Positive Selection in NADH Dehydrogenase 2 (ND2) Gene in Two Billfishes Xiphias gladius, L. 1758 and Istiophorus platypterus
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gross, M.R. Evolution of diadromy in fishes. Am. Fish. Soc. Symp. 1987, 1, 14–25. [Google Scholar]
- Sun, Y.B.; Shen, Y.Y.; Irwin, D.M.; Zhang, Y.P. Evaluating the roles of energetic functional constraints on teleost mitochondrial-encoded protein evolution. Mol. Biol. Evol. 2011, 28, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Broughton, R.E. Heterogeneous natural selection on oxidative phosphorylation genes among fishes with extreme high and low aerobic performance. BMC Evol. Biol. 2015, 15, 173. [Google Scholar] [CrossRef] [PubMed]
- Ballard, J.W.O.; Whitlock, M.C. The incomplete natural history of mitochondria. Mol. Ecol. 2004, 13, 729–744. [Google Scholar] [CrossRef] [PubMed]
- Kummer, E.; Ban, N. Mechanisms and regulation of protein synthesis in mitochondria. Nat. Rev. Mol. Cell Biol. 2021, 22, 307–325. [Google Scholar] [CrossRef] [PubMed]
- Signes, A.; Fernandez-Vizarra, E. Assembly of mammalian oxidative phosphorylation complexes I–V and supercomplexes. Essays Biochem. 2018, 62, 255–270. [Google Scholar] [CrossRef]
- Elbassiouny, A.A.; Lovejoy, N.R.; Chang, B.S. Convergent patterns of evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes in electric fishes. Philos. Trans. R. Soc. B 2020, 375, 20190179. [Google Scholar] [CrossRef]
- Calogero, G.S.; Mancuso, M.; Segvic-Bubic, T.; Ferrito, V.; Pappalardo, A.M. OXPHOS genes analysis in the red mullet (Mullus barbatus Linnaeus, 1758). Front. Mar. Sci. 2025, 12, 1577491. [Google Scholar] [CrossRef]
- Garvin, M.R.; Bielawski, J.P.; Sazanov, L.A.; Gharrett, A.J. Review and meta-analysis of natural selection in mitochondrial complex I in metazoans. J. Zool. Syst. Evol. Res. 2015, 53, 1–17. [Google Scholar] [CrossRef]
- Mukundan, L.; Sukumaran, S.; Raj, N.; Jose, A.; Gopalakrishnan, A. Positive selection in the mitochondrial protein coding genes of teleost regional endotherms: Evidence for adaptive evolution. J. Mar. Biol. Assoc. India 2022, 64, 10–18. [Google Scholar] [CrossRef]
- Wegner, N.C.; Snodgrass, O.E.; Dewar, H.; Hyde, J.R. Whole-body endothermy in a mesopelagic fish, the opah, Lampris guttatus. Science 2015, 348, 786–789. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Yu, H.Y.; Ma, S.B.; Lin, Q.; Wang, D.Z.; Wang, X. Phylogenetic and evolutionary comparison of mitogenomes reveal adaptive radiation of lampriform fishes. Int. J. Mol. Sci. 2023, 24, 8756. [Google Scholar] [CrossRef]
- Palko, B.J.; Beardsley, G.L.; Richards, W.J. Synopsis of the Biology of the Swordfish, Xiphias gladius (L.); U.S. Department of Commerce NOAA Technical Report; National Marine Fisheries Service: Silver Spring, MD, USA, 1981; Volume 441, p. 21. [Google Scholar]
- Collette, B.; Graves, J.; Kells, V.A. Tunas Billfishes World; Johns Hopkins University Press: Baltimore, MD, USA, 2019. [Google Scholar]
- Beardsley, G.L., Jr.; Merrett, N.R.; Richards, W.J. Synopsis of the Biology of the Sailfish, Istiophorus platypterus (Shaw and Nodder, 1791); NOAA Technical Report NMFS SSRF: Washington, DC, USA, 1975; Volume 675, p. 95. [Google Scholar]
- Block, B.A. Endothermy in Tunas, Billfishes, and Sharks. In Encyclopedia of Fish Physiology: From Genome to Environment; Farrell, A.P., Ed.; Academic Press: San Diego, CA, USA, 2011; Volume 3, pp. 1914–1920. [Google Scholar]
- Righi, T.; Splendiani, A.; Fioravanti, T.; Casoni, E.; Gioacchini, G.; Carnevali, O.; Caputo Barucchi, V. Loss of mitochondrial genetic diversity in overexploited mediterranean swordfish (Xiphias gladius, 1759) population. Diversity 2020, 12, 170. [Google Scholar] [CrossRef]
- Neilson, J.; Arocha, F.; Cass-Calay, S.; Mejuto, J.; Ortiz, M.; Scott, G.; Smith, C.; Travassos, G.T.; Andrushchenko, I. The recovery of Atlantic swordfish: The comparative roles of the regional fisheries management organization and species biology. Rev. Fish. Sci. 2013, 21, 59–97. [Google Scholar] [CrossRef]
- Abascal, F.J.; Mejuto, J.; Quintans, M.; García-Cortés, B.; Ramos-Cartelle, A. Tracking of the broadbill swordfish, Xiphias gladius, in the central and eastern North Atlantic. Fish. Res. 2015, 162, 20–28. [Google Scholar] [CrossRef]
- Ward, R.D.; Zemlak, T.S.; Innes, B.H.; Last, P.R.; Hebert, P.D. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 1847–1857. [Google Scholar] [CrossRef]
- Messing, J. New M13 vectors for cloning. Meth. Enzymol. 1983, 101, 20–78. [Google Scholar] [CrossRef]
- Sevilla, R.G.; Diez, A.; Norén, M.; Mouchel, O.; Jérome, M.; Verrez-Bagnis, V.; Van Pelt, H.; Favre-Krey, L.; Krey, G.; The Fishtrace Consortium; et al. Primers and polymerase chain reaction conditions for DNA barcoding teleost fish based on the mitochondrial cytochrome b and nuclear rhodopsin genes. Mol. Ecol. Notes 2007, 7, 730–734. [Google Scholar] [CrossRef]
- Bradman, H.; Grewe, P.; Appleton, B. Direct comparison of mitochondrial markers for the analysis of swordfish population structure. Fish. Res. 2011, 109, 95–99. [Google Scholar] [CrossRef]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef]
- Nei, M.; Gojobori, T. Simple methods for estimating the numbers of synonymous and non-synonymous nucleotide substitutions. Mol. Biol. Evol. 1986, 3, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Stecher, G.; Tamura, K.; Kumar, S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol. Biol. Evol. 2020, 37, 1237–1239. [Google Scholar] [CrossRef]
- Kosakovsky Pond, S.L.; Frost, S.D.W. Datamonkey: Rapid Detection of Selective Pressure on Individual Sites of Codon Alignments. Bioinformatics 2005, 21, 2531–2533. [Google Scholar] [CrossRef]
- Murrell, B.; Moola, S.; Mabona, A.; Weighill, T.; Sheward, D.; Kosakovsky Pond, S.L.; Scheffler, K. FUBAR: A Fast, Unconstrained Bayesian AppRoximation for Inferring Selection. Mol. Biol. Evol. 2013, 30, 1196–1205. [Google Scholar] [CrossRef]
- Murrell, B.; Wertheim, J.O.; Moola, S.; Weighill, T.; Scheffler, K.; Sergei, L.; Pond, K.S.L. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 2012, 8, e1002764. [Google Scholar] [CrossRef]
- Silva, G.; Lima, F.P.; Martel, P.; Castilho, R. Thermal Adaptation and Clinal Mitochondrial DNA Variation of European Anchovy. Proc. R. Soc. B 2014, 281, 20141093. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed]
- Lomize, M.A.; Lomize, A.L.; Pogozheva, I.D.; Mosberg, H.I. OPM: Orientations of proteins in membranes database. Bioinformatics 2006, 22, 623–625. [Google Scholar] [CrossRef]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef] [PubMed]
- DeLano, W.L. Pymol: An Open-Source Molecular Graphics Tool; CCP4 Newsletter on Protein Crystallography; Charles Ballard and Maeri Howard-Eales Daresbury Laboratory: Warrington, UK, 2002; Volume 40, pp. 82–92. [Google Scholar]
- Betts, M.J.; Russel, R.B. Amino acid properties and consequences of substitutions. In Bioinformatics for Geneticists; Barnes, M.R., Gray, I.C., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2003; pp. 289–314. [Google Scholar]
- Marshall, H.D.; Coulson, M.W.; Carr, S.M. Near neutrality, rate heterogeneity, and linkage govern mitochondrial genome evolution in Atlantic cod (Gadus morhua) and other gadine fish. Mol. Biol. Evol. 2008, 26, 579–589. [Google Scholar] [CrossRef]
- Vieira, A.R.; de Sousa, F.; Bilro, J.; Viegas, M.B.; Svanbäck, R.; Gordo, L.S.; Paulo, O.S. Mitochondrial genomes of the European sardine (Sardina pilchardus) reveal Pliocene diversification, extensive gene flow and pervasive purifying selection. Sci. Rep. 2024, 14, 30977. [Google Scholar] [CrossRef]
- Pappalardo, A.M.; Santa Calogero, G.; Šanda, R.; Giuga, M.; Ferrito, V. Evidence for Selection on Mitochondrial OXPHOS Genes in the Mediterranean Killifish Aphanius fasciatus Valenciennes, 1821. Biology 2024, 13, 212. [Google Scholar] [CrossRef] [PubMed]
- Consuegra, S.; John, E.; Verspoor, E.; de Leaniz, C.G. Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish species. Genet. Select. Evol. 2015, 47, 58. [Google Scholar] [CrossRef]
- Teacher, A.G.; André, C.; Merilä, J.; Wheat, C.W. Whole mitochondrial genome scan for population structure and selection in the Atlantic herring. BMC Evol. Biol. 2012, 12, 248. [Google Scholar] [CrossRef] [PubMed]
- Dalziel, A.C.; Moyes, C.D.; Fredriksson, E.; Lougheed, S.C. Molecular evolution of cytochrome c oxidase in high-performance fish (Teleostei: Scombroidei). J. Mol. Evol. 2006, 62, 319–331. [Google Scholar] [CrossRef]


| Gene | Primer ID | Sequence | Reference |
|---|---|---|---|
| COI | VF2_t1 | 5′-TGTAAAACGACGGCCAGTCAACCAACCACAAAGACATTGGCAC-3′ | [20] |
| FishR2_t1 | 5′-CAGGAAACAGCTATGACACTTCAGGGTGACCGAAGAATCAGAA-3′ | ||
| M13_FW | 5′-TGTAAAACGACGGCCAGT-3′ | [21] | |
| M13_REV | 5′-CAGGAAACAGCTATGAC-3′ | ||
| Cytb | Fish Cytb-F | 5′-ACCACCGTTGTTATTCAACTACAAGAAC-3′ | [22] |
| Cytb-4R | 5′-AGGAAGTATCATTCGGGCTTAATATG-3′ | ||
| ND2 | Swo-MetL | 5′-TCCACTACACCACTTCCTAGTAAAGTCAGC-3′ | [23] |
| Swo-TrpH | 5′-GGCCCTTGGTCTTGTCTTATCCTAAGTCCC-3′ |
| Gene | Methodology | Negatively Selected Codons | Positively Selected Codons |
|---|---|---|---|
| COI | FEL | 95, 188 *; 58 *** | / |
| FUBAR | 8, 71, 90, 216 #; 95, 188 ##; 58 ### | / | |
| MEME | / | / | |
| Cytb | FEL | 68, 99, 130, 135, 137, 240 *; 81, 171 ** | / |
| FUBAR | 68, 81, 137, 171 ##; | / | |
| MEME | / | / | |
| ND2 | FEL | 110, 252 *; 204 **; 250 *** | / |
| FUBAR | 98 ##; 110, 204, 250 ### | 324 ## | |
| MEME | / | 324 * |
| Gene | Methodology | Negatively Selected Codons | Positively Selected Codons |
|---|---|---|---|
| COI | FEL | 82, 106 * | / |
| FUBAR | 67, 82, 106, 113, 155, 171 # | / | |
| MEME | / | / | |
| Cytb | FEL | 3, 81, 98, 118, 126, 176, 192, 206 * | / |
| FUBAR | 68, 71, 81, 98, 102, 108, 116, 118, 126, 138, 176, 184, 189, 206, 211, 239, 257, 258 #; 3, 121 ##; 192 ### | / | |
| MEME | / | / | |
| ND2 | FEL | / | / |
| FUBAR | 277 # | 19 # | |
| MEME | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappalardo, A.M.; Calogero, G.S.; Mancuso, M.; Manganaro, G.; Ferrito, V. Positive Selection in NADH Dehydrogenase 2 (ND2) Gene in Two Billfishes Xiphias gladius, L. 1758 and Istiophorus platypterus. Diversity 2025, 17, 747. https://doi.org/10.3390/d17110747
Pappalardo AM, Calogero GS, Mancuso M, Manganaro G, Ferrito V. Positive Selection in NADH Dehydrogenase 2 (ND2) Gene in Two Billfishes Xiphias gladius, L. 1758 and Istiophorus platypterus. Diversity. 2025; 17(11):747. https://doi.org/10.3390/d17110747
Chicago/Turabian StylePappalardo, Anna Maria, Giada Santa Calogero, Marco Mancuso, Gea Manganaro, and Venera Ferrito. 2025. "Positive Selection in NADH Dehydrogenase 2 (ND2) Gene in Two Billfishes Xiphias gladius, L. 1758 and Istiophorus platypterus" Diversity 17, no. 11: 747. https://doi.org/10.3390/d17110747
APA StylePappalardo, A. M., Calogero, G. S., Mancuso, M., Manganaro, G., & Ferrito, V. (2025). Positive Selection in NADH Dehydrogenase 2 (ND2) Gene in Two Billfishes Xiphias gladius, L. 1758 and Istiophorus platypterus. Diversity, 17(11), 747. https://doi.org/10.3390/d17110747

