Four Novel Species of Kastovskya (Coleofasciculaceae, Cyanobacteriota) from Three Continents with a Taxonomic Revision of Symplocastrum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Collection
2.2. Isolation and Culture
2.3. Morphological Characterization
2.4. Molecular Characterization
2.5. Phylogenetic Analyses
3. Results
3.1. Descriptions of Species in the Genus Kastovskya
3.2. Phylogenetic Analyses
3.2.1. Analysis of the 16S rRNA Gene Sequences
3.2.2. Analysis of the 16S–23S ITS rRNA Region
3.2.3. Analysis of the ITS Secondary Structures
3.3. Morphological Analysis
3.4. Ecological and Biogeographical Considerations
3.5. Genus Symplocastrum
4. Discussion
4.1. Polyphasic Approach
4.2. Molecular Analyses
4.3. ITS Structures
4.4. Morphology, Ecology, and Biogeography
4.5. Further Afield
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johansen, J.R. Cryptogamic crusts of semiarid and arid lands of North America. J. Phycol. 1993, 29, 140–147. [Google Scholar] [CrossRef]
- Weber, B.; Belnap, J.; Büdel, B.; Antoninka, A.J.; Barger, N.N.; Chaudhary, V.B.; Darrouzet-Nardi, A.; Eldridge, D.J.; Faist, A.M.; Ferrenberg, S.; et al. What is a biocrust? A refined, contemporary definition for a broadening research community. Biol. Rev. 2022, 97, 1768–1785. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.D.; Johansen, J.R. Microbiotic crusts and ecosystem processes. Crit. Rev. Plant Sci. 1999, 18, 183–225. [Google Scholar] [CrossRef]
- Harper, K.T.; Marble, J.R. Effect of timing of grazing on soil surface cryptogamic communities in a Great Basin low-shrub desert: A preliminary report. Great Basin Nat. 1989, 49, 104–107. [Google Scholar]
- Kleiner, E.F.; Harper, K.T. Environment and community organization in the grasslands of Canyonlands National Park. Ecology 1972, 53, 299–309. [Google Scholar] [CrossRef]
- West, N.E. Structure and function of microphytic soil crusts in wildland ecosystems of arid to semiarid regions. Adv. Ecol. Res. 1990, 20, 179–223. [Google Scholar] [CrossRef]
- Booth, W.E. Algae as pioneers in plant succession and their importance in erosion control. Ecology 1941, 22, 38–46. [Google Scholar] [CrossRef]
- Fletcher, J.E.; Martin, W.P. Some effects of algae and molds in the rain-crust of desert soils. Ecology 1948, 29, 95–100. [Google Scholar] [CrossRef]
- Fritsch, F.E. The terrestrial alga. J. Ecol. 1922, 10, 220–236. [Google Scholar] [CrossRef]
- Navarro-González, R.; Rainey, F.A.; Molina, P.; Bagaley, D.R.; Hollen, B.J.; De La Rosa, J.; Small, A.M.; Quinn, R.C.; Grunthaner, F.J.; Cáceres, L.; et al. Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 2003, 302, 1018–1021. [Google Scholar] [CrossRef]
- Kaštovský, J. Welcome to the jungle!: An overview of modern taxonomy of cyanobacteria. Hydrobiologia 2024, 851, 1063–1077. [Google Scholar] [CrossRef]
- Strunecký, O.; Ivanova, A.P. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J. Phycol. 2023, 59, 12–51. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.O.; Romanis, C.S.; Dvořák, P.; Foss, A.J.; Gibson, Q.A.; Villanueva, C.D.; Durden, W.N.; Garvey, A.D.; Jenkins, P.; Hašler, P.; et al. A new species of cryptic cyanobacteria isolated from the epidermis of a bottlenose dolphin and as a bioaerosol. Phycologia 2021, 60, 603–618. [Google Scholar] [CrossRef]
- Jusko, B.M.; Johansen, J.R. Description of six new cyanobacterial species from soil biocrusts on San Nicolas Island, California, in three genera previously restricted to Brazil. J. Phycol. 2024, 60, 133–151. [Google Scholar] [CrossRef] [PubMed]
- Shalygin, S.; Shalygina, R.; Redkina, V.V.; Gargas, C.B.; Johansen, J.R. Description of Stenomitos kolaenensis and S. hiloensis sp. nov. (Leptolyngbyaceae, Cyanobacteria) with an emendation of the genus. Phytotaxa 2020, 440, 108–128. [Google Scholar] [CrossRef]
- Schwabe, G.H. Zur autotrophen vegetation in ariden Böden, Blaualgen und Lebensraum IV. Osterr. Bot. Z. 1960, 107, 281–309. [Google Scholar] [CrossRef]
- Mühlsteinová, R.; Johansen, J.R.; Pietrasiak, N.; Martin, M.P. Polyphasic characterization of Kastovskya adunca gen. nov. et comb. nov. (Cyanobacteria: Oscillatoriales), from the desert soils of the Atacama Desert, Chile. Phytotaxa 2014, 163, 216–228. [Google Scholar] [CrossRef]
- Flechtner, V.R.; Johansen, J.R.; Belnap, J. The biological soil crusts of the San Nicholas Island: Enigmatic algae from a geographically isolated ecosystem. West. N. Am. Nat. 2008, 68, 405–436. [Google Scholar] [CrossRef]
- Alvarenga, D.O.; Andreote, A.P.D.; Branco, L.H.Z.; Delbaje, E.; Cruz, R.B.; de Mello Varani, A.; Fiore, M.F. Amazonocrinis nigriterrae gen. nov., sp. nov., Atlanticothrix silvestris gen. nov., sp. nov. and Denronalium phyllosphericum gen. nov., nostocacean cyanobacteria from Brazilian environments. Int. J. Syst. Evol. Microbiol. 2021, 71, 004811. [Google Scholar] [CrossRef]
- Machado de Lima, N.M.; Branco, L.H.Z. Biological soil crusts: New genera and species of cyanobacteria from Brazilian semi-arid regions. Phytotaxa 2020, 470, 263–281. [Google Scholar] [CrossRef]
- Johansen, J.R.; Jusko, B.M.; Mesfin, M.; Luknis, M.A.; Wain, A.; Hoyer, W.F.; Hasenstab-Lehman, K. Pseudoacaryochloris (Acaryochloridaceae, Cyanobacteria) species from Africa and North America: A disjunct distribution suggesting transatlantic wind dispersal. West. N. Am. Nat. 2024; 84, in press. [Google Scholar]
- Mehda, S.; Muñoz-Martín, M.Á.; Oustani, M.; Hamdi-Aïssa, B.; Perona, E.; Mateo, P. Lithic cyanobacterial communities in the polyextreme Sahara Desert: Implications for the search for the limits of life. Environ. Microbiol. 2022, 24, 451–474. [Google Scholar] [CrossRef]
- Mehda, S.; Perona, E.; Mateo, P.; Muñoz-Martín, M.Á. Validation of “Pseudacaryochloris sahariensis” nom. inval. (Acaryochloridaceae, Cyanophyceae) isolated from desert rocks in the Sahara. Not. Algarum 2023, 308, 2, ISSN: 2009-8987. [Google Scholar]
- Osorio-Santos, K.; Pietrasiak, N.; Bohunická, M.; Miscoe, L.H.; Kováčik, L.; Martin, M.P.; Johansen, J.R. Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): Taxonomically recognizing cryptic diversification. Eur. J. Phycol. 2014, 49, 450–470. [Google Scholar] [CrossRef]
- Pietrasiak, N.; Osorio-Santos, K.; Shalygin, S.; Martin, M.P.; Johansen, J.R. When is a lineage a species? A case study in Myxacorys gen. nov. (Synechococcales: Cyanobacteria) with the description of two new species from the Americas. J. Phycol. 2019, 55, 976–996. [Google Scholar] [CrossRef]
- Pietrasiak, N.; Reeve, S.; Osorio-Santos, K.; Lipson, D.A.; Johansen, J.R. Trichotorquatus gen. nov.—A new genus of soil cyanobacteria from American drylands. J. Phycol 2021, 57, 886–902. [Google Scholar] [CrossRef] [PubMed]
- Mühlsteinová, R.; Johansen, J.R.; Pietrasiak, N.; Martin, M.P.; Osorio-Santos, K.; Warren, S.D. Polyphasic characterization of Trichocoleus desertorum sp. nov. (Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus Trichocoleus. Phytotaxa 2014, 163, 241–261. [Google Scholar] [CrossRef]
- Moreira-Fernandes, V.; Giraldo-Silva, A.; Roush, D.; GarciaPichel, F. Coleofasciculaceae, a monophyletic home for the Microcoleus steenstrupii complex and other desiccation tolerant filamentous cyanobacteria. J. Phycol. 2021, 57, 1563–1579. [Google Scholar] [CrossRef]
- Kirchner, O. Schizophyta: Schizophyceae. In Die Natürlichen Pflanzenfamilien; Engler, A., Prantl, K., Eds.; Figures 48–62; Wilhelm Engelmann: Leipzig, Germany, 1898; Volume 1, pp. 45–92. [Google Scholar]
- Pietrasiak, N.; Mühlsteinová, R.; Siegesmund, M.; Johansen, J.R. Phylogenetic placement of Symplocastrum (Phormidiaceae, Cyanobacteria) with description of two new species: S. flechtnerae and S. torsivum. Phycologia 2014, 53, 529–541. [Google Scholar] [CrossRef]
- Patzelt, D.J.; Hodač, L.; Friedl, T.; Pietrasiak, N.; Johansen, J.R. Biodiversity of soil cyanobacteria in the hyper-arid Atacama Desert, Chile. J. Phycol. 2014, 50, 698–710. [Google Scholar] [CrossRef]
- Mehda, S.; Muñoz-Martin, M.A.; Oustani, M.; Hamdi-Aïssa, B.; Perona, E.; Mateo, P. Microenvironmental conditions drive the differential cyanobacterial community composition of biocrusts from the Sahara Desert. Microorganisms 2021, 9, 487. [Google Scholar] [CrossRef]
- Carmichael, W. Isolation, culture, and toxicity testing of toxic freshwater cyanobacteria (blue-green algae). In Fundamental Research in Homogenous Catalysis; Shilor, V., Ed.; Gordon & Breach Publ: New York, NY, USA, 1986; Volume 3, pp. 1249–1262. [Google Scholar]
- Rippka, R.; Deruelles, J.; Waterbury, J.B.; Herdman, M.; Stanier, R.Y. Generic assignments, stain histories and properties of pure cultures of cyanobacteria. Microbiology 1979, 111, 1–61. [Google Scholar] [CrossRef]
- Becerra-Absalón, I.; Muñoz-Martín, M.Á.; Montejano, G.; Mateo, P. Differences in the cyanobacterial community composition of biocrusts from the drylands of central Mexico. Are there endemic species? Front. Microbiol. 2019, 10, 937. [Google Scholar] [CrossRef]
- Loza, V.; Perona, E.; Mateo, P. Molecular fingerprinting of cyanobacteria from river biofilms as a water quality monitoring tool. Appl. Environ. Microbiol. 2013, 79, 1459–1472. [Google Scholar] [CrossRef]
- Wilmotte, A.; Van der Auwera, G.; De Wachter, R. Structure of the 16 S ribosomal RNA of the thermophilic cyanobacterium chlorogloeopsis HTF (‘mastigocladus laminosus HTF’) strain PCC7518, and phylogenetic analysis. FEBS Lett. 1993, 317, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Flechtner, V.R.; Boyer, S.L.; Johansen, J.R.; De Noble, M.L. Spirirestis rafaelensis gen. et sp. nov. (Cyanophyceae), a new cyanobacterial genus from arid soils. Nova Hedwig. 2002, 74, 1–24. [Google Scholar] [CrossRef]
- Nübel, U.; Garcia-Pichel, F.; Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 1997, 63, 3327–3332. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, D.; Liu, Y. Salt tolerance of Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crust, was enhanced by exogenous carbohydrates. J. Arid. Environ. 2003, 55, 645–656. [Google Scholar] [CrossRef]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Hohna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2, efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8, a tool for phylogenetic analysis and post- analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Drummond, A.J.; Ho, S.Y.W.; Phillips, M.J.; Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006, 4, e88. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. Inference from iterative simulation using multiple sequences. Stat. Sci. 1992, 7, 157–511. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree, Version 1.4.3. 2009. Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 30 June 2024).
- Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.02b; Sinauer Associates: Sunderland, MA, USA, 1998. [Google Scholar]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef] [PubMed]
- Johansen, J.R.; Casamatta, D.A. Recognizing cyanobacterial diversity through the adoption of a new species paradigm. Algol. Stud. 2005, 117, 71–93. [Google Scholar] [CrossRef]
- Fox, G.E.; Wisotzkey, J.D.; Jurtshuk, P. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 1992, 42, 166–170. [Google Scholar] [CrossRef]
- Casamatta, D.A.; Vis, M.L.; Sheath, R.G. Cryptic species in cyanobacterial systematics: A case study of Phormidium retzii (Oscillatoriales) using 16S rDNA and RAPD analyses. Aquat. Bot. 2003, 77L, 295–309. [Google Scholar] [CrossRef]
- Stanojkovic, A.; Skoupý, S.; Škaloud, P.; Dvořák, P. High genomic differentiation and limited gene flow indicate recent cryptic speciation within the genus Laspinema (cyanobacteria). Front. Microbiol. 2022, 13, 977454. [Google Scholar] [CrossRef]
- Yarza, P.; Yilmaz, P.; Pruesse, E.; Glöckner, F.O.; Ludwig, W.; Schleifer, K.H.; Whitman, W.B.; Euzéby, J.; Amann, R.; Roselló-Móra, R. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 2014, 12, 635–645. [Google Scholar] [CrossRef]
- Casamatta, D.A.; Gomez, S.R.; Johansen, J.R. Rexia erecta gen. et sp. nov. and Capsosira lowei sp. nov., two newly described cyanobacterial taxa from the Great Smoky Mountain National Park (USA). Hydrobiologia 2006, 561, 13–26. [Google Scholar] [CrossRef]
- Johansen, J.R.; Bohunická, M.; Lukešová, A.; Hrčková, K.; Vaccarino, M.A.; Chesarino, N.M. Morphological and molecular characterization within 26 strains of the genus Cylindrospermum (Nostocaceae, Cyanobacteria), with descriptions of three new species. J. Phycol. 2014, 50, 187–202. [Google Scholar] [CrossRef]
- Řeháková, K.; Mareš, J.; Lukešová, A.; Zapomělová, E.; Bernardová, K.; Hrouzek, P. Nodularia (Cyanobacteria, Nostocaceae): A phylogenetically uniform genus with variable phenotypes. Phytotaxa 2014, 172, 235–246. [Google Scholar] [CrossRef]
- Hassler, H.B.; Probert, B.; Moore, C.; Lawson, E.; Jackson, R.W.; Russell, B.T.; Richards, V.P. Phylogenies of the 16S rRNA gene and its hypervariable regions lack concordance with core genome phylogenies. Microbiome 2022, 10, 104. [Google Scholar] [CrossRef] [PubMed]
- Bartoš, O.; Chmel, M.; Swierczková, I. The overlooked evolutionary dynamics of the 16S rRNA revises its role as the “gold standard” for bacterial species identification. Sci. Rep. 2024, 14, 9067. [Google Scholar] [CrossRef]
- Boyer, S.L.; Flechtner, V.R.; Johansen, J.R. Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol. Biol. Evol. 2001, 18, 1057–1069, ISSN: 0737-4038. [Google Scholar] [CrossRef] [PubMed]
- Johansen, J.R.; Kovacik, L.; Casamatta, D.A.; Fučíková, K.; Kaštovský, J. Utility of 16S–23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwig. 2011, 92, 283–302. [Google Scholar] [CrossRef]
- Siegesmund, M.A.; Johansen, J.R.; Karsten, U.; Friedl, T. Coleofasciculus gen. nov. (Cyanobacteria): Morphological and molecular criteria for revision of the genus Microcoleus Gomont. J. Phycol. 2008, 44, 1572–1585. [Google Scholar] [CrossRef] [PubMed]
- Erwin, P.; Thacker, R. Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarium among sponge hosts. Mol. Ecol. 2008, 17, 2937–2947. [Google Scholar] [CrossRef]
- Becerra-Absalón, I.; Johansen, J.R.; Muñoz-Martín, M.A.; Montejano, G. Chroakolemma gen. nov. (Leptolyngbyaceae, Cyanobacteria) from soil biocrusts in the semi-desert Central Region of Mexico. Phytotaxa 2018, 367, 201–218. [Google Scholar] [CrossRef]
- González-Resendiz, L.; Johansen, J.R.; Escobar-Sánchez, V.; Segal-Kischinevzky, C.; Jiménez-García, L.F.; León-Tejera, H. Two new species of Phyllonema (Rivulariaceae, Cyanobacteria) with an emendation of the genus. J. Phycol. 2018, 54, 638–652. [Google Scholar] [CrossRef]
- Bohunická, M.; Johansen, J.R.; Villanueva, C.D.; Mareš, J.; Štenclová, L.; Becerra-Absalón, I.; Hauer, T.; Kaštovský, J. Revision of the pantropical genus Brasilonema (Nostocales, Cyanobacteria), with the description of 24 species new to science. Fottea 2024, 24, 137–184. [Google Scholar] [CrossRef]
- Anagnostidis, K.; Komárek, J. Modern approach to the classification system of cyanophytes. 3-Oscillatoriales. Algol. Stud. 1988, 50–53, 327–472. [Google Scholar]
- Hernández-Mariné, M.; Roldán, M. Adherence of hormogonia to substrata is mediated by polysaccharides produced by necridic cells. Algol. Stud. 2005, 117, 239–249. [Google Scholar] [CrossRef]
- Berrendero, E.G.; Johansen, J.R.; Kaštovský, J.; Bohunická, M.; Čapková, K. Macrochaete gen. nov. (Cyanobacteria), a taxon morphologically and molecularly distinct from Calothrix. J. Phycol. 2016, 52, 638–655. [Google Scholar] [CrossRef] [PubMed]
- Hentschke, G.S.; Sant’Anna, C.L. Current trends and prospects for cyanobacterial taxonomy—Are only cultured populations. Algol. Stud. 2014, 147, 3–6. [Google Scholar] [CrossRef]
- James, I.N. Hadley Circulation. In Encyclopedia of Atmospheric Sciences, 1st ed.; Holton, J.R., Curry, J.A., Pyle, J.A., Eds.; Academic Press: Amsterdam, The Netherlands, 2022; pp. 919–924. ISBN 9780122270901. [Google Scholar] [CrossRef]
- Schneider, T. The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci. 2006, 34, 655–688. [Google Scholar] [CrossRef]
- Houston, J.; Hartley, A.J. The Central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int. J. Climatol. 2003, 23, 1453–1464. [Google Scholar] [CrossRef]
- Dvořák, P.; Hašler, P.; Casamatta, D.A.; Poulíčková, A. Underestimated cyanobacterial diversity: Trends and perspectives of research in tropical environments. Fottea 2021, 21, 110–127. [Google Scholar] [CrossRef]
16S rRNA Gene Identity | RM4 | RM9 | RM10 | RM11 | CV5 | LB5 | TA15 | TA36 | SIK64 | SIK77 | SIK79 | SBC72 |
K. adunca ATA6-11-RM4 clone A REF | ||||||||||||
K. adunca ATA6-11-RM9 clone BC | 99.57 | |||||||||||
K. adunca ATA6-11-RM10 clone AB | 99.57 | 100.00 | ||||||||||
K. adunca ATA6-11-RM11 clone AC | 99.57 | 100.00 | 100.00 | |||||||||
K. circularithylacoides ATA3-5Q-CV5 REF | 99.48 | 99.40 | 99.27 | 99.40 | ||||||||
K. circularithylacoides ATA3-5Q-LB5 | 99.40 | 99.31 | 99.80 | 99.31 | 100.00 | |||||||
K. nitens SNI-TA15-BJ20 REF | 99.55 | 99.45 | 99.32 | 99.45 | 99.81 | 99.73 | ||||||
K. viridissima SNI-TA36-BJ6 REF | 99.26 | 99.72 | 99.72 | 99.72 | 99.54 | 99.45 | 99.70 | |||||
K. sahariensis SIK64 REF | 99.14 | 99.48 | 99.49 | 99.48 | 99.31 | 99.23 | 99.63 | 99.72 | ||||
K. sahariensis SIK77 | 99.14 | 99.57 | 99.57 | 99.49 | 99.40 | 99.31 | 99.73 | 99.82 | 99.90 | |||
K. sahariensis SIK79 | 99.09 | 99.55 | 99.68 | 99.55 | 99.36 | 99.27 | 99.55 | 99.90 | 99.72 | 99.82 | ||
K. sahariensis SBC72 | 99.14 | 99.57 | 99.57 | 99.57 | 99.40 | 99.31 | 99.73 | 99.82 | 99.91 | 100.00 | 99.82 | |
K. sahariensis SBC109 | 98.97 | 99.40 | 99.40 | 99.40 | 99.23 | 99.14 | 99.55 | 99.72 | 99.74 | 99.83 | 99.64 | 99.91 |
ITS Percent Dissimilarity | RM4 | RM9 | RM10 | RM11 | CV5 | LB5 | TA15 | TA36 | SIK64 | SIK77 | SIK79 | SBC72 |
K. adunca ATA6-11-RM4 344 REF | ||||||||||||
K. adunca ATA6-11-RM9 | 0.84 | |||||||||||
K. adunca ATA6-11-RM10 | 1.05 | 1.05 | ||||||||||
K. adunca ATA6-11-RM11 | 0.84 | 0.00 | 1.05 | |||||||||
K. circularithylacoides ATA3-5Q-CV5 REF | 3.36 | 2.94 | 2.94 | 2.94 | ||||||||
K. circularithylacoides ATA3-5Q-LB5 | 3.35 | 2.94 | 2.94 | 2.94 | 0.00 | |||||||
K. nitens SNI-TA15-BJ20 REF | 5.46 | 5.05 | 5.04 | 5.05 | 2.53 | 2.53 | ||||||
K. viridissima SNI-TA36-BJ6 REF | 6.53 | 5.91 | 6.32 | 5.91 | 4.01 | 4.00 | 4.22 | |||||
K. sahariensis SIK64 MZ333 REF | 5.89 | 5.48 | 5.48 | 5.48 | 4.42 | 4.42 | 4.64 | 3.37 | ||||
K. sahariensis SIK77 | 5.46 | 4.63 | 5.47 | 4.63 | 3.87 | 3.78 | 4.01 | 3.17 | 1.68 | |||
K. sahariensis SIK79 | 5.88 | 5.05 | 5.89 | 5.05 | 4.20 | 4.20 | 4.43 | 3.59 | 2.10 | 0.42 | ||
K. sahariensis SBC72 941 | 5.67 | 4.83 | 5.68 | 4.83 | 4.42 | 4.41 | 4.42 | 3.80 | 2.09 | 1.05 | 1.47 | |
K. sahariensis SBC109 939 | 6.70 | 5.86 | 6.29 | 5.86 | 4.40 | 4.40 | 4.20 | 4.00 | 2.31 | 1.90 | 2.31 | 2.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jusko, B.M.; Johansen, J.R.; Mehda, S.; Perona, E.; Muñoz-Martín, M.Á. Four Novel Species of Kastovskya (Coleofasciculaceae, Cyanobacteriota) from Three Continents with a Taxonomic Revision of Symplocastrum. Diversity 2024, 16, 474. https://doi.org/10.3390/d16080474
Jusko BM, Johansen JR, Mehda S, Perona E, Muñoz-Martín MÁ. Four Novel Species of Kastovskya (Coleofasciculaceae, Cyanobacteriota) from Three Continents with a Taxonomic Revision of Symplocastrum. Diversity. 2024; 16(8):474. https://doi.org/10.3390/d16080474
Chicago/Turabian StyleJusko, Brian M., Jeffrey R. Johansen, Smail Mehda, Elvira Perona, and M. Ángeles Muñoz-Martín. 2024. "Four Novel Species of Kastovskya (Coleofasciculaceae, Cyanobacteriota) from Three Continents with a Taxonomic Revision of Symplocastrum" Diversity 16, no. 8: 474. https://doi.org/10.3390/d16080474
APA StyleJusko, B. M., Johansen, J. R., Mehda, S., Perona, E., & Muñoz-Martín, M. Á. (2024). Four Novel Species of Kastovskya (Coleofasciculaceae, Cyanobacteriota) from Three Continents with a Taxonomic Revision of Symplocastrum. Diversity, 16(8), 474. https://doi.org/10.3390/d16080474