta Diversity Analysis
3.3. Correlation Analysis Between Microbial Communities and Environmental Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Islam, M.S.; Mostafa, M.G. Meta-analysis and risk assessment of fluoride contamination in groundwater. Water Environ. Res. 2021, 93, 1194–1216. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Zhou, J.; Zheng, J.; Guo, Y.; Hu, L.; Shan, R. Hydrochemical characteristics, control factors and health risk assessment of groundwater in typical arid region Hotan Area, Chinese Xinjiang. Environ. Pollut. 2024, 363, 125301. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, M.; Mi, W.; Ji, L.; He, Q.; Xie, S.; Xiao, C.; Bi, Y. Spatial distribution of groundwater fluoride and arsenic and its related disease in typical drinking endemic regions. Sci. Total Environ. 2024, 906, 167716. [Google Scholar] [CrossRef] [PubMed]
- Rajmohan, N. Assessment of human health risk and fluoride contamination in the arid coastal aquifer, Saudi Arabia. Environ. Earth Sci. 2022, 81, 241. [Google Scholar] [CrossRef]
- Rashid, A.; Ayub, M.; Gao, X.; Khattak, S.A.; Ali, L.; Li, C.; Ahmad, A.; Khan, S.; Rinklebe, J.; Ahmad, P. Hydrogeochemical characteristics, stable isotopes, positive matrix factorization, source apportionment, and health risk of high fluoride groundwater in semiarid region. J. Hazard. Mater. 2024, 469, 134023. [Google Scholar] [CrossRef]
- Li, J.; Dai, J.; Yang, L.; Wang, H. Enrichment mechanism and probabilistic health risk assessment of high-fluoride groundwater in Gaomi City, China. Environ. Geochem. Health 2025, 47, 26. [Google Scholar] [CrossRef]
- Liu, J.; Ren, Z.; Yu, Q.; Qi, K.; Wu, H.; Wang, Z.; Zhang, G.; Zhang, Y.; Jia, M.; Jia, P. Hydrochemical processes and fluoride enrichment patterns in high-fluoride geothermal water in the Weihe Basin, China. J. Hazard. Mater. 2024, 480, 136468. [Google Scholar] [CrossRef]
- Gao, X.; Naseem, A.; Luo, W.; Rashid, A.; Ma, S.; Li, C.; Zhang, X. Impact of microbial activity on fluoride release from sediments in areas with high fluoride groundwater: Mechanisms, sources and the lithology diversity. Sci. Total Environ. 2024, 955, 176940. [Google Scholar] [CrossRef]
- Xu, Y.; He, Y.; Tang, X.; Brookes, P.C.; Xu, J. Reconstruction of microbial community structures as evidences for soil redox coupled reductive dechlorination of PCP in a mangrove soil. Sci. Total Environ. 2017, 596, 147–157. [Google Scholar] [CrossRef]
- Wang, Y.; Weng, M.Y.; Zhong, J.W.; He, L.; Guo, D.J.; Luo, D.; Xue, J.Y. Microbial metagenomics revealed the diversity and distribution characteristics of groundwater microorganisms in the Middle and Lower Reaches of the Yangtze River Basin. Microorganisms 2024, 12, 1551. [Google Scholar] [CrossRef]
- Griebler, C.; Lueders, T. Microbial biodiversity in groundwater ecosystems. Freshw. Biol. 2009, 54, 649–677. [Google Scholar] [CrossRef]
- Li, J.; Yu, S.; Liu, Q.; Wang, D.; Yang, L.; Wang, J.; Zuo, R. Screening of hazardous groundwater pollutants responsible for microbial ecological consequences by integrated nontargeted analysis and high-throughput sequencing technologies. J. Hazard. Mater. 2023, 445, 130516. [Google Scholar] [CrossRef]
- John, D.E.; Rose, J.B. Review of factors affecting microbial survival in groundwater. Environ. Sci. Technol. 2005, 39, 7345–7356. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Ning, Z.; Huang, G.; Liu, D.; Zhang, Q.; Sun, J. The response characteristics of microbial diversity to shallow groundwater contamination in the piedmont of the Taihang Mountains using molecular biotechnologies: A case study of groundwater of Hutuo River Basin. Geol. China 2019, 46, 290–301. [Google Scholar] [CrossRef]
- Li, N.Y.; Han, Z.Y.; Wang, S.C.; Li, L.B.; Huang, J.; Zhao, J.N. Impacts of different pollution sources on the microbial community in groundwater at municipal solid waste landfill sites. China Environ. Sci. 2020, 40, 4900–4910. [Google Scholar]
- Zhang, H.S.; Wang, M.Y.; Cai, W.T.; Bian, C.; Liu, J.W. Characteristics of microbial community composition and environmental response in deep fluorinated groundwater. Earth Sci. 2021, 48, 3466–3479. [Google Scholar]
- Zhang, X.; Gao, X.; Li, C.; Luo, X.; Wang, Y. Fluoride contributes to the shaping of microbial community in high fluoride groundwater in Qiji County, Yuncheng City, China. Sci. Rep. 2019, 9, 14488. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Qiao, L.; Su, Y.; Tao, H.; Jiang, Y.; Aihemaiti. Effects of high fluoride groundwater on microbial diversity in Kuitun River Basin. Environ. Sci. Technol. 2023, 46, 144–152. [Google Scholar]
- Chouhan, S.; Tuteja, U.; Flora, S.J.S. Isolation, identification and characterization of fluoride resistant bacteria: Possible role in bioremediation. Appl. Biochem. Microbiol. 2012, 48, 43–50. [Google Scholar] [CrossRef]
- Li, Q.; Ding, D.; Wang, Q.; Shi, W.; Hu, E.; Li, H.; Ma, L.; Xiao, Y.; Liu, X.; Cao, Y. Comparative study of fluoride-tolerance of five typical bioleaching microorganisms. J. Univ. South China (Sci. Technol.) 2013, 27, 16–22. [Google Scholar] [CrossRef]
- Gao, X.; Luo, W.; Luo, X.; Li, C.; Zhang, X.; Wang, Y. Indigenous microbes induced fluoride release from aquifer sediments. Environ. Pollut. 2019, 252, 580–590. [Google Scholar] [CrossRef]
- Zhang, Y.; Gan, Y.; Zhou, X.; Jiang, C.; Gao, X.; Li, C. Mobilization of fluoride in sediments at high fluoride area enhanced by microorganisms. Bull. Geol. Sci. Technol. 2022, 41, 228–235. [Google Scholar] [CrossRef]
- Ma, R.; Chen, C.; Li, H.; Zhu, X.; Song, K.; Yuan, M.; Xiao, W.; Yang, X.; Wang, K. Species diversity and enzymatic activity of microorganisms in Chinese hot springs: A review. Microbiology 2020, 47, 2959–2973. [Google Scholar] [CrossRef]
- Cao, X.W. The calculation of the composition and content of plagioclase in igneous rocks. Geol. Explor. 1977, 08, 66–72. [Google Scholar]
- Zhang, J.; Kobert, K.; Flouri, T.; Stamatakiset, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 2014, 30, 614–620. [Google Scholar] [CrossRef]
- Adler, C.J.; Dobney, K.; Weyrich, L.S.; Kaidonis, J.; Walker, A.W.; Haak, W.; Bradshaw, C.J.A.; Townsend, G.; Sołtysiak, A.; Alt, K.W.; et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat. Genet. 2013, 45, 450–455. [Google Scholar] [CrossRef]
- Ahn, J.; Sinha, R.; Pei, Z.; Dominianni, C.; Wu, J.; Shi, J.; Goedert, J.J.; Hayes, R.B.; Yang, L. Human gut microbiome and risk for colorectal cancer. J. Natl. Cancer Inst. 2013, 105, 1907–1911. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Bittinger, K.; Bushman, F.D.; DeSantis, T.Z.; Andersen, G.L.; Knight, R. PyNAST: A flexible tool for aligning sequences to a template alignment. Bioinformatics 2010, 26, 266–267. [Google Scholar] [CrossRef] [PubMed]
- Vasileiadis, S.; Puglisi, E.; Arena, M.; Cappa, F.; Cocconcelli, P.S.; Trevisan, M. Soil bacterial diversity screening using single 16S rRNA gene V regions coupled with multi-million read generating sequencing technologies. PLoS ONE 2012, 7, e42671. [Google Scholar] [CrossRef]
- GB/T 14848-2017; Standard for Groundwater Quality. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; Standardization Administration of the People’s Republic of China: Beijing, China, 2017.
- GB/T 33533-2017; Hot Spring Service—Basic Terminology. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China: Beijing, China, 2017.
- GB/T 41837-2022; Hot Spring Service—Hot Spring Water Quality Requirement. State Administration for Market Regulation, Standardization Administration of China: Beijing, China, 2022.
- Zhou, J.; Chen, J.; Wang, S.; Zhao, X.; Chen, D.; Dai, X. Hydrogeochemical Characterization and Enrichment Mechanisms of Fluoride-Enriched Groundwater in Shallow Aquifer Systems: A Case Study from Feng County, Jiangsu Province, China. Earth Environ. 2024, 52, 122–132. [Google Scholar]
- Jin, Z.; Sun, C.; Kong, L.H.; Sun, S.; Xie, X.; Qian, F.; Song, Y. Chemical characteristics and high-fluoride origins of shallow groundwater around typical high fluorine reservoir in Songnen Plain. Acta Sci. Circumstantiae 2023, 43, 250–258. [Google Scholar]
- Zhang, S.C.; Liu, K.; Wang, L.Y.; Zhu, W.; Deng, Y.F.; Yu, C.H. Identifying the hydrochemical characteristics and genetic mechanism of medium-low temperature fluoride-enriched geothermal groundwater in the Hongjiang—Qianshan Fault of Jiangxi Province. Rock Mineral. Anal. 2024, 43, 568–581. [Google Scholar]
- Gao, X.; Wang, Y.; Li, Y.; Guo, Q. Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China. Environ. Geol. 2007, 53, 795–803. [Google Scholar] [CrossRef]
- Ning, Z.; Cai, P.P.; Zhang, M.; Guo, C.; Shi, C.; He, Z. Abnormally low dissolved inorganic carbon in petroleum contaminated groundwater caused by microbiological geochemistry. Acta Sci. Circumstantiae 2019, 39, 1140–1147. [Google Scholar]
- Liang, N.Y.; Liu, S.B.; Ding, J.B. Hot Springs Annals. In Yunnan Provincial Chronicles; Yunnan People’s Publishing House: Kunming, China, 1999; Volume 25, p. 190. [Google Scholar]
- Yuan, C.G. Study on Microbial Diversity of Two Thermal Hot Spring Areas in South of Tibetan and Screening Object Strains of Producing Cellulase and Chitinase. Master’s Thesis, Yunnan University, Kunming, China, 2017. [Google Scholar]
- Menzel, P.; Gudbergsdóttir, S.R.; Rike, A.G.; Lin, L.; Zhang, Q.; Contursi, P.; Moracci, M.; Kristjansson, J.K.; Bolduc, B.; Gavrilov, S.; et al. Comparative metagenomics of eight geographically remote terrestrial hot springs. Microb. Ecol. 2015, 70, 411–424. [Google Scholar] [CrossRef]
- Jiang, L.; Xu, H.; Qiao, H. Biomediated precipitation of calcium carbonate in a slightly acidic hot spring, Yunnan Province. Acta Geol. Sin. 2017, 91, 145–155. [Google Scholar] [CrossRef]
- Xian, W.D.; Salam, N.; Li, M.M.; Zhou, E.M.; Yin, Y.R.; Liu, Z.T.; Ming, Y.Z.; Zhang, X.T.; Wu, G.; Liu, L.; et al. Network-Directed Efficient Isolation of Previously Uncultivated Chloroflexi and Related Bacteria in Hot Spring Microbial Mats. npj Biofilms Microbiomes 2020, 6, 20. [Google Scholar] [CrossRef]
- Li, Q.; Lin, F.; Yang, C.; Wang, J.; Lin, Y.; Shen, M.; Park, M.S.; Li, T.; Zhao, J. A large-scale comparative metagenomic study reveals the functional interactions in six bloom-forming Microcystis-epibiont communities. Front. Microbiol. 2018, 9, 746. [Google Scholar] [CrossRef]
- Wang, C.; Sun, D.; Junaid, M.; Xie, S.; Xu, G.; Li, X.; Tang, H.; Zou, J.; Zhou, A. Effects of Tidal Action on the Stability of Microbiota, Antibiotic Resistance Genes, and Microplastics in the Pearl River Estuary, Guangzhou, China. Chemosphere 2023, 327, 138485. [Google Scholar] [CrossRef]
- Donchev, D.; Ivanov, I.N.; Stoikov, I.; Ivanova, M. Metagenomic Investigation of the Short-Term Temporal and Spatial Dynamics of the Bacterial Microbiome and the Resistome Downstream of a Wastewater Treatment Plant in the Iskar River in Bulgaria. Microorganisms 2024, 12, 1250. [Google Scholar] [CrossRef] [PubMed]
- Kasalický, V.; Jezbera, J.; Hahn, M.W.; Šimek, K. The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS ONE 2013, 8, e58209. [Google Scholar] [CrossRef]
- Zaoli, S.; Grilli, J. The stochastic logistic model with correlated carrying capacities reproduces beta-diversity metrics of microbial communities. PLOS Comput. Biol. 2022, 18, e1010043. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, K.; Li, B.J.; Li, M.C.; Chen, Q.; Zheng, X.H.; Wang, F.A.; Zhou, Y.X. Bacterial diversity analysis of five hot springs in Henan Lushan. Microbiol. China 2018, 45, 1219–1227. [Google Scholar]
- Zhang, K.; Liu, L.; Zheng, X.H.; Wang, Y.; Zhang, J.F.; Li, B.J. Archaeal diversity analysis for five hot springs in Henan Lushan. J. Xinyang Norm. Univ. (Nat. Sci. Ed.) 2019, 32, 221–227. [Google Scholar] [CrossRef]
- Meng, L.; Zuo, R.; Wang, J.; Yang, J.; Li, Q.; Chen, M. The Spatial Variations of Correlation between Microbial Diversity and Groundwater Quality Derived from a Riverbank Filtration Site, Northeast China. Sci. Total Environ. 2019, 706, 135855. [Google Scholar] [CrossRef] [PubMed]









| Type | Parameters | Temp (°C) | pH | TDS | Na+ | K+ | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− | F− |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| HF (Hot Spring) | Mean | 52.2 | 8.49 | 357.0 | 145.93 | 5.54 | 7.93 | 0.73 | 29.85 | 87.29 | 150.11 | 15.04 |
| Max | 60.0 | 8.73 | 438.0 | 170.72 | 9.20 | 16.14 | 3.31 | 42.49 | 123.96 | 189.16 | 18.37 | |
| Min | 47.0 | 8.07 | 321.0 | 131.83 | 3.70 | ND | ND | 23.59 | 70.18 | 129.67 | 9.40 | |
| LF (surface water/groundwater) | Mean | 21.8 | 7.94 | 160.1 | 6.08 | 1.11 | 39.91 | 12.58 | 8.38 | 16.77 | 156.87 | 0.38 |
| Max | 27.5 | 8.87 | 241.0 | 20.40 | 4.20 | 66.00 | 30.86 | 26.40 | 51.95 | 312.73 | 0.82 | |
| Min | 16.8 | 7.15 | 67.8 | 2.10 | ND | 16.72 | 2.09 | 3.95 | 4.01 | 38.14 | ND |
| Type | Numbering | F− (mg/L) | Chao1 | Observed_Species | Shannon |
|---|---|---|---|---|---|
| HF (Hot Spring) | LS01 | 9.40 | 491.24 | 421.6 | 4.85 |
| LS04 | 18.37 | 382.07 | 332.8 | 3.75 | |
| LS05 | 16.65 | 281.38 | 240.4 | 3.55 | |
| LS07 | 15.43 | 611.94 | 501.3 | 4.54 | |
| LS08 | 15.33 | 422.48 | 372.2 | 4.49 | |
| Mean | 15.04 | 437.82 | 373.7 | 4.23 | |
| LF (surface water/groundwater) | LS02 | 0.56 | 620.24 | 537.7 | 6.67 |
| LS03 | 0.82 | 553.01 | 504.6 | 5.82 | |
| LS06 | 0.66 | 655.96 | 591.2 | 6.18 | |
| LS09 | 0.51 | 736.86 | 645.9 | 5.89 | |
| LS10 | 0.61 | 635.16 | 538.2 | 4.77 | |
| LS11 | 0.52 | 586.26 | 540.8 | 5.67 | |
| LS12 | 0.52 | 929.67 | 841.0 | 6.19 | |
| LS13 | 0.40 | 884.24 | 782.8 | 5.29 | |
| LS14 | ND | 553.43 | 508.2 | 4.34 | |
| LS15 | 0.02 | 736.77 | 696.6 | 6.59 | |
| LS16 | ND | 383.86 | 350.4 | 4.34 | |
| LS17 | ND | 1193.92 | 1169.1 | 7.21 | |
| Mean | 0.38 | 685.17 | 642.2 | 5.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, H.; Wang, Q.; Yang, L.; Liao, J. The Correlation Between High-Fluoride Hot Springs and Microbial Community Structure and Diversity. Diversity 2025, 17, 784. https://doi.org/10.3390/d17110784
Gong H, Wang Q, Yang L, Liao J. The Correlation Between High-Fluoride Hot Springs and Microbial Community Structure and Diversity. Diversity. 2025; 17(11):784. https://doi.org/10.3390/d17110784
Chicago/Turabian StyleGong, Haolin, Qi Wang, Li Yang, and Jiajia Liao. 2025. "The Correlation Between High-Fluoride Hot Springs and Microbial Community Structure and Diversity" Diversity 17, no. 11: 784. https://doi.org/10.3390/d17110784
APA StyleGong, H., Wang, Q., Yang, L., & Liao, J. (2025). The Correlation Between High-Fluoride Hot Springs and Microbial Community Structure and Diversity. Diversity, 17(11), 784. https://doi.org/10.3390/d17110784
