When Shape Defines: Geometric Morphometrics Applied to the Taxonomic Identification of Leaf-Footed Bugs of the Genus Acanthocephala (Hemiptera: Coreidae)
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Data Collection
2.2. Image Processing and Landmarking
2.3. Multivariate Shape Analyses
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schuh, R.T.; Slater, J.A. True Bugs of the World (Hemiptera: Heteroptera): Classification and Natural History; Cornell University Press: New York, NY, USA, 1995; Available online: https://onlinelibrary.wiley.com/doi/10.1002/9781118945568.ch10 (accessed on 25 September 2025).
- Henry, T.J. Biodiversity of heteroptera. Insect Biodivers. Sci. Soc. 2017, 279–335. [Google Scholar]
- Forthman, M.; Phan, H.; Miller, C.W.; Kimball, R.T. Phylogenetic placement of the leaf-footed bug tribes Agriopocorini, Amorbini, and Manocoreini (Heteroptera: Coreidae) using ultraconserved elements. Zool. J. Linn. Soc. 2024, 202, zlae024. [Google Scholar] [CrossRef]
- Fernandes, J.A.M.; Mitchell, P.L.; Livermore, L.; Nikunlassi, M. Leaf-footed bugs (Coreidae). In True Bugs (Heteroptera) of the Neotropics; Springer: Dordrecht, The Netherlands, 2015; pp. 549–605. [Google Scholar]
- Brailovsky, H.; Barrera, E. Illustrated key to the species in the genus Sephina (Hemiptera: Heteroptera: Coreidae: Coreinae: Spartocerini), with descriptions of three new species and new distributional records. Zootaxa 2021, 5048, 77–98. [Google Scholar] [CrossRef]
- Olivera, L.; Melo, M.C.; Dellapé, P.M. Revisiting the South American Acanthocephalini (Hemiptera, Coreidae): Spilopleura Stål (status novum). Evol. Syst. 2023, 7, 35–50. [Google Scholar] [CrossRef]
- Olivera, L.; Dellapé, P.M.; Melo, M.C. Six new species and new distributional records of Acanthocephala (Hemiptera: Coreidae) from Central and North America. Integr. Syst. Stuttg. Contrib. Nat. Hist. 2024, 7, 41–60. [Google Scholar] [CrossRef]
- McPherson, J.; Packauskas, R.J.; Sites, R.W.; Taylor, S.J.; Bundy, C.S.; Bradshaw, J.D.; Mitchell, P.L. Review of Acanthocephala (Hemiptera: Heteroptera: Coreidae) of America north of Mexico with a key to species. Zootaxa 2011, 2835, 30–40. [Google Scholar] [CrossRef]
- Olivera, L. Revisión Filogenética y Biogeografía de Acanthocephala Laporte 1833 (Hemiptera: Heteroptera: Coreidae). Ph.D. Thesis, Universidad Nacional de La Plata, La Plata, Argentina, 2022. [Google Scholar]
- Vargas, E.; Espitia, C.; Patiño, C.; Pinto, N.; Aguilera, G.; Jaramillo, C.; Bargues, M.D.; Guhl, F. Genetic structure of Triatoma venosa (Hemiptera: Reduviidae): Molecular and morphometric evidence. Memórias Inst. Oswaldo Cruz 2006, 101, 39–45. [Google Scholar] [CrossRef]
- Nattero, J.; Piccinali, R.V.; Lopes, C.M.; Hernández, M.L.; Abrahan, L.; Lobbia, P.A.; Rodríguez, C.S.; de la Fuente, A.L.C. Morphometric variability among the species of the Sordida subcomplex (Hemiptera: Reduviidae: Triatominae): Evidence for differentiation across the distribution range of Triatoma sordida. Parasites Vectors 2017, 10, 412. [Google Scholar] [CrossRef] [PubMed]
- Smith-Pardo, A.H.; Lingafelter, S.W.; Laroze, D.; Piñeiro-Gonzalez, A.; Benítez, H.A. Shape as a Key to Taxonomy: Morphometric Analysis of Tetropium Species (Coleoptera: Cerambycidae). Insects 2025, 16, 386. [Google Scholar] [CrossRef]
- Zúniga-Reinoso, Á.; Benítez, H.A. The overrated use of the morphological cryptic species concept: An example with Nyctelia darkbeetles (Coleoptera: Tenebrionidae) using geometric morphometrics. Zool. Anz.-A J. Comp. Zool. 2015, 255, 47–53. [Google Scholar] [CrossRef]
- Lemic, D.; Benítez, H.A.; Bažok, R. Intercontinental effect on sexual shape dimorphism and allometric relationships in the beetle pest Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae). Zool. Anz.-A J. Comp. Zool. 2014, 253, 203–206. [Google Scholar] [CrossRef]
- Deku, G.; Combey, R.; Doggett, S.L. Morphometrics of the Tropical Bed Bug (Hemiptera: Cimicidae) From Cape Coast, Ghana. J. Med. Entomol. 2022, 59, 1534–1547. [Google Scholar] [CrossRef] [PubMed]
- Lázari Cacini, G.; de Oliveira, J.; Belintani, T.; dos Santos Souza, É.; Olaia, N.; Pinto, M.C.; da Rosa, J.A. Immature instars of three species of Rhodnius Stål, 1859 (Hemiptera, Reduviidae, Triatominae): Morphology, morphometry, and taxonomic implications. Parasites Vectors 2022, 15, 91. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.C.P.; Dale, C.; Galvão, C. Geometric morphometry of the Rhodniusprolixus complex (Hemiptera, Triatominae): Patterns of intraspecific and interspecific allometry and their taxonomic implications. ZooKeys 2024, 1202, 213. [Google Scholar] [CrossRef] [PubMed]
- Li, R.-R.; Zhang, H.-F. Geometric morphometric analysis of Eysarcoris guttiger, E. annamita and E. ventralis (Hemiptera: Pentatomidae). Zool. Syst. 2017, 42, 90–101. [Google Scholar]
- Li, R.; Li, M.; Li, S.; Zhang, H. Further geometric morphometric analysis on the genus Eysarcoris (Hemiptera: Pentatomidae) from China. Zool. Syst. 2017, 42, 446–462. [Google Scholar]
- Galindo-Malagón, X.A.; Morales, I.; Ospina-Garcés, S.M. Morphometric tools to solve species complexes: The case of Rhagovelia angustipes (Hemiptera: Veliidae). Arthropod Struct. Dev. 2022, 70, 101192. [Google Scholar] [CrossRef]
- Mizell. Stink Bug Management Using Trap Crops in Organic Farming. 2012. Available online: https://eorganic.org/node/6135 (accessed on 25 September 2025).
- Rohlf, F.J. The tps series of software. Hystrix 2015, 26, 9–12. [Google Scholar]
- Rohlf, F.J.; Slice, D. Extensions of the Procustes methods for the optimal superimposition of landmarks. Syst. Zool. 1990, 39, 40–59. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Klingenberg, C.P. Visualizations in geometric morphometrics: How to read and how to make graphs showing shape changes. Hystrix-Ital. J. Mammal. 2013, 24, 15–24. [Google Scholar] [CrossRef]
- Monteiro, L.R. Multivariate regression models and geometric morphometrics: The search for causal factors in the analysis of shape. Syst. Biol. 1999, 48, 192–199. [Google Scholar] [CrossRef]
- Klingenberg, C. Analyzing Fluctuating Asymmetry with Geometric Morphometrics: Concepts, Methods, and Applications. Symmetry 2015, 7, 843–934. [Google Scholar] [CrossRef]
- Klingenberg, C.P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 2011, 11, 353–357. [Google Scholar] [CrossRef]
- Adams, D.C.; Otárola-Castillo, E. Geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 2013, 4, 393–399. [Google Scholar] [CrossRef]
- Withrow, J.R.; Smith, E.L.; Koch, F.H.; Yemshanov, D. Managing outbreaks of invasive species—A new method to prioritize preemptive quarantine efforts across large geographic regions. J. Environ. Manag. 2015, 150, 367–377. [Google Scholar] [CrossRef]
- Zhang, M.; Ruan, Y.; Bai, M.; Chen, X.; Li, L.; Yang, X.; Meng, Z.; Liu, Y.; Du, X. Geometric Morphometric Analysis of Genus Chaetocnema (Coleoptera: Chrysomelidae: Alticini) with Insights on Its Subgenera Classification and Morphological Diversity. Diversity 2023, 15, 918. [Google Scholar] [CrossRef]
- Zhang, M.; Ruan, Y.; Wan, X.; Tong, Y.; Yang, X.; Ming, B. Geometric morphometric analysis of the pronotum and elytron in stag beetles: Insight into its diversity and evolution. Zookeys 2019, 833, 21–40. [Google Scholar] [CrossRef]
- Cáceres, J.S.D.; Pérez, L.M.; Grossi, P.C.; Benitez, H. Defining generic limits in Syndesini MacLeay, 1819 (Coleoptera: Lucanidae: Syndesinae) through taxonomy and geometric morphometrics. Zool. Anz. 2023, 305, 28–41. [Google Scholar] [CrossRef]
- Jaramillo-O, N.; Dujardin, J.P.; Calle-Londoño, D.; Fonseca-González, I. Geometric morphometrics for the taxonomy of 11 species of A nopheles (N yssorhynchus) mosquitoes. Med. Vet. Entomol. 2015, 29, 26–36. [Google Scholar] [CrossRef]
- Cruz, D.D.; Ospina-Garcés, S.M.; Arellano, E.; Ibarra-Cerdeña, C.N.; Nava-García, E.; Alcalá, R. Geometric morphometrics and ecological niche modelling for delimitation of Triatoma pallidipennis (Hemiptera: Reduviidae: Triatominae) haplogroups. Curr. Res. Parasitol. Vector-Borne Dis. 2023, 3, 100119. [Google Scholar] [CrossRef]
- Chaiphongpachara, T.; Changbunjong, T.; Laojun, S.; Sumruayphol, S.; Suwandittakul, N.; Kuntawong, K.; Pimsuka, S. Geometric morphometric and molecular techniques for discriminating among three cryptic species of the Anopheles barbirostris complex (Diptera: Culicidae) in Thailand. Heliyon 2022, 8, e11261. [Google Scholar] [CrossRef] [PubMed]
- Changbunjong, T.; Ruangsittichai, J.; Duvallet, G.; Pont, A.C. Molecular Identification and Geometric Morphometric Analysis of Haematobosca aberrans (Diptera: Muscidae). Insects 2020, 11, 451. [Google Scholar] [CrossRef] [PubMed]
- Laojun, S.; Changbunjong, T.; Sumruayphol, S.; Pimsuka, S.; Chaiphongpachara, T. Wing geometric morphometrics and DNA barcoding to distinguish three closely related species of Armigeres mosquitoes (Diptera: Culicidae) in Thailand. Vet. Parasitol. 2024, 325, 110092. [Google Scholar] [CrossRef] [PubMed]
- Catalano, S.A.; Goloboff, P.A.; Giannini, N.P. Phylogenetic morphometrics (I): The use of landmark data in a phylogenetic framework. Cladistics 2010, 26, 539–549. [Google Scholar] [CrossRef]
- Catalano, S.A.; Torres, A. Phylogenetic inference based on landmark data in 41 empirical data sets. Zool. Scr. 2017, 46, 1–11. [Google Scholar] [CrossRef]
- Augustin, S.; Boonham, N.; De Kogel, W.J.; Donner, P.; Faccoli, M.; Lees, D.C.; Marini, L.; Mori, N.; Petrucco Toffolo, E.; Quilici, S.; et al. A review of pest surveillance techniques for detecting quarantine pests in Europe. EPPO Bull. 2012, 42, 515–551. [Google Scholar] [CrossRef]
Species | Abbreviature |
---|---|
A. alata | alat |
A. bicoloripes | bico |
A. declivis | decl |
A. distanti | dist |
A. femorata | femo |
A. latiantennata | lati |
A. latipes | laty |
A. mercur | merc |
A. nigra | nigr |
A. terminalis | term |
alat | bico | decl | dist | femo | lati | laty | merc | nigr | term | |
---|---|---|---|---|---|---|---|---|---|---|
bico | 13.96 | |||||||||
p-value | 0.005 | |||||||||
decl | 7.5888 | 9.724 | ||||||||
p-value | 0.0002 | 0.0078 | ||||||||
dist | 14.4782 | 8.6504 | 11.8618 | |||||||
p-value | <0.0001 | 0.0036 | <0.0001 | |||||||
femo | 9.8279 | 8.3621 | 8.7298 | 9.9523 | ||||||
p-value | 0.0002 | 0.0009 | 0.0002 | 0.0001 | ||||||
lati | 9.9435 | 6.8861 | 7.6388 | 8.8345 | 5.0822 | |||||
p-value | 0.0025 | 0.0506 | 0.0031 | 0.0003 | 0.019 | |||||
laty | 13.4195 | 8.2347 | 10.4011 | 8.6758 | 6.5717 | 6.903 | ||||
p-value | <0.0001 | 0.0167 | 0.0005 | 0.0007 | 0.0005 | 0.0194 | ||||
merc | 12.6694 | 6.8178 | 9.732 | 11.844 | 7.5256 | 7.0322 | 9.1256 | |||
p-value | 0.0018 | 0.046 | 0.007 | 0.0027 | 0.0007 | 0.0241 | 0.0266 | |||
nigr | 13.9692 | 7.3218 | 10.69 | 9.8336 | 8.185 | 6.7722 | 7.8795 | 8.2783 | ||
p-value | 0.0003 | 0.0099 | 0.0042 | 0.0074 | 0.0045 | 0.058 | 0.0231 | 0.0125 | ||
term | 11.0042 | 7.6838 | 8.8747 | 8.4728 | 6.0205 | 5.0588 | 6.4682 | 6.8912 | 7.126 | |
p-value | 0.0009 | 0.0461 | 0.0049 | 0.0014 | 0.0018 | 0.1999 | 0.021 | 0.0393 | 0.0431 | |
thom | 10.6407 | 7.8757 | 8.6237 | 7.4011 | 6.9412 | 6.6104 | 7.6667 | 9.4855 | 7.7883 | 6.6333 |
p-value | 0.0009 | 0.0006 | 0.0001 | <0.0001 | <0.0001 | 0.0009 | <0.0001 | 0.0016 | 0.0003 | 0.0004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith-Pardo, A.H.; Hernandez-Martelo, J.; Suazo, M.J.; Pérez, L.M.; Peña-Aliaga, C.; Garcia, J.S.; Saravia, M.; Acuña-Valenzuela, T.; Benítez, H.A.; Correa, M. When Shape Defines: Geometric Morphometrics Applied to the Taxonomic Identification of Leaf-Footed Bugs of the Genus Acanthocephala (Hemiptera: Coreidae). Diversity 2025, 17, 680. https://doi.org/10.3390/d17100680
Smith-Pardo AH, Hernandez-Martelo J, Suazo MJ, Pérez LM, Peña-Aliaga C, Garcia JS, Saravia M, Acuña-Valenzuela T, Benítez HA, Correa M. When Shape Defines: Geometric Morphometrics Applied to the Taxonomic Identification of Leaf-Footed Bugs of the Genus Acanthocephala (Hemiptera: Coreidae). Diversity. 2025; 17(10):680. https://doi.org/10.3390/d17100680
Chicago/Turabian StyleSmith-Pardo, Allan H., Jordan Hernandez-Martelo, Manuel J. Suazo, Laura M. Pérez, Camila Peña-Aliaga, Juan Sebastian Garcia, Monserrat Saravia, Thania Acuña-Valenzuela, Hugo A. Benítez, and Margarita Correa. 2025. "When Shape Defines: Geometric Morphometrics Applied to the Taxonomic Identification of Leaf-Footed Bugs of the Genus Acanthocephala (Hemiptera: Coreidae)" Diversity 17, no. 10: 680. https://doi.org/10.3390/d17100680
APA StyleSmith-Pardo, A. H., Hernandez-Martelo, J., Suazo, M. J., Pérez, L. M., Peña-Aliaga, C., Garcia, J. S., Saravia, M., Acuña-Valenzuela, T., Benítez, H. A., & Correa, M. (2025). When Shape Defines: Geometric Morphometrics Applied to the Taxonomic Identification of Leaf-Footed Bugs of the Genus Acanthocephala (Hemiptera: Coreidae). Diversity, 17(10), 680. https://doi.org/10.3390/d17100680