The Mechanisms of Sphagneticola trilobata Invasion as One of the Most Aggressive Invasive Plant Species
Abstract
1. Introduction
2. Reproduction
2.1. Sexual Reproduction
2.2. Asexual Reproduction
3. Growth Performance
4. Adaptation to Different Environments
4.1. Genetic and Epigenetic Variation
4.2. Habitat
4.3. Effects of Temperatures
4.4. Effects of Low Light Irradiation
4.5. Effects of Nutrition
4.6. Effects of Low Oxygen Stress
4.7. Effects of Water Stress
4.8. Global Warming
5. Defensive Response Against Herbivorous Insects and Pathogen
5.1. Herbivorous Insects
5.2. Pathogens
6. Competitive Ability for Resource Acquisition
7. Conclusions
Funding
Informed Consent Statement
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pacific Pests, Pathogens & Weeds-Fact Sheets, Wedelia. Available online: https://apps.lucidcentral.org/ppp_v9/text/web_full/entities/wedelia_447.htm (accessed on 4 August 2025).
- CABI Compendium. Sphagneticola trilobata (wedelia). Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.56714 (accessed on 4 August 2025).
- Pacific Island Ecosystems at Risk (PIER). Sphagneticola trilobata. Available online: http://www.hear.org/pier/species/sphagneticola_trilobata.htm (accessed on 4 August 2025).
- Royal Botanic Garden Kew. Sphagneticola trilobata. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:1093589-2 (accessed on 4 August 2025).
- Flora of Australia. Available online: https://profiles.ala.org.au/opus/foa/profile/Sphagneticola%20trilobata (accessed on 4 August 2025).
- PlantNet. Sphagneticola trilobata. Available online: http://publish.plantnetproject.org/project/plantinvasivekruger/collection/collection/synthese/details/WEDTR (accessed on 4 August 2025).
- Global Invasive Species Database (GISD). Species Profile: Sphagneticola trilobata. 2025. Available online: https://www.iucngisd.org/gisd/species.php?sc=44 (accessed on 4 August 2025).
- Shrestha, H.S.; Adhikari, B.; Shrestha, B.B. Sphagneticola trilobata (Asteraceae): First report of a naturalized plant species for Nepal. Rheedea 2021, 31, 77–81. [Google Scholar] [CrossRef]
- Hepsibah, B.G.; Ganga, M.; Thamaraiselvi, S.P.; Radhamani, S. Evaluation of ornamental groundcovers for open and shady locations under tropical conditions. J. Ornam. Hortic. 2017, 20, 139–146. [Google Scholar] [CrossRef]
- Useful Tropical Plants Database, Sphagneticola trilobata. Available online: https://tropical.theferns.info/viewtropical.php?id=Sphagneticola+trilobata (accessed on 4 August 2025).
- Batianoff, G.N.; Franks, A.J. Invasion of sandy beachfronts by ornamental plant species in Queensland. Plant Prot. Q. 1997, 12, 180–186. [Google Scholar]
- Cooperative Extension Service, Wedelia. Available online: https://scholarspace.manoa.hawaii.edu/server/api/core/bitstreams/bb209027-e938-4162-8098-7d52645348d6/content (accessed on 4 August 2025).
- Csurhes, S.; Edwards, R. National Weeds Program, Potential Environmental Weeds in Australia, Candidate Species for Preventative Control. National Parks and Wildlife Biodiversity; Environment Australia: Canberra, Australia, 1998; pp. 1–208. [Google Scholar]
- Prematilake, K.G.; Ekanayake, P.B. Beware of arunadevi, the invasive alien. Tea Bull. 2004, 19, 8–9. [Google Scholar]
- Ren, H.; Guo, Q.; Liu, H.; Li, J.; Zhang, Q.; Xu, H.; Xu, F. Patterns of alien plant invasion across coastal bay areas in southern China. J. Coast. Res. 2014, 30, 448–455. [Google Scholar] [CrossRef]
- Thomas, W.G.; Hanley, J.A., Jr.; Loesch, C.R. Evaluating Monitoring Techniques Proposed for Use by FWS Regional Invasive Species Strike Teams: Wedelia EDRR. Wildland Weed; South East Exotic Pest Plant Council: Sanibel, FL, USA, 2007; pp. 10–13. [Google Scholar]
- IUCN. 100 of the World’s Worst Invasive Alien Species. Available online: https://portals.iucn.org/library/sites/library/files/documents/2000-126.pdf (accessed on 4 August 2025).
- Wu, W.; Zhou, R.C.; Ni, G.Y.; Shen, H.; Ge, X.J. Is a new invasive herb emerging? Molecular confirmation and preliminary evaluation of natural hybridization between the invasive Sphagneticola trilobata (Asteraceae) and its native congener S. calendulacea in South China. Biol. Invasions 2013, 15, 75–88. [Google Scholar] [CrossRef]
- Ni, G.; Zhao, P.; Wu, W.; Lu, X.K.; Zhao, X.H.; Zhu, L.W.; Niu, J.F. A hybrid of the invasive plant Sphagneticola trilobata has similar competitive ability but different response to nitrogen deposition compared to parent. Ecol. Res. 2014, 29, 331–339. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, Y.; Schaefer, V.; Liang, H.; Li, W.; Huang, S.; Peng, C. Responses of the hybrid between Sphagneticola trilobata and Sphagneticola calendulacea to low temperature and weak light characteristic in South China. Sci. Rep. 2015, 5, 16906. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Ou, Y.; Ou, Q.; Zeng, L.; Yu, H.; Zheng, J.; Gao, L.; Peng, C. The invasive potential of a hybrid species: Insights from soil chemical properties and soil microbial communities. J. Plant Ecol. 2020, 13, 20–26. [Google Scholar] [CrossRef]
- Wu, W.; Guo, W.; Ni, G.; Wang, L.; Zhang, H.; Ng, W.L. Expression level dominance and homeolog expression bias upon cold stress in the F1 hybrid between the invasive Sphagneticola trilobata and the native S. calendulacea in South China, and implications for Its invasiveness. Front. Genet. 2022, 13, 833406. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Cai, M.; Zeng, L.; Zhang, Q.; Zhu, H.; Gu, X.; Peng, C. Adaptation of the invasive plant (Sphagneticola trilobata L. Pruski) to a high cadmium environment by hybridizing with native relatives. Front. Plant Sci. 2022, 13, 905577. [Google Scholar] [CrossRef]
- HEAR. Alien Species in Hawaii. Hawaii Ecosystems at Risk. University of Hawaii: Honolulu, HI, USA, 2008. Available online: http://www.hear.org/AlienSpeciesInHawaii/index.html (accessed on 4 August 2025).
- Kato-Noguchi, H.; Kato, M. Evolution of the secondary metabolites in invasive plant species Chromolaena odorata for the defense and allelopathic functions. Plants 2023, 12, 521. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kato, M. Evolution of the defense compounds against biotic stressors in the invasive plant species Leucaena leucocephala. Molecules 2025, 30, 2453. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kato, M. Defensive compounds involved in the invasiveness of Tithonia diversifolia. Molecules 2025, 30, 1946. [Google Scholar] [CrossRef] [PubMed]
- Clements, D.R.; Kato-Noguchi, H. Defensive mechanisms of Mikania micrantha likely enhance its invasiveness as one of the world’s worst alien species. Plants 2025, 14, 269. [Google Scholar] [CrossRef]
- Wagner, W.L.; Derral, R.H.; Sohmer, S.H. Manual of the Flowering Plants of Hawaii; University of the Hawaii Press: Honolulu, HI, USA, 1990; pp. 1–1853. [Google Scholar]
- Denda, T.; Shimabukuro, T.; Nohara, H.; Yokota, M. Potential seawater dispersal of cypselas of Sphagneticola trilobata (L.) Pruski (Asteraceae), an aggressive invasive alien plant. Acta Phytotax. Geobot. 2013, 63, 99–105. [Google Scholar]
- Thaman, R.R.; Fosberg, F.R.; Manner, H.I.; Hassall, D.C. The Flora of Nauru-2007; Secretariat of the Pacific Community Land Resources Division: Suva, Fiji, 2009; pp. 1–223. [Google Scholar]
- Macanawai, A.R. Impact of Sphagneticola trilobata on plant diversity in soils in South-East Viti Levu, Fiji. J. Life Sci. 2013, 7, 635. [Google Scholar] [CrossRef]
- Qi, S.S.; Dai, Z.C.; Miao, S.L.; Zhai, D.L.; Si, C.C.; Huang, P.; Wanf, R.P.; Du, D.L. Light limitation and litter of an invasive clonal plant, Wedelia trilobata, inhibit its seedling recruitment. Ann. Bot. 2014, 114, 425–433. [Google Scholar] [CrossRef]
- He, L.; Xiao, X.; Zhang, X.; Jin, Y.; Pu, Z.; Lei, N.; He, X.; Chen, J. Clonal fragments of stoloniferous invasive plants benefit more from stolon storage than their congeneric native species. Flora 2021, 281, 151877. [Google Scholar] [CrossRef]
- Macanawai, A.R.; Lal, S.; Kapoor, G. Survival of various ages and lengths of Sphagneticola trilobata stem sections. Fiji Agric. J. 2013, 53, 7–12. [Google Scholar]
- Englberger, K. Invasive Weeds of Pohnpei: A Guide for Identification and Public Awareness; Conservation Society of Pohnpei, Kolonia Federated States of Micronesia: Kolonia, Micronesia, 2009; pp. 1–29. [Google Scholar]
- Cai, M.L.; Zhang, Q.L.; Zhang, J.J.; Ding, W.Q.; Huang, H.Y.; Peng, C.L. Comparative physiological and transcriptomic analyses of photosynthesis in Sphagneticola calendulacea (L.) Pruski and Sphagneticola trilobata (L.) Pruski. Sci. Rep. 2020, 10, 17810. [Google Scholar] [CrossRef]
- He, L.; Kong, J.; Li, G.; Meng, G.; Chen, K. Similar responses in morphology, growth, biomass allocation, and photosynthesis in invasive Wedelia trilobata and native congeners to CO2 enrichment. Plant Ecol. 2018, 219, 145–157. [Google Scholar] [CrossRef]
- Hu, Y.H.; Zhou, Y.L.; Gao, J.Q.; Zhang, X.Y.; Song, M.H.; Xu, X.L. Plasticity of plant N uptake in two native species in response to invasive species. Forests 2019, 10, 1075. [Google Scholar] [CrossRef]
- Hu, D.; Khan, I.U.; Wang, J.; Shi, X.; Jiang, X.; Qi, S.; Dai, Z.; Mao, H.; Du, D. Invasive Wedelia trilobata performs better than its native congener in various forms of phosphorous in different growth stages. Plants 2023, 12, 3051. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Shen, F.; Abbas, A.; Wang, H.; Du, Y.; Du, D.; Hussain, S.; Javed, T.; Alamri, S. Effects of different nitrogen forms and competitive treatments on the growth and antioxidant system of Wedelia trilobata and Wedelia chinensis under high nitrogen concentrations. Front. Plant Sci. 2022, 13, 851099. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Yu, Y.; Yuan, J.; Sun, J.; Li, Z.; Zhu, X.; Wu, X.; Wang, J.; Ni, G. Increased fine roots, exudates and altered rhizospheric functions in the invasive plant Sphagneticola trilobata compared to the native Sphagneticola calendulacea. Rhizosphere 2025, 34, 101085. [Google Scholar] [CrossRef]
- Dai, Z.C.; Fu, W.; Qi, S.S.; Zhai, D.L.; Chen, S.C.; Wan, L.Y.; Huang, P.; Du, D.L. Different responses of an invasive clonal plant Wedelia trilobata and its native congener to gibberellin: Implications for biological invasion. J. Chem. Ecol. 2016, 42, 85–94. [Google Scholar] [CrossRef]
- Dai, Z.C.; Fu, W.; Wan, L.Y.; Cai, H.H.; Wang, N.; Qi, S.S.; Du, D.L. Different growth promoting effects of endophytic bacteria on invasive and native clonal plants. Front. Plant Sci. 2016, 7, 706. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.H.; Li, X.; Zhou, J.Y.; Kong, F.L.; Qi, S.S.; Zhu, B.; Naz, M.; Dai, Z.C.; Du, D.L. Both adaptability and endophytic bacteria are linked to the functional traits in the invasive clonal plant Wedelia trilobata. Plants 2022, 11, 3369. [Google Scholar] [CrossRef]
- Hewavitharana, N.; Kannangara, S.D.P.; Jayasekera, L.R.; Weerasinghe, P. Determination of nutrients and fiber contents of seven invasive plants and their decomposition rates. Trop. Plant Res. 2018, 5, 286–291. [Google Scholar] [CrossRef]
- Li, F.L.; Zhong, L.; Wen, W.; Tian, T.T.; Li, H.C.; Cheung, S.G.; Wong, Y.S.; Shin, P.K.S.; Zhou, H.C.; Tam, N.F.Y.; et al. Do distribution and expansion of exotic invasive Asteraceae plants relate to leaf construction cost in a man-made wetland? Mar. Pollut. Bull. 2021, 163, 111958. [Google Scholar] [CrossRef]
- Chen, R.; Sun, J.J.; Yuan, Q. Cytology of Sphagneticola and Wollastonia, two genera in Heliantheae, Asteraceae. J. Trop. Subtrop. Bot. 2012, 20, 107–113. [Google Scholar]
- Sofia, S.; Majeed, A. Diving into the genetic pool and molecular treasury of Sphagneticola trilobata: A unique journey with ISSR Markers. Res. Jr. Agril. Sci. 2024, 15, 674–681. [Google Scholar]
- Xiao, Y.; Chen, X.; Yin, Y.; Zheng, J.; Yi, H.; Song, L. Comparative genetic and epigenetic of the Sphagneticola trilobata (L.) Pruski from different regions in China. BMC Plant Biol. 2023, 23, 289. [Google Scholar] [CrossRef] [PubMed]
- Si, C.C.; Dai, Z.C.; Lin, Y.; Qi, S.S.; Huang, P.; Miao, S.L.; Du, D.L. Local adaptation and phenotypic plasticity both occurred in Wedelia trilobata invasion across a tropical island. Biol. Invasions 2014, 16, 2323–2337. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, D.; Zhang, Y.; Naz, M.; Dai, Z.; Qi, S.; Du, D. Impacts of arbuscular mycorrhizal fungi on metabolites of an invasive Weed Wedelia trilobata. Microorganisms 2024, 12, 701. [Google Scholar] [CrossRef]
- Hu, D.; Jiang, X.Q.; Dai, Z.C.; Chen, D.Y.; Zhang, Y.; Qi, S.S.; Du, D.L. Arbuscular mycorrhizal fungi enhance the capacity of invasive Sphagneticola trilobata to tolerate herbicides. Chin. J. Plant Ecol. 2024, 48, 651. [Google Scholar]
- Cai, M.L.; Ding, W.Q.; Zhai, J.J.; Zheng, X.T.; Yu, Z.C.; Zhang, Q.L.; Lin, X.H.; Chow, Q.S.; Peng, C.L. Photosynthetic compensation of non-leaf organ stems of the invasive species Sphagneticola trilobata (L.) Pruski at low temperature. Photosynth. Res. 2021, 149, 121–134. [Google Scholar] [CrossRef]
- Cai, M.; Huang, J.; Chen, M.; Chen, L.; Zhang, X.; Chen, M.; Wu, J.; Pam, Y.; Peng, C. The role and synthesis mechanism of anthocyanins in Sphagneticola trilobata stems under low temperature. Biol. Invasions 2024, 26, 2851–2867. [Google Scholar] [CrossRef]
- Cruz de Carvalho, M.H. Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signal. Behav. 2008, 3, 156–165. [Google Scholar] [CrossRef]
- Zhang, N.; Sun, Q.; Li, H.; Li, X.; Cao, Y.; Zhang, H.; Li, S.; Zhang, L.; Qi, Y.; Ren, S.; et al. Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage. Front. Plant Sci. 2016, 7, 197. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, J.V.A.; De Andrade, M.T.; Rafael, D.D.; Zhu, F.; Martins, S.V.; Nunes-Nesi, A.; Benedio, V.; Fernine, A.R.; Zsögön, A. Anthocyanins and reactive oxygen species: A team of rivals regulating plant development? Plant Mol. Biol. 2023, 112, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Klotke, J.; Kopka, J.; Gatzke, N.; Heyer, A.G. Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation-evidence for a role of raffinose in cold acclimation. Plant Cell Environ. 2004, 27, 1395–1404. [Google Scholar] [CrossRef]
- Tarkowski, Ł.P.; Van den Ende, W. Cold tolerance triggered by soluble sugars: A multifaceted countermeasure. Front. Plant Sci. 2015, 6, 203. [Google Scholar] [CrossRef]
- Yu, H.; Han, C.; Ren, G.; Wu, X.; Qi, S.; Yang, B.; Cui, M.; Fan, X.; Zhu, Z.; Dai, Z.; et al. Heat wave adaptations: Unraveling the competitive fynamics between invasive Wedelia trilobata and native Wedelia chinensis. Plants 2024, 13, 3480. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Lin, X.; Peng, J.; Zhang, J.; Chen, M.; Huang, J.; Chen, L.; Sun, F.; Ding, W.; Peng, C. Why is the invasive plant Sphagneticola trilobata more resistant to high temperature than its native congener? Int. J. Mol. Sci. 2021, 22, 748. [Google Scholar] [CrossRef]
- Song, L.; Chow, W.S.; Sun, L.; Li, C.; Peng, C. Acclimation of photosystem II to high temperature in two Wedelia species from different geographical origins: Implications for biological invasions upon global warming. J. Exp. Bot. 2010, 61, 4087–4096. [Google Scholar] [CrossRef]
- Li, T.; Huang, L.X.; Yi, L.; Hong, L.; Shen, H.; Ye, W.H.; Wang, Z.M. Comparative analysis of growth and physiological traits between the natural hybrid Sphagneticola trilobata × calendulacea and its parental species. Nord. J. Bot. 2016, 34, 219–227. [Google Scholar] [CrossRef]
- Zhang, J.J.; Cai, M.L.; Chen, L.H.; Lin, X.H.; Peng, J.D.; Huang, J.D.; Shao, L.; Peng, C.L. Photosynthetic physiological and ecological responses of the invasive Sphagneticola trilobata and the native Sphagneticola calendulacea to experimental shading. Manag. Biol. Invasion. 2022, 13, 274–287. [Google Scholar] [CrossRef]
- Song, L.; Sun, L.; Shu, Z.; Li, W.; Peng, C. Physiological functions of the red leaves of Wedelia trilobata induced by high irradiance in summer. Biodivers. Sci. 2009, 17, 188. [Google Scholar] [CrossRef]
- Dai, Z.C.; Kong, F.L.; Li, Y.F.; Ullah, R.; Ali, E.A.; Gul, F.; Du, D.L.; Zhang, Y.F.; Jia, H.; Qi, S.S.; et al. Strong invasive mechanism of Wedelia trilobata via growth and physiological traits under nitrogen stress condition. Plants 2024, 13, 355. [Google Scholar] [CrossRef]
- Zhang, X.M.; He, L.X.; Xiao, X.; Lei, J.P.; Tang, M.; Lei, N.F.; Yu, F.H.; Chen, J.S. Clonal integration benefits an invader in heterogeneous environments with reciprocal patchiness of resources, but not its native congener. Front. Plant Sci. 2022, 13, 1080674. [Google Scholar] [CrossRef] [PubMed]
- Saptiningsih, E.; Dewi, K.; Santosa, S.; Purwestri, Y.A. Clonal integration of the invasive plant Wedelia trilobata (L.) Hitch in stress of flooding type combination. Int. J. Plant Biol. 2019, 10, 7526. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Pyruvate metabolism in rice coleoptiles under anaerobiosis. Plant Growth Regul. 2006, 50, 41–46. [Google Scholar]
- Kato-Noguchi, H. Submergence tolerance and ethanolic fermentation in rice coleoptiles. Plant Prod. Sci. 2001, 4, 62–65. [Google Scholar] [CrossRef]
- Armstrong, W.; Beckett, P.M.; Colmer, T.D.; Setter, T.L.; Greenway, H. Tolerance of roots to low oxygen: ‘Anoxic’ cores, the phytoglobin nitric oxide cycle and energy or oxygen sensing. J. Plant Physiol. 2019, 239, 92–108. [Google Scholar] [CrossRef]
- Banti, V.; Giuntoli, B.; Gonzali, S.; Loreti, E.; Magneschi, L.; Novi, G.; Paparelli, E.; Parlanti, S.; Pucciariello, C.; Santaniello, A.; et al. Low oxygen response mechanisms in green organisms. Int. J. Mol. Sci. 2013, 14, 4734–4761. [Google Scholar] [CrossRef]
- Evans, D.E. Aerenchyma formation. New Phytol. 2004, 161, 35–49. [Google Scholar] [CrossRef]
- Yamauchi, T.; Shimamura, S.; Nakazono, M.; Mochizuki, T. Aerenchyma formation in crop species: A review. Field Crops Res. 2013, 152, 8–16. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, G.; Ke, W.; Peng, C. Adaptation of the invasive plant Sphagneticola trilobata to flooding stress by hybridization with native relatives. Int. J. Mol. Sci. 2024, 25, 6738. [Google Scholar] [CrossRef]
- Sun, J.; Javed, Q.; Azeem, A.; Ullah, I.; Saifullah, M.; Kama, R.; Du, D. Fluctuated water depth with high nutrient concentrations promote the invasiveness of Wedelia trilobata in wetland. Ecol. Evol. 2020, 10, 832–842. [Google Scholar] [CrossRef]
- Javed, Q.; Sun, J.; Azeem, A.; Jabran, K.; Du, D. Competitive ability and plasticity of Wedelia trilobata (L.) under wetland hydrological variations. Sci. Rep. 2020, 10, 9431. [Google Scholar] [CrossRef]
- Azeem, A.; Javed, Q.; Sun, J.F.; Ullah, I.; Kama, R.; Du, D.L. Adaptation of Singapore daisy (Wedelia trilobata) to different environmental conditions; water stress, soil type and temperature. Appl. Ecol. Environ. Res. 2020, 18, 5247–5261. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, G.; Huang, J.; Peng, C. Comparison of the ability to control water loss in the detached leaves of Wedelia trilobata, Wedelia chinensis, and their hybrid. Plants 2020, 9, 1227. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, J.; Ke, W.; Cai, M.; Chen, G.; Peng, C. Responses of Sphagneticola trilobata, Sphagneticola calendulacea and their hybrid to drought stress. Int. J. Mol. Sci. 2021, 22, 11288. [Google Scholar] [CrossRef]
- Huang, P.; Xu, Z.; He, W.; Yang, H.; Li, B.; Ding, W.; Lei, Y.; Abbas, A.; Hameed, R.; Wang, C.; et al. The cooperation regulation of antioxidative system and hormone contents on physiological responses of Wedelia trilobata and Wedelia chinensis under simulated drought environment. Plants 2024, 13, 472. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Sairam, R.K.; Srivastava, G.C. Oxidative stress and antioxidative system in plants. Curr. Sci. 2002, 82, 1227–1238. [Google Scholar]
- Navrot, N.; Rouhier, N.; Gelhaye, E.; Jacquot, J.P. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant. 2007, 129, 185–195. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Negrão, S.; Schmöckel, S.M.; Tester, M.J.A.O.B. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 2017, 119, 1–11. [Google Scholar] [CrossRef]
- Salmi, M.S.; Anafjeh, E.; Daneshvar, M.; Meratan, A. Comparative response of three tropical groundcovers to salt stress. Acta Sci. Pol. Hortorum Cultus 2024, 23, 79–89. [Google Scholar] [CrossRef]
- Tyler, R.H.; Boyer, T.P.; Minami, T.; Zweng, M.M.; Reagan, J.R. Electrical conductivity of the global ocean. Earth Planets Space 2017, 69, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, B.; Huang, P.; Zhang, B.; Abbas, A.; Xu, Z.; Yin, H.; Du, D. Adaptive benefits of antioxidant and hormone fluctuations in Wedelia trilobata under simulated salt stress with nutrient conditions. Plants 2025, 14, 303. [Google Scholar] [CrossRef]
- Houghton, J. Global warming. Rep. Prog. Phys. 2005, 68, 1343. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R. Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends Plant Sci. 2021, 26, 588–599. [Google Scholar] [CrossRef]
- Song, L.; Wu, J.; Li, C.; Li, F.; Peng, S.; Chen, B. Different responses of invasive and native species to elevated CO2 concentration. Acta Oecol. 2009, 35, 128–135. [Google Scholar] [CrossRef]
- Song, L.Y.; Li, C.H.; Peng, S.L. Elevated CO2 increases energy-use efficiency of invasive Wedelia trilobata over its indigenous congener. Biol. Invasions 2010, 12, 1221–1230. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Defense molecules of the invasive plant species Ageratum conyzoides. Molecules 2024, 29, 4673. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Invasive Characteristics and Impacts of Ambrosia trifida. Agronomy 2024, 14, 2868. [Google Scholar] [CrossRef]
- Karban, R.; Myers, J.H. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst. 1989, 20, 331–348. [Google Scholar] [CrossRef]
- Maron, J.L.; Crone, E. Herbivory: Effects on plant abundance, distribution and population growth. Proc. R. Soc. B Biol. Sci. 2006, 273, 2575–2584. [Google Scholar] [CrossRef] [PubMed]
- Gong, B.; Zhang, G. Interactions between plants and herbivores: A review of plant defense. Acta Ecol. Sinica 2014, 34, 325–336. [Google Scholar] [CrossRef]
- Keane, R.M.; Crawley, M.J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 2002, 17, 164–170. [Google Scholar] [CrossRef]
- Colautti, R.I.; Ricciardi, A.; Grigorovich, I.A.; MacIsaac, H.J. Is invasion success explained by the enemy release hypothesis? Ecol. Lett. 2004, 7, 721–733. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Invasive characteristics of Robinia pseudoacacia and its impacts on the species diversity. Diversity 2024, 16, 773. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Mechanisms and impact of Acacia mearnsii invasion. Diversity 2025, 17, 553. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Invasive mechanisms of one of the world’s worst alien plant species Mimosa pigra and its management. Plants 2023, 12, 1960. [Google Scholar] [CrossRef]
- Zhai, J.; Hou, B.; Hu, F.; Yu, G.; Li, Z.; Palmer-Young, E.C.; Xiang, H.; Gao, L. Active defense strategies for invasive plants may alter the distribution pattern of pests in the invaded area. Front. Plant Sci. 2024, 15, 1428752. [Google Scholar] [CrossRef]
- Fan, Z.X.; Chen, B.M.; Liao, H.X.; Zhou, G.H.; Peng, S.L. The effect of allometric partitioning on herbivory tolerance in four species in South China. Ecol. Evol. 2019, 9, 11647–11656. [Google Scholar] [CrossRef] [PubMed]
- Firmansyah, E. Toxicity of Sphagneticola trilobata extracts against Spodoptera litura larva. IOP Conf. Ser. Earth Environ. Sci. 2021, 672, 012099. [Google Scholar] [CrossRef]
- Hanh, T.T.M.; Hang, N.T.N. Determination of species composition and effective of plant extracts to prevent the eggs-lay of fruit flies, Bactrocera spp. infesting jackfruit. J. Entomol. Zool. Stud. 2023, 11, 24–28. [Google Scholar] [CrossRef]
- Junhirun, P.; Pluempanupat, W.; Yooboon, T.; Ruttanaphan, T.; Koul, O.; Bullangpoti, V. The study of isolated alkane compounds and crude extracts from Sphagneticola trilobata (Asterales: Asteraceae) as a candidate botanical insecticide for lepidopteran larvae. J. Econom. Entomol. 2018, 111, 2699–2705. [Google Scholar] [CrossRef]
- Raj, M.R.; Chellappan, M. Antifeedant activity of aerial and root extracts of Sphagneticola trilobata (L.) Pruski on Spodoptera litura (F.) (Lepidoptera, Noctuidae). Entomon 2022, 47, 453–456. [Google Scholar] [CrossRef]
- Khater, K.S.; El-Shafiey, S.N. Insecticidal effect of essential oils from two aromatic plants against Tribolium castaneum (Herbst), (Coleoptera: Tenebrionidae). Egypt. J. Biol. Pest Control 2015, 25, 129–134. [Google Scholar]
- Peebles, J.; Gwebu, E.; Oyedeji, O.; Nanyonga, S.; Kunene, N.; Jackson, D.; Setzer, W.; Oyedeji, A. Composition and biological potential of essential oil from Thelechitonia trilobata growing in South Africa. Nat. Prod. Commun. 2011, 6, 1934578X1100601238. [Google Scholar] [CrossRef]
- Satongrod, B.; Wanna, R.; Khaengkhan, P.; Chumpawadee, T. Fumigant toxicity and bioactivity of Wedelia trilobata essential oil against cowpea weevil (Callosobruchus maculatus). Int. J. Agric. Technol. 2021, 17, 1591–1604. [Google Scholar]
- Li, D.; Liang, Z.; Guo, M.; Zhou, J.; Yang, X.; Xu, J. Study on the chemical composition and extraction technology optimization of essential oil from Wedelia trilobata (L.) Hitchc. Afr. J. Biotechn. 2012, 11, 4513–4517. [Google Scholar]
- Hassan, W.H.; Ghani, A.E.A.; Taema, E.A.; Yahya, G.; El-Sadek, M.E.; Mansour, B.; Abdel-Halim, M.S.; Arafa, A.M. Chemical profile, virtual screening, and virulence-inhibiting properties of Sphagneticola trilobata L. essential oils against Pseudomonas aeruginosa. Sci. Rep. 2025, 15, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ashour, M.; Wink, M.; Gershenzon, J. Biochemistry of terpenoids: Monoterpenes, sesquiterpenes and diterpenes. In Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism; Wink, M., Ed.; Wiley: Hoboken, NJ, USA, 2010; pp. 258–303. [Google Scholar]
- Holopainen, J.K.; Blande, J.D. Where do herbivore-induced plant volatiles go? Front. Plant Sci. 2013, 4, 185. [Google Scholar] [CrossRef]
- Simmonds, M.S. Flavonoid–insect interactions: Recent advances in our knowledge. Phytochemistry 2003, 64, 21–30. [Google Scholar] [CrossRef]
- Treutter, D. Significance of flavonoids in plant resistance: A review. Environ. Chem. Lett. 2006, 4, 147–157. [Google Scholar] [CrossRef]
- Ruan, J.; Zhou, Y.; Zhou, M.; Yan, J.; Khurshid, M.; Weng, W.; Cheng, J.; Zhang, K. Jasmonic acid signaling pathway in plants. Int. J. Mol. Sci. 2019, 20, 2479. [Google Scholar] [CrossRef]
- Wang, Y.; Mostafa, S.; Zeng, W.; Jin, B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int. J. Mol. Sci. 2021, 22, 8568. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Xu, Q.L.; Zhang, M.; Dong, L.M.; Zhang, Q.; Luo, B.; Luo, Q.W.; Tan, J.W. Bioactive caffeic acid derivatives from Wedelia trilobata. Phytochem. Lett. 2017, 19, 18–22. [Google Scholar] [CrossRef]
- Arakane, Y.; Noh, M.Y.; Asano, T.; Kramer, K.J. Tyrosine metabolism for insect cuticle pigmentation and sclerotization. In Extracellular Composite Matrices in Arthropods; Cohen, E., Moussian, B., Eds.; Springer: Berlin, Germany, 2016; pp. 165–220. [Google Scholar]
- Sterkel, M.; Oliveira, P.L. Developmental roles of tyrosine metabolism enzymes in the blood-sucking insect Rhodnius prolixus. Proc. Royal Soc. B Biol. Sci. 2017, 284, 20162607. [Google Scholar] [CrossRef] [PubMed]
- Thaler, J.S. Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature 1999, 399, 686–688. [Google Scholar] [CrossRef]
- Ament, K.; Kant, M.R.; Sabelis, M.W.; Haring, M.A.; Schuurink, R.C. Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol. 2004, 135, 2025–2037. [Google Scholar] [CrossRef]
- Bosch, M.; Wright, L.P.; Gershenzon, J.; Wasternack, C.; Hause, B.; Schaller, A.; Stintzi, A. Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato. Plant Physiol. 2014, 166, 396–410. [Google Scholar] [CrossRef]
- Hammerbacher, A.; Coutinho, T.A.; Gershenzon, J. Roles of plant volatiles in defense against microbial pathogens and microbial exploitation of volatiles. Plant Cell Environ. 2018, 42, 2827–2843. [Google Scholar] [CrossRef]
- Abramovitch, R.B.; Martin, G.B. Strategies used by bacterial pathogens to suppress plant Defenses. Curr. Opi. Plant Biol. 2004, 7, 356–364. [Google Scholar] [CrossRef]
- Rojas, C.M.; Senthil-Kumar, M.; Tzin, V.; Mysore, K.S. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front. Plant Sci. 2014, 5, 17. [Google Scholar] [CrossRef]
- Pandey, P.; Irulappan, V.; Bagavathiannan, M.V.; Senthil-Kumar, M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 2017, 8, 537. [Google Scholar] [CrossRef]
- Xiang, Y.; Javed, Q.; Wu, Y.; Bo, Y.; Dai, Z.; Huang, P.; Sun, J.; Du, D. Root exudates of Wedelia trilobata suppress soil-borne pathogenic fungi and increase its invasion. Pol. J. Environ. Stud. 2023, 32, 4865–4875. [Google Scholar] [CrossRef]
- Cubeta, M.A.; Vilgalys, R. Population biology of the Rhizoctonia solani complex. Phytopathology 1997, 87, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Ajayi-Oyetunde, O.O.; Bradley, C.A. Rhizoctonia solani: Taxonomy, population biology and management of rhizoctonia seedling disease of soybean. Plant Pathol. 2018, 67, 3–17. [Google Scholar] [CrossRef]
- Gordon, T.R. Fusarium oxysporum and the Fusarium wilt syndrome. Ann. Rev. Phytopathol. 2017, 55, 23–39. [Google Scholar] [CrossRef]
- Jiang, G.B.; Chen, S.; Zeng, R.S. Identification and fungitoxicity of volatiles of invasive plant Wedelia trilobata L. Chin. J. Eco Agric. 2008, 16, 905–908. [Google Scholar]
- Zhang, H.; Li, S.; Zhou, S.; Guo, W.; Chen, P.; Li, Y.; Wu, W. Divergence of phyllosphere microbial community assemblies and components of volatile organic compounds between the invasive Sphagneticola trilobata, the native Sphagneticola calendulacea and their hybrids, and Its implications for invasiveness. Genes 2024, 15, 955. [Google Scholar] [CrossRef]
- Li, Y.; Hao, X.; Li, S.; He, H.; Yan, X.; Chen, Y.; Dong, J.; Zhang, Z.; Li, S. Eudesmanolides from Wedelia trilobata (L.) Hitchc. as potential inducers of plant systemic acquired resistance. J. Agric. Food Chem. 2013, 61, 3884–3890. [Google Scholar] [CrossRef]
- Li, S.F.; Ding, J.Y.; Li, Y.T.; Hao, X.J.; Li, S.L. Antimicrobial diterpenoids of Wedelia trilobata (L.) Hitchc. Molecules 2016, 21, 457. [Google Scholar] [CrossRef]
- Qi, S.S.; Manoharan, B.; Dhandapani, V.; Jegadeesan, S.; Rutherford, S.; Wan, J.S.; Huang, P.; Dai, Z.C.; Du, D.L. Pathogen resistance in Sphagneticola trilobata (Singapore daisy): Molecular associations and differentially expressed genes in response to disease from a widespread fungus. Genetica 2022, 150, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, B.; Qi, S.S.; Vidalakis, G.; El-kereamy, A.; Satheesh, V.; Elango, D.; Dhandapani, V.; Dai, Z.C.D.; Du, D.L. Roles of hormone signaling on defense responses of invasive Sphagneticola trilobata to pathogen and insect herbivore. Physiol. Mol. Plant Pathol. 2025, 138, 102722. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, Z.; Li, S.; Zhou, X.; Li, J.; Su, X.; Zhang, L.; Zhang, Z.; Dong, J. Diterpenoid compounds from Wedelia trilobata induce resistance to tomato spotted wilt virus via the JA signal pathway in tobacco plants. Sci. Rep. 2019, 9, 2763. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wu, W.W.; Qi, S.S.; Cheng, H.; Li, Q.; Ran, Q.; Dai, Z.C.; Du, L.; Thomas, T. Arbuscular mycorrhizal fungi improve the growth and disease resistance of the invasive plant Wedelia trilobata. J. Appl. Microbiol. 2021, 130, 582–591. [Google Scholar] [CrossRef]
- Dai, Z.C.; Qi, S.S.; Miao, S.L.; Liu, Y.T.; Tian, Y.F.; Zhai, D.L.; Huang, P.; Du, D.L. Isolation of NBS-LRR RGAs from invasive Wedelia trilobata and the calculation of evolutionary rates to understand bioinvasion from a molecular evolution perspective. Biochem. Syst. Ecol. 2015, 61, 19–27. [Google Scholar] [CrossRef]
- Hausbeck, M.K.; Lamour, K.H. Phytophthora capsici on vegetable crops: Research progress and management challenges. Plant Dis. 2004, 88, 1292–1303. [Google Scholar] [CrossRef]
- Raskin, I. Role of salicylic acid in plants. Ann. Rev. Plant Biol. 1992, 43, 439–463. [Google Scholar] [CrossRef]
- Mauch-Mani, B.; Métraux, J.P. Salicylic acid and systemic acquired resistance to pathogen attack. Ann. Bot. 1998, 82, 535–540. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Defensive molecules momilactones A and B: Function, biosynthesis, induction and occurrence. Toxins 2023, 15, 241. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Nakamura, K.; Ohno, O.; Suenaga, K.; Okuda, N. Asparagus decline: Autotoxicity and autotoxic compounds in asparagus rhizomes. Plant Physiol. 2017, 213, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Ota, K.; Ino, T. Release of momilactone A and B from rice plants into the rhizosphere and its bioactivities. Allelopathy J. 2008, 22, 321–328. [Google Scholar]
- Rice, E.L. Allelopathy, 2nd ed.; Academic Press: Orlando, FL, USA, 1984; pp. 1–422. [Google Scholar]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef]
- Belz, R.G. Allelopathy in crop/weed interactions—An update. Pest. Manag. Sci. 2007, 63, 308–326. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kurniadie, D. The invasive mechanisms of the noxious alien plant species Bidens pilosa. Plants 2024, 13, 356. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Allelopathy and allelochemicals of Imperata cylindrica as an invasive plant species. Plants 2022, 11, 2551. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H. The impact and invasive mechanisms of Pueraria montana var. lobata, one of the world’s worst alien species. Plants 2023, 12, 3066. [Google Scholar]
- Kato-Noguchi, H. Bioactive compounds involved in the formation of the sparse understory vegetation in pine forests. Curr. Org. Chem. 2021, 25, 1731–1738. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Suzuki, M.; Noguchi, K.; Suenaga, K.; Laosinwattana, C. A potent phytotoxic substance in Aglaia odorata Lour. Chem. Biodiversity 2016, 13, 549–554. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Mizutani, J.; Hasegawa, K. Allelopathy of oats. II. Allelochemical effect of L-Tryptophan and its concentration in oat root exudates. J. Chem. Ecol. 1994, 20, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Bich, T.T.N.; Kato-Noguchi, H. Allelopathic potential of two aquatic plants, duckweed (Lemna minor L.) and water lettuce (Pistia stratiotes L.), on terrestrial plant species. Aqua. Bot. 2012, 103, 30–36. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Tanaka, Y.; Murakami, T.; Yamamura, S.; Fujihara, S. Isolation and identification of an allelopathic substance from peel of Citrus junos. Phytochemistry 2002, 61, 849–853. [Google Scholar]
- Kato-Noguchi, H. Convergent or parallel molecular evolution of momilactone A and B: Potent allelochemicals, momilactones have been found only in rice and the moss Hypnum plumaeforme. J. Plant Physiol. 2011, 168, 1511–1516. [Google Scholar] [CrossRef]
- Hernández-Aro, M.; Hernández-Pérez, R.; Guillén-Sánchez, D.; Torres-Garcia, S. Allelopathic influence of residues from Sphagneticola trilobata on weeds and crops. Planta Daninha 2016, 34, 81–90. [Google Scholar] [CrossRef]
- Ullah, M.S.; Sun, J.; Rutherford, S.; Ullah, I.; Javed, Q.; Rasool, G.; Ajmal, M.; Du, D. Evaluation of the allelopathic effects of leachate from an invasive species (Wedelia triobata) on its own growth and performance and those of a native congener (W. chinensis). Biol. Invasions 2021, 23, 3135–3149. [Google Scholar] [CrossRef]
- Jose, A.M.; Gopi, A.; Shaji, F. Allelopathic effects of aqueous leaf extracts of two invasive plants [Chromolaena odorata (L.) R.M. King & H. Rob. and Sphagneticola trilobata (L.) Pruski] on seed germination of Amaranthus cruentus L. J. Adv. Sci. Res. 2020, 11, 198–201. [Google Scholar]
- Dai, Z.C.; Wang, X.Y.; Qi, S.S.; Cai, H.H.; Sun, J.F.; Huang, P.; Du, D.L. Effects of leaf litter on inter-specific competitive ability of the invasive plant Wedelia trilobata. Ecol. Res. 2016, 31, 367–374. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Hu, B.Q.; Hu, G. Assessment of allelopathic potential of Wedelia trilobata on the germination, seedling growth and chlorophyll content of rape. Adv. Mater. Res. 2013, 807, 719–722. [Google Scholar] [CrossRef]
- Shahena, S.; Rajan, M.; Chandran, V.; Mathew, L. Allelopathic effect of Wedelia trilobata L., on the germination and growth of Cicer arietinum, Vigna unguiculata, and Vigna radiata seedlings. J. Appl. Biol. Biotechnol. 2021, 9, 93–114. [Google Scholar]
- Perera, K.R.S.; Ratnayake, R.M.C.S.; Epa, U.P.K. Allelopathic effects of the invasive plant Wedelia (Sphagneticola trilobata L.) aqueous extract on common beans (Phaseolus vulgaris L.). J. Exp. Biol. Agric. Sci. 2023, 11, 542–549. [Google Scholar] [CrossRef]
- Azizan, K.A.; Ibrahim, S.; Ghani, N.H.A.; Nawawi, M.F. Metabolomics approach to investigate phytotoxic effects of Wedelia trilobata leaves, litter and soil. Plant Biosyst. 2019, 153, 691–699. [Google Scholar] [CrossRef]
- Azizan, K.A.; Ghani, N.H.A.; Nawawi, M.F. Discrimination and prediction of the chemical composition and the phytotoxic activity of Wedelia trilobata essential oil (EO) using metabolomics and chemometrics. Plant Biosyst. 2022, 156, 217–231. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Allelopathy and allelochemicals of Solidago canadensis L. and S. altissima L. for their naturalization. Plants 2022, 11, 3235. [Google Scholar] [CrossRef]
- Macías, F.A.; Mejías, F.J.; Molinillo, J.M. Recent advances in allelopathy for weed control: From knowledge to applications. Pest Manag. Sci. 2019, 75, 2413–2436. [Google Scholar] [CrossRef]
- Khamare, Y.; Chen, J.; Marble, S.C. Allelopathy and its application as a weed management tool: A review. Front. Plant Sci. 2022, 13, 1034649. [Google Scholar] [CrossRef]
- Uyun, Q.; Respatie, D.W.; Indradewa, D. Unveiling the allelopathic potential of Wedelia Leaf extract as a bioherbicide against Purple nutsedge: A promising strategy for sustainable weed management. Sustainability 2024, 16, 479. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. The invasive mechanism and impact of Arundo donax, one of the world’s 100 worst invasive alien species. Plants 2025, 14, 2175. [Google Scholar] [CrossRef]
- Jiménez-Ruiz, J.; Hardion, L.; Del Monte, J.P.; Vila, B.; Santín-Montanyá, M.I. Monographs on invasive plants in Europe, no. 4: Arundo donax L. Bot. Lett. 2021, 168, 131–151. [Google Scholar]
- Kato-Noguchi, H.; Kurniadie, D. Allelopathy and allelochemicals of Leucaena leucocephala as an invasive plant species. Plants 2022, 11, 1672. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H. Allelopathy of knotweeds as invasive plants. Plants 2022, 11, 3. [Google Scholar] [CrossRef] [PubMed]


| Characteristic | References |
|---|---|
| High reproduction | |
| [2,3,8,34,35,36] |
| [30,32,33] |
| Rapid growth and active genet formation | |
| [37,38] |
| [39,40,41,42] |
| [42,44,45] |
| High adaptative ability to different conditions | |
| [49,50,51] |
| [52,53] |
| [54,55,61,62,63] |
| [64,65,66] |
| [67,68] |
| [76,77,78] |
| [79,80,81,82,87,89] |
| [92,93] |
| High defense ability against herbivory, pathogens, and competitive plant species | |
| [104,105,106,107,108,109,110,111,112] |
| [131,132,133,134,135] |
| [104,139,140,141] |
| [110,111,112,113,114,115,116,121,136,137,138] |
| [162,163,164,165,166,167,168,169,170,174] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato-Noguchi, H.; Kato, M. The Mechanisms of Sphagneticola trilobata Invasion as One of the Most Aggressive Invasive Plant Species. Diversity 2025, 17, 698. https://doi.org/10.3390/d17100698
Kato-Noguchi H, Kato M. The Mechanisms of Sphagneticola trilobata Invasion as One of the Most Aggressive Invasive Plant Species. Diversity. 2025; 17(10):698. https://doi.org/10.3390/d17100698
Chicago/Turabian StyleKato-Noguchi, Hisashi, and Midori Kato. 2025. "The Mechanisms of Sphagneticola trilobata Invasion as One of the Most Aggressive Invasive Plant Species" Diversity 17, no. 10: 698. https://doi.org/10.3390/d17100698
APA StyleKato-Noguchi, H., & Kato, M. (2025). The Mechanisms of Sphagneticola trilobata Invasion as One of the Most Aggressive Invasive Plant Species. Diversity, 17(10), 698. https://doi.org/10.3390/d17100698

