Fine-Scale Environmental Drivers Shaping Vegetation Communities in Yongneup Montane Peatland, Korea
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Vegetation and Environmental Factors Survey
2.2.1. Peat Characteristics
2.2.2. Wetland Water Characteristics
2.3. Statistical Analysis
3. Results
3.1. Species Composition and Spatial Distribution
3.2. Vegetation Community
3.2.1. Lycopus lucidus-Geranium koreanum var. hirsutum Community
3.2.2. Caltha palustris Community
3.2.3. Sanguisorba tenuifolia Community
3.2.4. Carex thunbergii var. appendiculata Community
3.2.5. Juncus papillosus Community
3.2.6. Molinia japonica Community
3.2.7. Sparganium hyperboreum-Carex canescens Community
3.2.8. Carex chordorrhiza-Rhynchospora fujiiana Community
3.2.9. Calamagrostis purpurea Community
3.3. Effect of Microenvironment on Vegetation Communities
Community | L. lucidus -G. koreanum var. hirsutum | C. palustris | S. tenuifolia | C. thunbergii var. appendiculata | J. papillosus | M. japonica | S. hyperboreum -C. canescens | C. chordorhiza -R. fujiiana | C. purpurea | |
---|---|---|---|---|---|---|---|---|---|---|
Factors | ||||||||||
Number of plots | 9 | 10 | 57 | 71 | 18 | 10 | 3 | 12 | 10 | |
Number of species | 44 | 35 | 44 | 34 | 23 | 16 | 5 | 22 | 30 | |
Shannon’s diversity (H′) | 2.275 | 1.615 | 1.390 | 1.510 | 1.443 | 1.453 | 0.598 | 1.605 | 1.726 | |
Evenness (J′) | 0.861 | 0.887 | 0.774 | 0.760 | 0.816 | 0.817 | 0.836 | 0.795 | 0.857 | |
* OBW (%) | 13.6 | 20.0 | 34.1 | 32.4 | 60.9 | 18.8 | 80.0 | 59.1 | 20.0 | |
* OBU (%) | 47.7 | 40.0 | 31.8 | 32.4 | 13.0 | 37.5 | 0.0 | 9.1 | 40.0 | |
Water level (cm) | −54.78 | −0.90 | −20.19 | −16.21 | −14.56 | −40.60 | 19.33 | −0.00 | −55.90 | |
Peat depth (cm) | 11.67 | 26.60 | 83.26 | 87.55 | 43.96 | 49.80 | 43.52 | 65.83 | 37.00 | |
Peat moisture (%) | 39.11 | 64.59 | 70.18 | 80.18 | 62.46 | 71.05 | 62.95 | 84.10 | 57.85 | |
Peat available P (mg kg−1) | 7.96 | 12.07 | 12.47 | 17.78 | 6.64 | 8.55 | 7.94 | 12.47 | 18.91 | |
Peat pH | 4.79 | 4.77 | 4.60 | 4.55 | 4.92 | 4.41 | 4.96 | 4.78 | 4.54 | |
Organic matter (%) | 15.11 | 40.23 | 47.04 | 61.80 | 51.91 | 61.72 | 49.60 | 66.69 | 26.72 | |
Water pH | 5.11 | 5.29 | 5.00 | 4.95 | 4.88 | 4.62 | 5.33 | 4.84 | 5.07 | |
Conductivity (μs cm−1) | 88.40 | 33.42 | 23.70 | 22.45 | 29.95 | 25.10 | 19.97 | 17.58 | 33.43 | |
Major cations (ppm) ** | Na+ | 2.92 | 2.23 | 1.99 | 2.00 | 1.81 | 2.01 | 1.85 | 1.43 | 1.92 |
Ca2+ | 3.17 | 3.15 | 2.28 | 2.33 | 2.61 | 2.07 | 2.61 | 2.03 | 2.58 | |
Mg2+ | 0.54 | 0.51 | 0.39 | 0.41 | 0.55 | 0.38 | 0.34 | 0.45 | 0.46 | |
K+ | 1.84 | 1.36 | 0.89 | 0.96 | 0.92 | 0.80 | 0.66 | 0.72 | 1.31 |
4. Discussion
4.1. Interpretation of Species Composition and Distribution
4.2. Vegetation Community Analysis
4.3. Effects of Location Factors on Vegetation Communities
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Community | L. lucidus -G. koreanum var. hirsutum | C. palustris | S. tenuifolia | C. thunbergii var. appendiculata | J. papillosus | M. japonica | S. hyperboreum -C. canescens | C. chordorhiza -R. fujiiana | C. purpurea | |
---|---|---|---|---|---|---|---|---|---|---|
Factors | ||||||||||
Number of plots | 9 | 10 | 57 | 71 | 18 | 10 | 3 | 12 | 10 | |
Number of species | 44 | 35 | 44 | 34 | 23 | 16 | 5 | 22 | 30 | |
Shannon’s diversity (H′) | 2.275 | 1.615 | 1.390 | 1.510 | 1.443 | 1.453 | 0.598 | 1.605 | 1.726 | |
Evenness (J′) | 0.861 | 0.887 | 0.774 | 0.760 | 0.816 | 0.817 | 0.836 | 0.795 | 0.857 | |
Obligate wetland species (%) | 13.6 | 20.0 | 34.1 | 32.4 | 60.9 | 18.8 | 80.0 | 59.1 | 20.0 | |
Obligate upland species (%) | 47.7 | 40.0 | 31.8 | 32.4 | 13.0 | 37.5 | 0.0 | 9.1 | 40.0 | |
Water level (cm) | −54.78 ± 7.34 | −0.90 ± 1.30 | −20.19 ± 3.49 | −16.21 ± 2.77 | −14.56 ± 6.16 | −40.60 ± 10.05 | 19.33 ± 8.29 | −0.00 ± 0.00 | −55.90 ± 9.00 | |
Peat depth (cm) | 11.67 ± 7.82 | 26.60 ± 9.61 | 83.26 ± 4.85 | 87.55 ± 3.89 | 43.96 ± 5.26 | 49.80 ± 3.25 | 43.52 ± 13.91 | 65.83 ± 4.62 | 37.00 ± 10.25 | |
Peat moisture contents (%) | 39.11 ± 4.34 | 64.59 ± 6.53 | 70.18 ± 2.21 | 80.18 ± 0.88 | 62.46 ± 5.40 | 71.05 ± 5.21 | 62.95 ± 0.18 | 84.10 ± 2.16 | 57.85 ± 4.39 | |
Peat total N (mg g−1) | 4.65 ± 0.79 | 11.29 ± 2.05 | 13.97 ± 0.87 | 16.81 ± 0.58 | 12.25 ± 1.61 | 14.98 ± 1.12 | 12.57 ± 1.34 | 15.31 ± 0.96 | 7.06 ± 1.84 | |
Peat available P (mg kg−1) | 7.96 ± 2.00 | 12.07 ± 2.16 | 12.47 ± 1.29 | 17.78 ± 1.08 | 6.64 ± 1.52 | 8.55 ± 1.13 | 7.94 ± 0.72 | 12.47 ± 2.01 | 18.91 ± 2.51 | |
Peat pH | 4.79 ± 0.05 | 4.77 ± 0.02 | 4.60 ± 0.03 | 4.55 ± 0.02 | 4.92 ± 0.08 | 4.41 ± 0.05 | 4.96 ± 0.24 | 4.78 ± 0.07 | 4.54 ± 0.11 | |
Organic matter (%) | 15.11 ± 2.68 | 40.23 ± 8.00 | 47.04 ± 2.78 | 61.80 ± 1.79 | 51.91 ± 6.24 | 61.72 ± 4.99 | 49.60 ± 3.21 | 66.69 ± 3.71 | 26.72 ± 6.03 | |
Water pH | 5.11 ± 0.13 | 5.29 ± 0.06 | 5.00 ± 0.03 | 4.95 ± 0.04 | 4.88 ± 0.11 | 4.62 ± 0.02 | 5.33 ± 0.03 | 4.84 ± 0.14 | 5.07 ± 0.12 | |
Conductivity (μs cm−1) | 88.40 ± 13.70 | 33.42 ± 3.93 | 23.70 ± 0.96 | 22.45 ± 1.10 | 29.95 ± 4.75 | 25.10 ± 3.86 | 19.97 ± 3.36 | 17.58 ± 1.41 | 33.43 ± 1.53 | |
Na+ (ppm) | 2.92 ± 0.81 | 2.23 ± 0.26 | 1.99 ± 0.09 | 2.00 ± 0.10 | 1.81 ± 0.14 | 2.01 ± 0.23 | 1.85 ± 0.23 | 1.43 ± 0.12 | 1.92 ± 0.08 | |
Ca2+ (ppm) | 3.17 ± 0.50 | 3.15 ± 0.22 | 2.28 ± 0.08 | 2.33 ± 0.10 | 2.61 ± 0.22 | 2.07 ± 0.11 | 2.61 ± 0.25 | 2.03 ± 0.15 | 2.58 ± 0.23 | |
Mg2+ (ppm) | 0.54 ± 0.08 | 0.51 ± 0.05 | 0.39 ± 0.02 | 0.41 ± 0.02 | 0.55 ± 0.05 | 0.38 ± 0.03 | 0.34 ± 0.01 | 0.45 ± 0.03 | 0.46 ± 0.04 | |
K+ (ppm) | 1.84 ± 0.80 | 1.36 ± 0.37 | 0.89 ± 0.10 | 0.96 ± 0.11 | 0.92 ± 0.12 | 0.80 ± 0.15 | 0.66 ± 0.27 | 0.72 ± 0.14 | 1.31 ± 0.39 | |
NH4+ (ppm) | 0.14 ± 0.02 | 0.74 ± 0.27 | 0.39 ± 0.05 | 0.31 ± 0.05 | 0.20 ± 0.06 | 0.27 ± 0.09 | 0.05 ± 0.02 | 0.07 ± 0.01 | 0.24 ± 0.06 | |
Fe2+ (ppm) | 0.23 ± 0.05 | 0.45 ± 0.22 | 0.43 ± 0.06 | 0.43 ± 0.04 | 1.37 ± 0.88 | 0.49 ± 0.11 | 0.64 ± 0.34 | 0.42 ± 0.04 | 0.34 ± 0.01 | |
Zn2+ (ppm) | 0.06 ± 0.01 | 0.04 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.04 ± 0.00 | 0.05 ± 0.01 | 0.03 ± 0.01 | 0.04 ± 0.00 | 0.05 ± 0.01 | |
Cl− (ppm) | 6.17 ± 2.96 | 2.31 ± 0.42 | 1.61 ± 0.14 | 1.57 ± 0.13 | 1.92 ± 0.32 | 1.87 ± 0.45 | 1.25 ± 0.45 | 1.18 ± 0.19 | 1.99 ± 0.42 | |
NO3− (ppm) | 3.11 ± 1.30 | 2.87 ± 0.99 | 1.16 ± 0.23 | 0.66 ± 0.09 | 0.43 ± 0.06 | 0.48 ± 0.08 | 1.15 ± 0.98 | 0.48 ± 0.08 | 0.42 ± 0.02 | |
SO42− (ppm) | 4.12 ± 1.48 | 2.51 ± 0.29 | 3.23 ± 0.26 | 3.01 ± 0.28 | 4.04 ± 0.89 | 3.54 ± 0.79 | 1.71 ± 0.09 | 3.13 ± 0.43 | 3.21 ± 0.56 | |
P (ppm) | 0.06 ± 0.00 | 0.09 ± 0.01 | 0.06 ± 0.00 | 0.13 ± 0.07 | 0.07 ± 0.01 | 0.06 ± 0.00 | 0.06 ± 0.01 | 0.06 ± 0.00 | 0.06 ± 0.00 |
References
- Mitsch, W.J.; Gosselink, J.G. Wetlands; Van Nostrand Reinhold Company: New York, NY, USA, 1993. [Google Scholar]
- Tarnocai, C. The effect of climate change on carbon in Canadian peatlands. Glob. Planet. Change 2006, 53, 222–232. [Google Scholar] [CrossRef]
- Kang, S.J. Phytosociological Study of the Dae-am mountain Raised Bog. In Studies on Nature in the DMZ Area; Kangwon National University Press: Chuncheon, Republic of Korea, 1987; pp. 169–201. [Google Scholar]
- Joosten, H.; Clarke, D. Wise Use of Mires and Peatlands—Background and Principles Including a Framework for Decision-Making; International Mire Conservation Group and International Peat Society: Jyväskylä, Finland, 2002. [Google Scholar]
- Cho, K.-S. Limnological and Ecological Study of the Mt. Daeam High Moor. In Studies on Nature in the DMZ Area; Kangwon National University Press: Chuncheon, Republic of Korea, 1987; pp. 143–167. [Google Scholar]
- Hájek, M.; Horsák, M.; Hájková, P.; Dítě, D. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology. Perspect. Plant Ecol. Evol. Syst. 2006, 8, 97–114. [Google Scholar] [CrossRef]
- Zoltai, S.C.; Vitt, D.H. Canadian wetlands: Environmental gradients and classification. Vegetatio 1995, 118, 131–137. [Google Scholar]
- Wells, E.D. Classification of peatland vegetation in Atlantic Canada. J. Veg. Sci. 1996, 7, 847–878. [Google Scholar] [CrossRef]
- Vitt, D.H.; Chee, W.L. The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio 1990, 89, 87–106. [Google Scholar]
- Wheeler, B.D.; Proctor, M.C.F. Ecological gradients, subdivisions and terminology of north-west European mires. J. Ecol. 2000, 88, 187–203. [Google Scholar] [CrossRef]
- Bridgham, S.D.; Pastor, J.; Janssens, J.A.; Chapin, C.; Malterer, T.J. Multiple limiting gradients in peatlands: A call for a new paradigm. Wetlands 1996, 16, 45–65. [Google Scholar] [CrossRef]
- Anderson, D.S.; Davis, R.B. The vegetation and its environments in Maine peatlands. Can. J. Bot. 1997, 75, 1785–1805. [Google Scholar] [CrossRef]
- Gerdol, R. Community and species-performance patterns along an alpine poor-rich mire gradient. J. Veg. Sci. 1995, 6, 175–184. [Google Scholar]
- Gerdol, R.; Bragazza, L. Syntaxonomy and community ecology of mires in the Rhaetian Alps (Italy). Phytocoenologia 2001, 31, 271–300. [Google Scholar] [CrossRef]
- Hájek, M.; Hekera, P.; Hájková, P. Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobot. 2002, 37, 205–224. [Google Scholar] [CrossRef]
- Hájková, P.; Hájek, M.; Apostolova, I. Diversity of wetland vegetation in the Bulgarian high mountains, main gradients and context-dependence of the pH role. Plant Ecol. 2006, 184, 111–130. [Google Scholar] [CrossRef]
- Malmer, N. Vegetational gradients in relation to environmental conditions in northwestern European mires. Can. J. Bot. 1986, 64, 375–383. [Google Scholar] [CrossRef]
- Vitt, D.H.; Bayley, S.E.; Jin, T.L. Seasonal variation in water chemistry over a bog-rich fen gradient in continental western Canada. Can. J. Fish. Aquat. Sci. 1995, 52, 587–606. [Google Scholar] [CrossRef]
- Welch, B.A.; Davis, C.B.; Gates, R.J. Dominant environmental factors in wetland plant communities invaded by Phragmites australis in East Harbor, Ohio, USA. Wetl. Ecol. Manag. 2006, 14, 511–525. [Google Scholar] [CrossRef]
- Glaser, P.H.; Janssens, J.A.; Siegel, D.I. The response of vegetation to chemical and hydrological gradients in the Lost River peatland, northern Minnesota. J. Ecol. 1990, 78, 1021–1048. [Google Scholar] [CrossRef]
- Bragazza, L.; Rydin, H.; Gerdol, R. Multiple gradients in mire vegetation—A comparison of a Swedish and an Italian bog. Plant Ecol. 2005, 177, 223–236. [Google Scholar] [CrossRef]
- Navrátilová, J.; Navrátil, J.; Hájek, M. Relationships between environmental factors and vegetation in nutrient-enriched fens at fishpond margins. Folia Geobot. 2006, 41, 353–376. [Google Scholar] [CrossRef]
- Branson, F.A.; Miller, R.F.; McQueen, I.S. Plant communities and associated soil and water factors on shale-derived soils in northeastern Montana. Ecology 1970, 51, 391–407. [Google Scholar] [CrossRef]
- Asada, T. Vegetation gradients in relation to temporal fluctuation of environmental factors in Bekanbeushi peatland, Hokkaido, Japan. Ecol. Res. 2002, 17, 505–518. [Google Scholar] [CrossRef]
- Klinger, L.F. Coupling of soils and vegetation in peatland succession. Arct. Alp. Res. 1996, 28, 380–387. [Google Scholar] [CrossRef]
- Kutnar, L.; Martinčič, A. Ecological relationships between vegetation and soil-related variables along the mire margin–mire expanse gradient in the eastern Julian Alps. Ann. Bot. Fenn. 2003, 40, 177–189. [Google Scholar]
- Paratley, R.D.; Fahey, T.J. Vegetation–environment relations in a conifer swamp in central New York. Bull. Torrey Bot. Club 1986, 113, 357–371. [Google Scholar] [CrossRef]
- Graham, J.D.; Glenn, N.F.; Spaete, L.P.; Hanson, P.J. Characterizing peatland microtopography using gradient and microform-based approaches. Ecosystems 2020, 23, 1464–1480. [Google Scholar] [CrossRef]
- Shi, X.; Thornton, P.E.; Ricciuto, D.M.; Hanson, P.J.; Mao, J.; Sebestyen, S.D.; Griffiths, N.A.; Bisht, G. Representing northern peatland microtopography and hydrology within the Community Land Model. Biogeosciences 2015, 12, 6463–6477. [Google Scholar] [CrossRef]
- Cresto Aleina, F.; Runkle, B.R.K.; Kleinen, T.; Kutzbach, L.; Schneider, J.; Brovkin, V. Modeling micro-topographic controls on boreal peatland hydrology and methane fluxes. Biogeosciences 2015, 12, 5689–5704. [Google Scholar] [CrossRef]
- Barrett, S.E.; Watmough, S.A. Factors controlling peat chemistry and vegetation composition in Sudbury peatlands after 30 years of pollution emission reductions. Environ. Pollut. 2015, 206, 122–132. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, G.; Wang, M.; Zhao, M.; Yuan, Y.; Meng, J.; Zhao, Y.; Hu, N.; Zhang, T.; Liu, B. Variations in soil seed banks in sedge peatlands across an altitude gradient. Diversity 2024, 16, 571. [Google Scholar] [CrossRef]
- Milesi, V.P. Redox gradient shapes the chemical and taxonomic composition of peatland microbial communities. Geobiology 2024, 22, e70001. [Google Scholar] [CrossRef]
- Zhang, M.; Bu, Z.-J.; Liu, S.-S.; Chen, J.; Xing, W. Mid-late Holocene peatland vegetation and hydrological variations in Northeast Asia and their responses to solar and ENSO activity. Catena 2021, 203, 105339. [Google Scholar] [CrossRef]
- Kang, S.J. Ecological studies of the raised bog in the Dae-am mountain adjacent to DMZ in Korea (II). J. Plant Biol. 1970, 13, 20–24. [Google Scholar]
- Chang, N.K.; Kim, Y.P.; Oh, I.H.; Son, Y.H. Past vegetation of moor in Mt. Daeam in terms of the pollen analysis. J. Ecol. Environ. 1987, 10, 195–204. [Google Scholar]
- Bae, J.-J.; Choo, Y.-S.; Song, S.-D. The patterns of inorganic cations, nitrogen and phosphorus of plants in Moojechi Moor on Mt. Jeongjok. Korean J. Ecol. 2003, 26, 109–114. [Google Scholar] [CrossRef]
- Choung, Y.; Joo, K.Y.; Park, D.S. Distribution, Ecological Characteristics, and Conservation Strategies of Mountain Wetlands in Gangwon Province—Focused on Inje, Yanggu, and Pyeongchang-gun; Gangwon Regional Environmental Technology Development Center: Gangneung, Republic of Korea, 2005. [Google Scholar]
- Park, K.; Woo, S.H. Survey areas and watershed characteristics. In Final Report on the Detailed Survey of Inland Wetlands in Korea—Sandeulneup, Hwaponeup, Jangcheokji, and Geumgang Lake; Ministry of Environment: Gwacheon, Republic of Korea, 2006; pp. 23–37. [Google Scholar]
- Son, M.W.; Chang, M.G. Formation processes of Hwaeomneup Wetland, Cheonseong Mountain. J. Korean Assoc. Reg. Geogr. 2009, 15, 204–214. [Google Scholar]
- Ministry of Environment; National Institute of Environmental Research. Detailed Survey Report on Wetland Protected Areas; Ministry of Environment: Seoul, Republic of Korea, 2007. [Google Scholar]
- Shin, Y.-H.; Kim, S.-H.; Park, S.-J. The geochemical roles and properties of mountain wetland in Mt. Shinbulsan. J. Korean Geomorphol. Assoc. 2005, 12, 133–149. [Google Scholar]
- Koh, J.K.; Lee, E.B.; Jeon, E.S. Vegetation of the Chilbosan Wetland in Suwon and flora of the wetland and its surroundings. Nat. Conserv. 1995, 89, 85–92. [Google Scholar]
- Ryou, S.H. Studies on Vegetation and Successive Dynamics of Moors in Montane Zone, Korea. Ph.D. Thesis, Chungnam National University, Daejeon, Republic of Korea, 2004. [Google Scholar]
- Lee, J.-H.; Kim, J.K. Ecological survey of the Wangdeungjae wet meadow threatened by environmental changes. Rural Dev. Stud. 1997, 16, 25–34. [Google Scholar]
- Yu, J.M.; Kim, M.S.; Chung, G.Y. A study on the flora and conservation of wetlands and adjacent areas of Mt. Cheongoksan (Gyeongbuk). Res. Rep. Korean Assoc. Conserv. Nat. 1999, 18, 19–39. [Google Scholar]
- Lee, S.-D. The study of current status of conservation and management policy on wetlands in Korea. J. Wetl. Res. 2003, 5, 1–13. [Google Scholar]
- Park, W.-G.; Yoo, S.-I.; Park, K.-S. Flora of natural marshes in Wondae-ri (Inje-gun, Kangwon-do). J. For. Sci. 2000, 16, 50–68. [Google Scholar]
- Kang, S.-J.; Kwak, A.K. Study on the flora and vegetation of the high moor in Mt. Daeam. J. Wetl. Res. 2000, 2, 117–131. [Google Scholar]
- Kim, B.-W.; Lee, J.-S.; Oh, Y.-J. A study on the flora in the Mt. Daeam high moor. J. Environ. Sci. 2005, 11, 1–8. [Google Scholar]
- Lee, Y.N. Swamp plants on Mt. Daeam in the central part of Korea. Korean J. Plant Taxon. 1969, 1, 7–14. [Google Scholar] [CrossRef]
- Lee, W.T. Flora of the Mt. Daeham high moor. In Survey Report on the Natural Ecosystem of Mt. Daeham; Environmental Administration: Seoul, Republic of Korea, 1988; pp. 47–76. [Google Scholar]
- Lee, W.T.; Kim, Y.S.; Jeon, E.S.; Paik, W.-K. Flora of the Mt. Daeham and Mt. Daewoo natural monuments. In Academic Survey Report on the Mt. Daeham and Mt. Daewoo Natural Monument Areas; Cultural Heritage Administration: Daejeon, Republic of Korea, 2003; pp. 99–149. [Google Scholar]
- Choi, H.-J.; Kweon, H. Detailed Survey Report on Wetland Protected Areas—Flora; Ministry of Environment: Gwacheon, Republic of Korea, 2007; pp. 189–211. [Google Scholar]
- Park, B.K. On the vegetation of high-moor on Mt. Daeam, Kangwon-Do, Korea. J. Korean Res. Inst. Better Living 1973, 11, 25–31. [Google Scholar]
- Choi, T.B.; Roh, H.C.; Han, J.H.; Kim, K.Y. Detailed Survey Report on Wetland Protected Areas—General Overview; Ministry of Environment: Gwacheon, Republic of Korea, 2007; pp. 7–49. [Google Scholar]
- Seo, B. Characteristics of the Vegetation at Some Montane Moors in Gangwon Province, Korea. Master’s Thesis, Kangwon National University, Chuncheon, Republic of Korea, 2007. [Google Scholar]
- Yang, K.C. Classification of Major Habitats Based on the Climatic Conditions and Topographic Features in Korea. Ph.D. Thesis, Chung-Ang University, Seoul, Republic of Korea, 2001. [Google Scholar]
- Kang, S.J. Peat stratigraphy and pollen analysis of the Mt. Daeham high moor. In Daewonsan Natural Ecosystem Survey Report; Environmental Administration: Seoul, Republic of Korea, 1988; pp. 101–146. [Google Scholar]
- Kang, S.J.; Yoshioka, T. Environmental change of high moor in Mt. Daeam of Korean Peninsula. Korean J. Limnol. 2005, 38, 45–53. [Google Scholar]
- Ministry of Environment. Feasibility Study on the Restoration of Yongneup, Mt. Daeham (First Year); Ministry of Environment: Gwacheon, Republic of Korea, 1997. [Google Scholar]
- Yoon, J.-Y. The Geomorphic Development and Artificial Change of Environment at the Moor Yongneup, Mt. Daeam. Master’s Thesis, Kyung Hee University, Seoul, Republic of Korea, 2002. [Google Scholar]
- Park, J.-K. Water table variation of Yongneup located at Daeam-san, Yanggu-gun. J. Korean Geomorphol. Assoc. 2001, 8, 35–49. [Google Scholar]
- Buurman, P.; van Lagen, B.; Velthorst, E.J. Manual for Soil and Water Analysis; Backhuys Publishers: Leiden, The Netherlands, 1996. [Google Scholar]
- Kang, S.J. Ecological studies of the raised bog in Daeam Mountain adjacent to DMZ in Korea. J. Res. Sci. Educ. 1976, 2, 81–104. [Google Scholar]
- Lee, H.H.M. Classification of Wetlands in Korea. Master’s Thesis, Inha University, Incheon, Republic of Korea, 2000. [Google Scholar]
- Oh, Y.C. Korean Caricoideae of Cyperaceae; Sungshin Women’s University Press: Seoul, Republic of Korea, 2006. [Google Scholar]
- Lee, T.B. Illustrated Flora of Korea; Hyangmunsa: Seoul, Republic of Korea, 2003. [Google Scholar]
- Hada, Y. The vegetation of Makura moor in Geihoku Cho, Hiroshima Prefecture, Japan. Bull. Okayama Univ. Sci. 1973, 9, 69–83. [Google Scholar]
- Choi, K.-R.; Koh, J.-K. Studies on moor vegetation of Mt. Daeam, east-central Korea. J. Ecol. Environ. 1989, 12, 237–244. [Google Scholar]
- Rydin, H.; Jeglum, J.K. The Biology of Peatlands, 2nd ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Joosten, H.; Tanneberger, F.; Moen, A. (Eds.) Mires and Peatlands of Europe: Status, Distribution and Conservation; Schweizerbart Science Publishers: Stuttgart, Germany, 2017. [Google Scholar]
- Ahmad, S.; Wang, M.; Bates, A.; Martini, F.; Regan, S.; Saunders, M.; Liu, H.; McElwain, J.; Gill, L. Flatlining fens? Small-scale variations in peat properties and microtopography as indicators of ecosystem homogenization. Ecol. Indic. 2025, 172, 113317. [Google Scholar] [CrossRef]
- Bragazza, L.; Freeman, C.; Jones, T.; Rydin, H.; Limpens, J.; Fenner, N.; Ellis, T.; Gerdol, R.; Hájek, M.; Hájek, T. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc. Natl. Acad. Sci. USA 2006, 103, 19386–19389. [Google Scholar] [CrossRef]
- Tahvanainen, T. Water chemistry of mires in relation to the poor–rich vegetation gradient and contrasting geochemical zones of the northeastern Fennoscandian Shield. Folia Geobot. 2004, 39, 353–369. [Google Scholar] [CrossRef]
- Zaplata, M.K.; Nhabanga, A.; Stalmans, M.; Volpers, T.; Burkart, M.; Sperfeld, E. Grasses cope with high-contrast ecosystem conditions in the large outflow of the Banhine wetlands, Mozambique. Afr. J. Ecol. 2021, 59, 190–203. [Google Scholar] [CrossRef]
Community | Indicator Species | IV |
---|---|---|
Lycopus lucidus -Geranium koreanum var. hirsutum | Lycopus lucidus | 81.4 |
Geranium koreanum var. hirsutum | 67.6 | |
Angelica amurensis | 60.0 | |
Artemisia stolonifera | 51.1 | |
Viola acuminata | 48.1 | |
Potentilla fragarioides | 33.4 | |
Lychnis cognata | 25.4 | |
Viola verecunda | 23.3 | |
Lamium album | 23.2 | |
Potentilla freyniana | 22.2 | |
Carex siderosticta | 22.2 | |
Thalictrum aquilegifolium var. sibiricum | 21.7 | |
Agrostis clavata | 21.6 | |
Cerastium fontanum subsp. vulgare | 20.9 | |
Valeriana fauriei | 17.7 | |
Caltha palustris | Caltha palustris | 81.2 |
Carex rhynchophysa | 57.7 | |
Carex dickinsii | 20.0 | |
Sanguisorba tenuifolia | Sanguisorba tenuifolia | 28.0 |
Carex thunbergii var. appendiculata | Carex thunbergii var. appendiculata | 37.5 |
Juncus papillosus | Juncus papillosus | 58.0 |
Ericoaulon sikokianum | 34.4 | |
Eleocharis congesta var. japonica | 26.2 | |
Carex hakonensis | 24.7 | |
Molinia japonica | Molinia japonica | 56.5 |
Gentiana jamesii | 35.9 | |
Athyrium nipponicum | 29.4 | |
Sparganium hyperboreum-Carex canescens | Sparganium hyperboreum | 66.7 |
Carex canescens | 62.3 | |
Potamogeton pusillus | 33.3 | |
Carex chordorhiza-Rhynchospora fujiiana | Carex chordorhiza | 96.7 |
Rhynchospora fujiiana | 66.7 | |
Lobelia sessilifolia | 42.2 | |
Carex limosa | 37.9 | |
Menyanthes trifoliata | 37.1 | |
Utricularia intermedia | 35.3 | |
Drosera rotundifolia | 20.3 | |
Calamagrostis purpurea | Calamagrostis purpurea | 59.8 |
Persicaria thunbergii | 54.1 | |
Angelica reflexa | 31.1 | |
Phragmites japonica | 30.0 | |
Pseudostellaria palibiniana | 20.0 | |
Isodon excisus | 20.0 | |
Symplocarpus nipponicus | 20.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Lee, J. Fine-Scale Environmental Drivers Shaping Vegetation Communities in Yongneup Montane Peatland, Korea. Diversity 2025, 17, 715. https://doi.org/10.3390/d17100715
Lee K, Lee J. Fine-Scale Environmental Drivers Shaping Vegetation Communities in Yongneup Montane Peatland, Korea. Diversity. 2025; 17(10):715. https://doi.org/10.3390/d17100715
Chicago/Turabian StyleLee, Kyungeun, and Jiseon Lee. 2025. "Fine-Scale Environmental Drivers Shaping Vegetation Communities in Yongneup Montane Peatland, Korea" Diversity 17, no. 10: 715. https://doi.org/10.3390/d17100715
APA StyleLee, K., & Lee, J. (2025). Fine-Scale Environmental Drivers Shaping Vegetation Communities in Yongneup Montane Peatland, Korea. Diversity, 17(10), 715. https://doi.org/10.3390/d17100715