Global Ecological Pattern of Local Leaf Size Diversity
Abstract
1. Introduction
2. Materials and Methods
2.1. General Scheme
2.2. LLSD Quantification
2.3. Global Ecological Analysis
3. Results
3.1. Global Pattern of LLSD
3.2. Global Ecological Pattern of LLSD
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LLSD | local leaf size diversity |
| CV | coefficient of variation |
| CVI | CV index for the leaf sizes in each sampling site |
| MAT | mean annual temperature |
| Tgs | mean temperature during growing season |
| TCM | mean temperature of the coldest month |
| TCMgs | mean temperature of the coldest month during growing season |
| TWM | mean temperature of the warmest month |
| MAP | mean annual sum precipitation |
| PPTgs | mean growing season sum precipitation |
| cvPPT | coefficient of variation in monthly precipitation |
| MIann | annual equilibrium moisture index |
| MIgs | growing season equilibrium moisture index |
| ETq | sum annual equilibrium evapotranspiration |
| ETqgs | sum growing season equilibrium evapotranspiration |
| RADann | annual mean daily irradiance |
| RADgs | growing season mean daily irradiance |
| RHann | mean annual daytime relative humidity |
| RHgs | mean daytime relative humidity during growth season |
References
- Gates, D.M. Energy, plants, and ecology. Ecology 1965, 46, 1–13. [Google Scholar] [CrossRef]
- Peppe, D.J.; Royer, D.L.; Cariglino, B.; Oliver, S.Y.; Newman, S.; Leight, E.; Enikolopov, G.; Fernandez-Burgos, M.; Herrera, F.; Adams, J.M.; et al. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications. New Phytol. 2011, 190, 724–739. [Google Scholar] [CrossRef] [PubMed]
- Kattge, J.; Bönisch, G.; Díaz, S.; Lavorel, S.; Prentice, I.C.; Leadley, P.; Tautenhahn, S.; Werner, G.D.A.; Aakala, T.; Abedi, M.; et al. TRY plant trait database—Enhanced coverage and open access. Glob. Change Biol. 2020, 26, 119–188. [Google Scholar] [CrossRef] [PubMed]
- Schrader, J.; Shi, P.; Royer, D.L.; Peppe, D.J.; Gallagher, R.V.; Li, Y.; Wang, R.; Wright, I.J. Leaf size estimation based on leaf length, width and shape. Ann. Bot. 2021, 128, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Martínez, A.; Camps-Valls, G.; Kattge, J.; Robinson, N.; Reichstein, M.; van Bodegom, P.; Kramer, K.; Cornelissen, J.H.C.; Reich, P.; Bahn, M.; et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sens. Environ. 2018, 218, 69–88. [Google Scholar] [CrossRef]
- Pandey, S.K.; Singh, H. A simple, cost-effective method for leaf area estimation. J. Bot. 2011, 2011, 658240. [Google Scholar] [CrossRef]
- Easlon, H.M.; Bloom, A.J. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Appl. Plant Sci. 2014, 2, 1400033. [Google Scholar] [CrossRef]
- Shaddox, T.W.; Unruh, J.B. Correlating methods of measuring zoysiagrass thatch. Crop Sci. 2019, 59, 792–799. [Google Scholar] [CrossRef]
- Kałuża, T.; Tymków, P.; Strzeliński, P. Use of remote sensing for investigating riparian shrub structures. Pol. J. Environ. Stud. 2012, 21, 115–122. [Google Scholar]
- Babaev, R.N. Application of the Adobe Photoshop software package in leaf blade area measurement of woody plants. Lesn. Zhurnal For. J. 2021, 5, 185–191. [Google Scholar] [CrossRef]
- Igathinathane, C.; Chennakesavulu, B.; Manohar, K.; Womac, A.; Pordesimo, L. Photovoltaic leaf area meter development and testing. Int. J. Food Prop. 2008, 11, 53–67. [Google Scholar] [CrossRef]
- Sack, L.; Caringella, M.; Scoffoni, C.; Mason, C.; Rawls, M.; Markesteijn, L.; Poorter, L. Leaf vein length per unit area is not intrinsically dependent on image magnification: Avoiding measurement artifacts for accuracy and precision. Plant Physiol. 2014, 166, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Builes, V.H.; Porch, T.G.; Harmsen, E.W. Development of linear models for estimation of leaflet area in common bean (Phaseolus vulgaris L.). J. Agric. Univ. PR 2008, 92, 171–182. [Google Scholar] [CrossRef]
- Hosoi, F.; Omasa, K. Factors contributing to accuracy in the estimation of the woody canopy leaf area density profile using 3D portable lidar imaging. J. Exp. Bot. 2007, 58, 3463–3473. [Google Scholar] [CrossRef] [PubMed]
- Amean, Z.M.; Low, T.; Hancock, N. Automatic leaf segmentation and overlapping leaf separation using stereo vision. Array 2021, 12, 100099. [Google Scholar] [CrossRef]
- Fuentes, S.; Hernández-Montes, E.; Escalona, J.M.; Bota, J.; Viejo, C.G.; Poblete-Echeverría, C.; Tongson, E.; Medrano, H. Automated grapevine cultivar classification based on machine learning using leaf morpho-colorimetry, fractal dimension and near-infrared spectroscopy parameters. Comput. Electron. Agric. 2018, 151, 311–318. [Google Scholar] [CrossRef]
- Gong, L.; Chen, R.; Zhao, Y.S.; Liu, C.L. Model-based in-situ measurement of pakchoi leaf area. Int. J. Agric. Biol. Eng. 2015, 8, 35–42. [Google Scholar]
- Gong, A.; Wu, X.; Qiu, Z.; He, Y. A handheld device for leaf area measurement. Comput. Electron. Agric. 2013, 98, 74–80. [Google Scholar] [CrossRef]
- Hu, T.; Shen, P.; Zhang, Y.; Zhang, J.; Li, X.; Xia, C.; Liu, P.; Lu, H.; Wu, T.; Han, Z. OpenPheno: An open-access, user-friendly, and smartphone-based software platform for instant plant phenotyping. Plant Methods 2025, 21, 76. [Google Scholar] [CrossRef]
- Wright, I.J.; Dong, N.; Maire, V.; Prentice, I.C.; Westoby, M.; Díaz, S.; Gallagher, R.V.; Jacobs, B.F.; Kooyman, R.; Law, E.A.; et al. Global climatic drivers of leaf size. Science 2017, 357, 917–921. [Google Scholar] [CrossRef]
- Bairstow, K.A.; Clarke, K.L.; McGeoch, M.A.; Andrew, N.R. Leaf miner and plant galler species richness on Acacia: Relative importance of plant traits and climate. Oecologia 2010, 163, 437–448. [Google Scholar] [CrossRef]
- Salazar, P.C.; Navarro-Cerrillo, R.M.; Cruz, G.; Villar, R. Intraspecific leaf functional trait variability of eight Prosopis pallida tree populations along a climatic gradient of the dry forests of northern Peru. J. Arid. Environ. 2018, 152, 12–20. [Google Scholar] [CrossRef]
- Schubert, N.; Freitas, C.; Silva, A.; Costa, M.M.; Barrote, I.; Horta, P.A.; Rodrigues, A.C.; Santos, R.; Silva, J. Photoacclimation strategies in northeastern Atlantic seagrasses: Integrating responses across plant organizational levels. Sci. Rep. 2018, 8, 14825. [Google Scholar] [CrossRef]
- Innangi, M.; Friščić, M.; Hazler Pilepić, K.; Danise, T.; Conti, F.; Bartolucci, F.; Fioretto, A.; Peruzzi, L. Explaining intricate morphometric variability with environmental predictors: The case of Globularia cordifolia species complex. Plants 2020, 9, 314. [Google Scholar] [CrossRef]
- Ren, T.; He, N.; Liu, Z.; Li, M.; Zhang, J.; Li, A.; Wei, C.; Lü, X.; Han, X. Environmental filtering rather than phylogeny determines plant leaf size in three floristically distinctive plateaus. Ecol. Indic. 2021, 130, 108049. [Google Scholar] [CrossRef]
- Gallou, A.; Jump, A.S.; Lynn, J.S.; Field, R.; Irl, S.D.H.; Steinbauer, M.J.; Beierkuhnlein, C.; Chen, J.-C.; Chou, C.-H.; Hemp, A.; et al. Diurnal temperature range as a key predictor of plants’ elevation ranges globally. Nat. Commun. 2023, 14, 7890. [Google Scholar] [CrossRef]
- Kacira, M.; Ling, P.P.; Short, T.H. Machine vision extracted plant movement for early detection of plant water stress. Trans. ASAE 2002, 45, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, J.L.; Nicewander, W.A. Thirteen ways to look at the correlation coefficient. Amer. Statis. 2012, 42, 59–66. [Google Scholar] [CrossRef]
- Azen, R.; Budescu, D.V. The dominance analysis approach for comparing predictors in multiple regression. Sych. Methods 2003, 8, 129–148. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Feng, M. DPS Data Processing System: Experimental Design, Statistical Analysis, and Data Mining; Science Press: Beijing, China, 2007. [Google Scholar]
- Nakayama, H. Leaf form diversity and evolution: A never-ending story in plant biology. J. Plant Res. 2024, 137, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Osnas, J.L.D.; Katabuchi, M.; Kitajima, K.; Wright, S.J.; Reich, P.B.; Van Bael, S.A.; Kraft, N.J.B.; Samaniego, M.J.; Pacala, S.W.; Lichstein, J.W. Divergent drivers of leaf trait variation within species, among species, and among functional groups. Proc. Natl. Acad. Sci. USA 2018, 115, 5480–5485. [Google Scholar] [CrossRef] [PubMed]
- Onoda, Y.; Wright, I.J.; Evans, J.R.; Hikosaka, K.; Kitajima, K.; Niinemets, Ü.; Poorter, H.; Tosens, T.; Westoby, M. Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol. 2017, 214, 1447–1463. [Google Scholar] [CrossRef]
- Silva, J.L.A.; Souza, A.F.; Santiago, L.S.; Gripp, A.D.R.; Asato, A.E.B.; Silva, G.H.S.; de Alencar, M.I.G.; Caliman, A. Small biodiversity effects on leaf litter production of a seasonal heath vegetation. J. Veg. Sci. 2020, 31, 877–886. [Google Scholar] [CrossRef]
- Wang, R.; Gamon, J.A.; Cavender-Bares, J. Seasonal patterns of spectral diversity at leaf and canopy scales in the Cedar Creek prairie biodiversity experiment. Remote Sens. Environ. 2022, 280, 113169. [Google Scholar] [CrossRef]
- Cavender-Bares, J.; Meireles, J.E.; Couture, J.J.; A Kaproth, M.; Kingdon, C.C.; Singh, A.; Serbin, S.P.; Center, A.; Zuniga, E.; Pilz, G.; et al. Associations of leaf spectra with genetic and phylogenetic variation in oaks: Prospects for remote detection of biodiversity. Remote Sens. 2016, 8, 221. [Google Scholar] [CrossRef]
- White, D.M.; Cavender-Bares, J.; Davis, C.C.; Guzmán, Q.J.A.; Kothari, S.; Robles, J.M.; Meireles, J.E. Seeing herbaria in a new light: Leaf reflectance spectroscopy unlocks trait and classification modeling in plant biodiversity collections. New Phytol. 2025; early view. [Google Scholar] [CrossRef]
- Lepoint, G.; Balancier, B.; Gobert, S. Seasonal and depth-related biodiversity of leaf epiphytic Cheilostome Bryozoa in a Mediterranean Posidonia oceanica meadow. Cah. Biol. Mar. 2014, 55, 57–67. [Google Scholar]
- Martínez-Garza, C.; Pena, V.; Ricker, M.; Campos, A.; Howe, H.F. Restoring tropical biodiversity: Leaf traits predict growth and survival of late-successional trees in early-successional environments. For. Ecol. Manag. 2005, 217, 365–379. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, J.; Wang, D.; An, Y.; Ma, H.; Tong, S. Synergy and trade-off between plant functional traits enhance grassland multifunctionality under grazing exclusion in a semi-arid region. J. Environ. Manag. 2025, 373, 123877. [Google Scholar] [CrossRef]
- Tian, R.; Zhai, H.; Zhang, W.; Wang, F.; Guan, Y. A survey of spatio-temporal big data indexing methods in distributed environment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4132–4155. [Google Scholar] [CrossRef]
- Suzuki, S.N.; Hirao, T. Recruitment drives successional changes in the community-level leaf mass per area in a winter-deciduous broad-leaf forest. J. Veg. Sci. 2018, 29, 756–764. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, J.; Sun, G.; Yao, W.; Shi, P.; Ruan, H. Application of the Montgomery Equation in morphometric analysis of Tepals: A case study of Liriodendron × sinoamericanum. Plants 2025, 14, 1861. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, E.L.; Matteoli, S.; Landi, M.; Guidi, L.; Massai, R.; Remorini, D. Measurements of anthocyanin content of prunus leaves using proximal sensing spectroscopy and statistical machine learning. IEEE Trans. Instrum. Meas. 2022, 71, 2508110. [Google Scholar] [CrossRef]
- Tan, J.W.; Chang, S.W.; Abdul-Kareem, S.; Yap, H.J.; Yong, K.-T. Deep learning for plant species classification using leaf vein morphometric. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 17, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Kumar, A.; Gour, N.; Saini, A.K.; Upadhyay, A.; Kumar, A. Cognitive framework and learning paradigms of plant leaf classification using artificial neural network and support vector machine. J. Exp. Theor. Artif. Intell. 2024, 36, 585–610. [Google Scholar] [CrossRef]
- Suto, J. Plant leaf recognition with shallow and deep learning: A comprehensive study. Intell. Data Anal. 2020, 24, 1311–1328. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Liu, D.; Chan, T.-O.; Luo, S.; Lin, Y. Global Ecological Pattern of Local Leaf Size Diversity. Diversity 2025, 17, 767. https://doi.org/10.3390/d17110767
Yang B, Liu D, Chan T-O, Luo S, Lin Y. Global Ecological Pattern of Local Leaf Size Diversity. Diversity. 2025; 17(11):767. https://doi.org/10.3390/d17110767
Chicago/Turabian StyleYang, Bin, Daoping Liu, Ting-On Chan, Shezhou Luo, and Yi Lin. 2025. "Global Ecological Pattern of Local Leaf Size Diversity" Diversity 17, no. 11: 767. https://doi.org/10.3390/d17110767
APA StyleYang, B., Liu, D., Chan, T.-O., Luo, S., & Lin, Y. (2025). Global Ecological Pattern of Local Leaf Size Diversity. Diversity, 17(11), 767. https://doi.org/10.3390/d17110767

