Agricultural Landscapes: A Pattern-Process-Design Approach to Enhance Their Ecological Quality and Ecosystem Services through Agroforestry
Abstract
:1. Introduction
- quantitative and spatialized information on the drivers of ecological balance in agricultural landscapes;
- available, low-cost, and low-time-consuming analytical tool kits suitable for application in similar agricultural contexts for their assessment and for guiding targeted management strategies to maximise the ES delivery capacity.
- their structural and functional traits—landscape ecology approach, focusing on the assessment of landscape structure and composition and on the consequent identification of landscape resilience and vulnerability drivers [25], with a specific focus on biodiversity support functions;
- their degree of multi-functionality or specialisation by addressing their relationship with the capacity to provide ecosystem services—application of a land-use-based approach.
2. Materials and Methods
2.1. Overview of the Applied Methodology
2.2. Landscape Ecology Analyses
2.3. Landscape Ecosystem Services Assessment
- coupling of Burkhard’s work land cover types to our study site land use categories;
- assignment of provisioning, regulating, and cultural ES delivery values to each land use type (Burkhard’s work values);
- assignment of support ES delivery values according to the references in the literature (European and/or global meta-analyses and local studies (northern Italy));
- decrease and/or removal of single provisioning ES delivery, which were not relevant to the represented local case histories;
- correction of the support, regulating and cultural ES delivering values based on the ratio (BTC%) between biological territorial capacity (actual BTC) unitary values for each land use type and their maximum BTC values, according to literature ranges [26,28,41]. Like support ES, regulating ES and (partly) cultural ES, BTC values are positively related to phytocoenoses biomass, maturity and dynamism and are inversely related to human and natural disturbance. In this case, we used BTC% values to weight the effective ES contributions of actual land use types, to better reflect the typical alluvial agricultural landscapes components ecological quality, which differ from the Burkhard’s normal European landscape traits because of the influence of the medium-to-long term human disturbances.
2.4. Agroforestry-Based Landscape Re-Design: Scenarios Building
2.5. Case Studies
3. Results and Discussion
3.1. Extra-Local-Scale Landscape Ecological Assessment
3.1.1. Landscape Ecology Analyses: Biodiversity Support Functions
3.1.2. Synthesis of Extra-Local Landscape Vulnerability and Resilience Drivers
3.2. Local-Scale Landscape Ecological Assessment
3.2.1. Landscape Ecology Analyses: Biodiversity Support Functions
- The P and C sites are strictly aligned with Po Plain typical agricultural landscape over-simplification traits (MATRIX and DIVERSITY indices, Table 3); the agricultural matrix (AGR) is strongly predominant; forest and semi-natural components (FSN) are consistently limited.
- The D and G case studies show greater land use diversification (DIVERSITY indices; Table 3) and a better ecological balance (MBTC values; Table 3) thanks to the presence of river ecological corridors and pedological peculiarities, limiting agricultural and artificial land use intensity, as we already outlined in previous multi-scale studies on the same sites [33,34]. The G and D sites parallelly show greater artificial component presence (ART), which is supposed to be better mitigated by higher landscape diversity and BTC values (Table 3).
3.2.2. Ecosystem Services Assessment: A Reference Model for the ES Matrix Application in Temperate Agricultural Landscapes
3.2.3. Ecosystem Services Matrix Application: Current State Landscapes Multifunctionality
3.2.4. Synthesis of Local Landscape Vulnerability and Resilience Drivers
3.3. Agroforestry-Based Design Scenarios for Local-Scale Landscape Systems
3.3.1. Scenarios Assessment: Landscape Ecology Analyses
3.3.2. Scenarios Assessment: Ecosystem Services Matrix Application
- support ES (ES_SUPP), related to wider and more diversified FSN habitat availability amongst the agricultural matrix, and to crop diversification through the forecasted adoption of polyculture and organic farming practices (see Figure 5 for details on each land-use type contribution to ES). The spatial configuration of the ES_SUPP delivering capacity answers the need for balancing sink functions amongst the agricultural matrix, as highlighted through VR analysis (Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7). The local-scale design scenario, if implemented, would significantly enhance biodiversity values sustained by the local agricultural landscapes under study.
- Provisioning ES (ES_PROV) related to crop diversification and the opportunity for secondary products potentially provided by the interspersed landscape features inserted among the agricultural matrix.
- Cultural ES maps show the interspersed amelioration of the cultural values that can be sustained by an agricultural landscape; spotted areas delivering higher cultural values interrupt the agricultural landscape homogeneity and mono-functionality of current local landscapes.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
INDICATOR | SCALE | EQUATION | REFERENCES | |
---|---|---|---|---|
BASIC STRUCTURAL TRAITS | Matrix (MTX) x = [FSN; AGR; ART] | E_La La | Ai = total area of each land use categories patch Atot = total area | [66] |
DIVERSITY INDICES | Diversity (DIV) X = [DIV_TOT; FIV_FSN; DIV_AGR] | E_La La | [66] | |
LANDSCAPE APPARATUSES | Apparatuses’ ratio (AP) X = [connective (AP_CN); excretory (AP_EX); productive ((AP_PD); resilient (AP_RSL); stabilisation (AP_STB) | La | [28] | |
CONNECTIVITY INDICES | Connectivity (CON) | La | L = no. of links N = no. of nodes | [67] |
Weighted connectivity (WCON) | La | Li = no. of links for each Ecological Quality Class (EQCi = [1–5]) Wi = EQCi weight: | [33] | |
Circuitry (CIR) | La | [67] | ||
Weighted circuitry (WCIR) | La | Li = no. of links for each Ecological Quality Class (EQCi = [1–5]) Wi = EQCi weight (as above) | [33] | |
INDICES ON ECOLOGICAL FUNCTIONALITY | Mean Biological Territorial Capacity (MBTC) | E_La La | [28,41,65] |
Appendix B
LOCAL SCALE LAND USE TYPES | Burkhard LAND COVER TYPES (CLC) [24] | Ingegnoli’s LAND USE TYPES [28,41] | Actual BTC | BTC MAX | BTC % | |
---|---|---|---|---|---|---|
FOREST AND SEMI-NATURAL | Grass strip | MEAN (Pastures; Natural grassland: reg. + cult.); Natural grassland (prov.) | Meadows | 0.70 | 1.40 | 0.50 |
Grass strip with sparse trees and shrubs | Broad-leaved forest | Shrubs, hedgerows | 1.50 | 3.50 | 0.43 | |
Small woody area | Broad-leaved forest | Temperate forest | 4.75 | 8.25 | 0.58 | |
Uncultivated area | MEAN (Pastures; Natural grassland: reg. + cult.); Natural grassland (prov.) | Meadows | 0.70 | 1.40 | 0.50 | |
Uncultivated area with spontaneous trees and shrubs re-colonization | Broad-leaved forest | Shrubs, hedgerows | 1.50 | 3.50 | 0.43 | |
Wood | Broad-leaved forest | Temperate forest | 6.75 | 8.25 | 0.82 | |
Woody belt | Broad-leaved forest | Temperate forest | 4.75 | 8.25 | 0.58 | |
AGRICULTURAL | Apple | Fruit trees and berries | Orchards and olive groves | 2.50 | 3.50 | 0.71 |
Arboriculture | Broad-leaved forest (see CLC) | Temperate forest | 3.20 | 8.25 | 0.39 | |
Crop field | Permanently irrigated arable land | Crop fields | 0.80 | 1.30 | 0.62 | |
Crop field in rotation | Permanently irrigated arable land | Crop fields | 1.10 | 1.30 | 0.85 | |
Hazelnut | Fruit trees and berries | Orchards and olive groves | 2.50 | 3.50 | 0.71 | |
Horticultural | Non-irrigated arable land (see CLC) | Crop fields | 1.20 | 1.30 | 0.92 | |
Leguminous | Permanently irrigated arable land | Crop fields | 1.30 | 1.30 | 1.00 | |
Permanent grassland | MEAN (Pastures; Natural grassland); Pastures (prov.) | Meadows | 1.30 | 1.40 | 0.93 | |
Rice field | Rice fields | Crop fields | 1.10 | 1.30 | 0.85 | |
Rice field in rotation | Rice fields | Crop fields | 1.30 | 1.30 | 1.00 | |
Rice field organic | Rice fields | Crop fields | 1.30 | 1.30 | 1.00 | |
Walnut | Fruit trees and berries | Orchards and olive groves | 2.50 | 3.50 | 0.71 | |
HYDRIC | Water bodies | Water bodies | Bogs and wetlands | 5.50 | 7.25 | 0.76 |
Riverbed | Water courses | Bogs and wetlands | 0.50 | 0.50 | 1.00 | |
ARTIFICIAL | Agricultural buildings | Discontinuous urban fabric | Scattered houses and gardens | 0.80 | 1.25 | 0.64 |
Industrial | Industrial or commercial units | Dense buildings | 0.00 | 0.35 | 0.00 | |
Other services | Industrial or commercial units | Dense buildings | 0.20 | 0.35 | 0.57 | |
Private green areas | Green urban areas | Urban parks | 1.00 | 3.25 | 0.31 | |
Residential buildings | Discontinuous urban fabric | Scattered houses and gardens | 0.70 | 1.25 | 0.56 |
Appendix C
Habitat and Biodiversity Support ES | |
---|---|
FOREST AND SEMI-NATURAL SUBSYSTEM | |
Grass strip | [68,69,70,71] |
Grass strip with sparse trees and shrubs | [63,72,73,74,75,76] |
Small woody area | [63,72,73,75,76,77] |
Uncultivated area | [68,69,70] |
Uncultivated area with spontaneous trees-shrubs re-colonization | [63,72,73,75,76] |
Wood | [63,72,75,76,77] |
Woody belt | [63,72,73,74,75,76,77,78] |
AGRICULTURAL SUBSYSTEM | |
Apple | [79,80] |
Arboriculture | [79,80] |
Crop field | [69,70,79] |
Crop field in rotation | [69,70,79] |
Hazelnut | [79,80] |
Horticultural | [69,70] |
Leguminous | [79] |
Permanent grassland | [69,70] |
Rice field | [69,70,79] |
Rice field in rotation | [69,70,79] |
Rice field organic | [69,70,79] |
Walnut | [79,80] |
HYDRIC SUBSYSTEM | |
Water bodies | [81,82,83] |
Riverbed | [82] |
ARTIFICIAL SUBSYSTEM | |
Agricultural buildings | [84] |
Industrial | [85] |
Other services | [85] |
Private green areas | [85,86] |
Residential buildings | [85] |
References
- Stoate, C.; Báldi, A.; Beja, P.; Boatman, N.D.; Herzon, I.; van Doorn, A.; de Snoo, G.R.; Rakosy, L.; Ramwell, C. Ecological impacts of early 21st century agricultural change in Europe—A review. J. Environ. Manag. 2009, 91, 22–46. [Google Scholar] [CrossRef] [PubMed]
- Donald, P.F.; Green, R.E.; Heath, M.F. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. R. Soc. London Ser. B Biol. Sci. 2001, 268, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, E.; Buccheri, M.; Martini, F.; Boscutti, F. Agricultural land use curbs exotic invasion but sustains native plant diversity at intermediate levels. Sci. Rep. 2021, 11, 8385. [Google Scholar] [CrossRef] [PubMed]
- Kleijn, D.; Kohler, F.; Báldi, A.; Batáry, P.; Concepción, E.D.; Clough, Y.; Díaz, M.; Gabriel, D.; Holzschuh, A.; Knop, E.; et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. R. Soc. B Biol. Sci. 2008, 276, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Falcucci, A.; Maiorano, L.; Boitani, L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc. Ecol. 2007, 22, 617–631. [Google Scholar] [CrossRef]
- Reidsma, P.; Tekelenburg, T.; van den Berg, M.; Alkemade, R. Impacts of land-use change on biodiversity: An assessment of agricultural biodiversity in the European Union. Agric. Ecosyst. Environ. 2006, 114, 86–102. [Google Scholar] [CrossRef]
- Meeus, J.H.A. The transformation of agricultural landscapes in Western Europe. Sci. Total Environ. 1993, 129, 171–190. [Google Scholar] [CrossRef]
- Schaller, L.; Targetti, S.; Villanueva, A.J.; Zasada, I.; Kantelhardt, J.; Arriaza, M.; Bal, T.; Fedrigotti, V.B.; Giray, F.H.; Häfner, K.; et al. Agricultural landscapes, ecosystem services and regional competitiveness—Assessing drivers and mechanisms in nine European case study areas. Land Use Policy 2018, 76, 735–745. [Google Scholar] [CrossRef]
- van Zanten, B.T.; Verburg, P.H.; Espinosa, M.; Gomez-y-Paloma, S.; Galimberti, G.; Kantelhardt, J.; Kapfer, M.; Lefebvre, M.; Manrique, R.; Piorr, A.; et al. European agricultural landscapes, common agricultural policy and ecosystem services: A review. Agron. Sustain. Dev. 2014, 34, 309–325. [Google Scholar] [CrossRef]
- Lovell, S.T.; Stanek, E.; Revord, R. Agroforestry Integration and Multifunctional Landscape Planning for Enhanced Ecosystem Services from Treed Habitats. In Agroforestry and Ecosystem Services; Udawatta, R.P., Jose, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 451–476. [Google Scholar]
- Udawatta, R.P.; Jose, S. Agroforestry and Ecosystem Services; Springer: Cham, Switzerland, 2021; pp. 1–510. [Google Scholar]
- Montagnini, F.; Francesconi, W.; Rossi, E. Agroforestry as a Tool for Landscape Restoration; Nova Science Publishers: New York, NY, USA, 2011; p. 201. [Google Scholar]
- Montagnini, F.; del Fierro, S. Functions of Agroforestry Systems as Biodiversity Islands in Productive Landscapes. In Biodiversity Islands: Strategies for Conservation in Human-Dominated Environments; Montagnini, F., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 89–116. [Google Scholar]
- Schmidt, K.; Martín-López, B.; Phillips, P.M.; Julius, E.; Makan, N.; Walz, A. Key landscape features in the provision of ecosystem services: Insights for management. Land Use Policy 2019, 82, 353–366. [Google Scholar] [CrossRef]
- Lamy, T.; Liss, K.N.; Gonzalez, A.; Bennett, E.M. Landscape structure affects the provision of multiple ecosystem services. Environ. Res. Lett. 2016, 11, 124017. [Google Scholar] [CrossRef]
- Duarte, G.T.; Santos, P.M.; Cornelissen, T.G.; Ribeiro, M.C.; Paglia, A.P. The effects of landscape patterns on ecosystem services: Meta-analyses of landscape services. Landsc. Ecol. 2018, 33, 1247–1257. [Google Scholar] [CrossRef]
- Frank, S.; Fürst, C.; Koschke, L.; Makeschin, F. A contribution towards a transfer of the ecosystem service concept to landscape planning using landscape metrics. Ecol. Indic. 2012, 21, 30–38. [Google Scholar] [CrossRef]
- Hölting, L.; Jacobs, S.; Felipe-Lucia, M.R.; Maes, J.; Norström, A.V.; Plieninger, T.; Cord, A.F. Measuring ecosystem multifunctionality across scales. Environ. Res. Lett. 2019, 14, 124083. [Google Scholar] [CrossRef]
- Babí Almenar, J.; Rugani, B.; Geneletti, D.; Brewer, T. Integration of ecosystem services into a conceptual spatial planning framework based on a landscape ecology perspective. Landsc. Ecol. 2018, 33, 2047–2059. [Google Scholar] [CrossRef]
- Nassauer, J.; Opdam, P. Design in science: Extending the landscape ecology paradigm. Landsc. Ecol. 2008, 23, 633–644. [Google Scholar] [CrossRef]
- Termorshuizen, J.W.; Opdam, P. Landscape services as a bridge between landscape ecology and sustainable development. Landsc. Ecol. 2009, 24, 1037–1052. [Google Scholar] [CrossRef]
- Syrbe, R.-U.; Walz, U. Spatial indicators for the assessment of ecosystem services: Providing, benefiting and connecting areas and landscape metrics. Ecol. Indic. 2012, 21, 80–88. [Google Scholar] [CrossRef]
- Corry, R.C.; Nassauer, J.I. Limitations of using landscape pattern indices to evaluate the ecological consequences of alternative plans and designs. Landsc. Urban Plan. 2005, 72, 265–280. [Google Scholar] [CrossRef]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem Service Potentials, Flows and Demands—Concepts for Spatial Localisation, Indication and Quantification. Landsc. Online 2014, 34. [Google Scholar] [CrossRef]
- Gibelli, M.G.; Dosi, V.M.; Selva, C. From “Landscape DNA” to Green Infrastructures Planning. In Metropolitan Landscapes: Towards a Shared Construction of the Resilient City of the Future; Contin, A., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 121–137. [Google Scholar]
- Ingegnoli, V. Landscape Ecology: A Widening Foundation; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Ingegnoli, V.; Giglio, E. Ecologia del Paesaggio: Manuale per Conservare, Gestire e Pianificare L’ambiente; Sistemi Editoriali: Napoli, Italy, 2005. [Google Scholar]
- Ingegnoli, V. Landscape Bionomics: Biological-Integrated Lanscape Ecology; Springer: Milan, Italy, 2015. [Google Scholar]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Gallopin, G.C. Linkages between vulnerability, resilience, and adaptive capacity. Glob. Environ. Chang. 2006, 16, 293–303. [Google Scholar] [CrossRef]
- Janssen, M.A.; Schoon, M.L.; Ke, W.; Börner, K. Scholarly networks on resilience, vulnerability and adaptation within the human dimensions of global environmental change. Glob. Environ. Chang. 2006, 16, 240–252. [Google Scholar] [CrossRef]
- Westman, W.E. Measuring the Inertia and Resilience of Ecosystems. BioScience 1978, 28, 705–710. [Google Scholar] [CrossRef]
- Vagge, I.; Chiaffarelli, G. Validating the Contribution of Nature-Based Farming Solutions (NBFS) to Agrobiodiversity Values through a Multi-Scale Landscape Approach. Agronomy 2023, 13, 233. [Google Scholar] [CrossRef]
- Vagge, I.; Sgalippa, N.; Chiaffarelli, G. The role of agroforestry in solving the agricultural landscapes vulnerabilities in the Po Plain district. Community Ecol. 2024. [Google Scholar] [CrossRef]
- Santiago-Freijanes, J.; Rigueiro-Rodríguez, A.; Vazquez, J.A.; Moreno, G.; Herder, M.; Burgess, P.; Mosquera-Losada, M.R. Understanding agroforestry practices in Europe through landscape features policy promotion. Agrofor. Syst. 2018, 92, 1105–1115. [Google Scholar] [CrossRef]
- Geoportale Piemonte. Available online: www.geoportale.piemonte.it/cms/ (accessed on 10 October 2022).
- Geoportale Regione Lombardia. Available online: www.geoportale.regione.lombardia.it (accessed on 10 October 2022).
- Google. Immagini (c) 2023 TerraMetrics, Dati Cartografici (c) 2023. 2023. Available online: https://terrametrics.com/v2/ (accessed on 10 October 2022).
- Kosztra, B.; Büttner, G. Updated CLC Illustrated Nomenclature Guidelines; European Environment Agency EAA: Wien, Austria, 2019. [Google Scholar]
- Dal Borgo, A.G.; Chiaffarelli, G.; Capocefalo, V.; Schievano, A.; Bocchi, S.; Vagge, I. Agroforestry as a Driver for the Provisioning of Peri-Urban Socio-Ecological Functions: A Trans-Disciplinary Approach. Sustainability 2023, 15, 11020. [Google Scholar] [CrossRef]
- Ingegnoli, V.; Giglio, E. Proposal of a synthetic indicator to control ecological dynamics at an ecological mosaic scale. Ann. Di Bot. 1999, 57. [Google Scholar] [CrossRef]
- Brandt, J.; Tress, B.; Tress, G. Multifunctional landscapes: Interdisciplinary approaches to landscape research and management. In Proceedings of the Conference Material for the Conference on “Multifunctional Landscapes”, Centre for Landscape Research, Roskilde, Denmark, 18–21 October 2000. 264p. [Google Scholar]
- Berghöfer, A.; Mader, A.; Patrickson, S.; Calcaterra, E.; Smit, J.; Blignaut, J.; de Wit, M.; Van Zyl, H. TEEB Manual for Cities: Ecosystem Services in Urban Management. 2011. Available online: www.teebweb.org (accessed on 10 October 2022).
- MEA. Ecosystems and Human Well-Being—Synthesis, Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005; Available online: https://www.millenniumassessment.org/documents/document.356.aspx.pdf (accessed on 10 October 2022).
- Czúcz, B.; Arany, I.; Potschin-Young, M.; Bereczki, K.; Kertész, M.; Kiss, M.; Aszalós, R.; Haines-Young, R. Where concepts meet the real world: A systematic review of ecosystem service indicators and their classification using CICES. Ecosyst. Serv. 2018, 29, 145–157. [Google Scholar] [CrossRef]
- Dramstad, W.E.; Olson, J.D.; Forman, R.T.T. Landscape Ecology Principles in Landscape Architecture and Land Use Planning; Island Press: Washington, DC, USA, 1996. [Google Scholar]
- Forman, R.T.T. Land Mosaics: The Ecology of Landscapes and Regions, 1st ed.; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Dover, J.W.; Bunce, R.G.H. Key Concepts in Landscape Ecology; IALE UK; Coplin Cross Printers Ltd.: Garstang, UK, 1998. [Google Scholar]
- Eigenbrod, F. Redefining Landscape Structure for Ecosystem Services. Curr. Landsc. Ecol. Rep. 2016, 1, 80–86. [Google Scholar] [CrossRef]
- Opdam, P.; Foppen, R.; Vos, C. Bridging the gap between ecology and spatial planning in landscape ecology. Landsc. Ecol. 2001, 16, 767–779. [Google Scholar] [CrossRef]
- Hernández-Morcillo, M.; Burgess, P.; Mirck, J.; Pantera, A.; Plieninger, T. Scanning agroforestry-based solutions for climate change mitigation and adaptation in Europe. Environ. Sci. Policy 2018, 80, 44–52. [Google Scholar] [CrossRef]
- Kremen, C.; Merenlender, A.M. Landscapes that work for biodiversity and people. Science 2018, 362, eaau6020. [Google Scholar] [CrossRef] [PubMed]
- López, D.R.; Cavallero, L.; Easdale, M.H.; Carranza, C.H.; Ledesma, M.; Peri, P.L. Resilience Management at the Landscape Level: An Approach to Tackling Social-Ecological Vulnerability of Agroforestry Systems. In Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty; Montagnini, F., Ramachandran Nair, P.K., Eds.; Advances in Agroforestry; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Montagnini, F. Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty; Springer: Cham, Switzerland, 2017; Volume 12, pp. 1–501. [Google Scholar] [CrossRef]
- ARPA Lombardia Archivio Agrometeo. Available online: https://www.arpalombardia.it/Pages/Meteorologia/Archivio-agrometeo.aspx (accessed on 21 October 2022).
- Pesaresi, S.; Galdenzi, D.; Biondi, E.; Casavecchia, S. Bioclimate of Italy: Application of the worldwide bioclimatic classification system. J. Maps 2014, 10, 538–553. [Google Scholar] [CrossRef]
- Pesaresi, S.; Biondi, E.; Casavecchia, S. Bioclimates of Italy. J. Maps 2017, 13, 955–960. [Google Scholar] [CrossRef]
- Chen, L.; Fu, B.; Zhao, W. Source-sink landscape theory and its ecological significance. Front. Biol. China 2008, 3, 131–136. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Taylor, P.D.; Fahrig, L.; Henein, K.; Merriam, G. Connectivity Is a Vital Element of Landscape Structure. Oikos 1993, 68, 571–573. [Google Scholar] [CrossRef]
- Fahrig, L.; Baudry, J.; Brotons, L.; Burel, F.G.; Crist, T.O.; Fuller, R.J.; Sirami, C.; Siriwardena, G.M.; Martin, J.-L. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 2011, 14, 101–112. [Google Scholar] [CrossRef]
- Donald, P.F.; Evans, A.D. Habitat connectivity and matrix restoration: The wider implications of agri-environment schemes. J. Appl. Ecol. 2006, 43, 209–218. [Google Scholar] [CrossRef]
- Morelli, F. High nature value farmland increases taxonomic diversity, functional richness and evolutionary uniqueness of bird communities. Ecol. Indic. 2018, 90, 540–546. [Google Scholar] [CrossRef]
- Boinot, S.; Alignier, A.; Pétillon, J.; Ridel, A.; Aviron, S. Hedgerows are more multifunctional in preserved bocage landscapes. Ecol. Indic. 2023, 154, 110689. [Google Scholar] [CrossRef]
- Ingegnoli, V. The study of vegetation for a diagnostical evaluation of agricultural landscapes, some examples fom Lombardy. Ann. Di Bot. Nuova Ser. 2006, 6, 111–120. [Google Scholar]
- Turner, M.G.; Gardner, R.H. Landscape Ecology in Theory and Practice, Pattern and Process; Springer: New York, NY, USA, 2015. [Google Scholar]
- Fabbri, P. Ecologia del paesaggio per la pianificazione/Pompeo Fabbri; Aracne: Roma, Italy, 2005. [Google Scholar]
- Fahrig, L.; Girard, J.; Duro, D.; Pasher, J.; Smith, A.; Javorek, S.; King, D.; Lindsay, K.F.; Mitchell, S.; Tischendorf, L. Farmlands with smaller crop fields have higher within-field biodiversity. Agric. Ecosyst. Environ. 2015, 200, 219–234. [Google Scholar] [CrossRef]
- Batáry, P.; Báldi, A.; Kleijn, D.; Tscharntke, T. Landscape-moderated biodiversity effects of agri-environmental management: A meta-analysis. Proc. R. Soc. B Biol. Sci. 2010, 278, 1894–1902. [Google Scholar] [CrossRef] [PubMed]
- Batary, P.; Matthiesen, T.; Tscharntke, T. Landscape-moderated importance of hedges in conserving farmland bird diversity of organic vs. conventional croplands and grasslands. Biol. Conserv. 2010, 143, 2020–2027. [Google Scholar] [CrossRef]
- Bruun, H.H. Patterns of species richness in dry grassland patches in an agricultural landscape. Ecography 2000, 23, 641–650. [Google Scholar] [CrossRef]
- Chiatante, G.; Pellitteri-Rosa, D.; Torretta, E.; Nonnis Marzano, F.; Meriggi, A. Indicators of biodiversity in an intensively cultivated and heavily human modified landscape. Ecol. Indic. 2021, 130, 108060. [Google Scholar] [CrossRef]
- Boutin, C.; Jobin, B.; Bélanger, L.; Choinière, L. Plant diversity in three types of hedgerows adjacent to cropfields. Biodivers. Conserv. 2002, 11, 1–25. [Google Scholar] [CrossRef]
- Litza, K.; Alignier, A.; Closset-Kopp, D.; Ernoult, A.; Mony, C.; Osthaus, M.; Staley, J.; Van Den Berge, S.; Vanneste, T.; Diekmann, M. Hedgerows as a habitat for forest plant species in the agricultural landscape of Europe. Agric. Ecosyst. Environ. 2022, 326, 107809. [Google Scholar] [CrossRef]
- Morelli, F. Relative importance of marginal vegetation (shrubs, hedgerows, isolated trees) surrogate of HNV farmland for bird species distribution in Central Italy. Ecol. Eng. 2013, 57, 261–266. [Google Scholar] [CrossRef]
- Estrada-Carmona, N.; Sánchez, A.C.; Remans, R.; Jones, S.K. Complex agricultural landscapes host more biodiversity than simple ones: A global meta-analysis. Proc. Natl. Acad. Sci. USA 2022, 119, e2203385119. [Google Scholar] [CrossRef]
- Montagnini, F. Biodiversity Islands: Strategies for Conservation in Human-Dominated Environments, 1st ed.; Montagnini, F., Ed.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Sitzia, T. Hedgerows as corridors for woodland plants: A test on the Po Plain, northern Italy. Plant Ecol. 2007, 188, 235–252. [Google Scholar] [CrossRef]
- Beillouin, D.; Ben-Ari, T.; Malézieux, E.; Seufert, V.; Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Chang. Biol. 2021, 27, 4697–4710. [Google Scholar] [CrossRef]
- Torralba, M.; Fagerholm, N.; Burgess, P.J.; Moreno, G.; Plieninger, T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric. Ecosyst. Environ. 2016, 230, 150–161. [Google Scholar] [CrossRef]
- Eric, A.; Chrystal, M.-P.; Erik, A.; Kenneth, B.; Robert, C. Evaluating ecosystem services for agricultural wetlands: A systematic review and meta-analysis. Wetl. Ecol. Manag. 2022, 30, 1129–1149. [Google Scholar] [CrossRef]
- Davies, B.; Biggs, J.; Williams, P.; Whitfield, M.; Nicolet, P.; Sear, D.; Bray, S.; Maund, S. Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agric. Ecosyst. Environ. 2008, 125, 1–8. [Google Scholar] [CrossRef]
- Ghermandi, A.; van den Bergh, J.C.J.M.; Brander, L.M.; de Groot, H.L.F.; Nunes, P.A.L.D. Values of natural and human-made wetlands: A meta-analysis. Water Resour. Res. 2010, 46, W12516. [Google Scholar] [CrossRef]
- Picuno, P. Farm Buildings as Drivers of the Rural Environment. Front. Built Environ. 2022, 8, 693876. [Google Scholar] [CrossRef]
- Nielsen, A.B.; van den Bosch, M.; Maruthaveeran, S.; van den Bosch, C.K. Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosyst. 2014, 17, 305–327. [Google Scholar] [CrossRef]
- Delahay, R.J.; Sherman, D.; Soyalan, B.; Gaston, K.J. Biodiversity in residential gardens: A review of the evidence base. Biodivers. Conserv. 2023, 32, 4155–4179. [Google Scholar] [CrossRef]
C | G | P | D | ||
---|---|---|---|---|---|
PEDOLOGY | ST /WRB CLASSES | Luvisols; Arenosols | Alfisols (ancient terraces); Inceptisols | Inceptisols; Entisols | Inceptisols |
Geomorphology | Fluvial terrace | Riss alluvial terrace | Fluvial deposits | Fluvial terrace | |
Main soil texture | Loamy-sand; Sandy-loam | Fine silty | Loamy-coarse; Loamy-sand | Loamy-skeletal | |
Development | Medium pedogenesis | Intense pedogenesis | Low pedogenesis | Low pedogenesis | |
Permeability | Medium-low permeability | Surface hydromorphy | Medium permeability | High permeability | |
pH | Sub-Acid | Acid | Sub-alkaline to alkaline | Acid to Sub-acid | |
Land-use capacity | IIw (waterlog) | III (Oxygen availability) | II (Oxygen availability) | III (stoniness) | |
Specific traits | Dark epipedon | ||||
CLIMATE [1990–2022 data] | Annual rainfall [mm] | 668 | 872 | 737 | 973 |
Annual mean Temperature [°C] | 13.1 | 12.3 | 13.2 | 11.8 | |
Average Maximum Temperature [°C] | 18.6 | 18.9 | 18.8 | 17.9 | |
Average Minimum Temperature [°C] | 8.19 | 7.0 | 8.5 | 6.4 | |
BIOCLIMATE [1990–2022 data] | Bioclimate (variant) | Temperate oceanic (submediterranean) | Temperate continental (steppic) | Temperate continental (steppic) | Temperate continental |
Bioclimatic belt | Upper mesotemperate Low humid | Upper mesotemperate Upper subhumid | Upper mesotemperate Low subhumid | Upper mesotemperate Low humid |
SITE | ||||||
---|---|---|---|---|---|---|
INDEX | U.o.M. | D | G | P | C | |
MATRIX | FSN | % | 27.22 | 30.58 | 6.67 | 5.18 |
AGR | % | 54.96 | 60.14 | 86.67 | 88.56 | |
ART | % | 17.83 | 9.28 | 6.66 | 6.26 | |
DIVERSITY | DIV_TOT | - | 2.13 | 1.70 | 1.11 | 1.09 |
DIV_FSN | - | 0.59 | 0.51 | 0.25 | 0.23 | |
DIV_AGR | - | 0.92 | 0.80 | 0.56 | 0.60 | |
BIOLOGICAL TERRITORIAL CAPACITY | MBTC_TOT | Mcal/ha/yr | 1.88 | 2.39 | 1.26 | 1.17 |
MBTC_FSN | Mcal/ha/yr | 4.51 | 5.32 | 3.48 | 2.52 | |
MBTC_AGR | Mcal/ha/yr | 1.01 | 1.14 | 1.14 | 1.14 |
SITE | ||||||
---|---|---|---|---|---|---|
INDEX | U.o.M. | C | P | G | D | |
Area | ha | 2276.15 | 692.64 | 1335.87 | 325.65 | |
MATRIX | AGR | % | 93.06 | 93.04 | 68.63 | 69.64 |
FSN | % | 4.23 | 4.40 | 26.45 | 23.53 | |
ART | % | 2.71 | 2.56 | 4.92 | 6.83 | |
DIVERSITY | DIV_TOT | - | 0.79 | 0.74 | 1.81 | 1.55 |
DIV_FSN | - | 0.22 | 0.21 | 0.59 | 0.48 | |
DIV_AGR | - | 0.45 | 0.42 | 1.03 | 0.84 | |
BIOLOGICAL TERRITORIAL CAPACITY | MBTC | Mcal/ha/yr | 1.18 | 1.16 | 2.56 | 2.22 |
LANDSCAPE APPARATUSES | AP_CN | % | 0.821 | 0.983 | 1.441 | 1.575 |
AP_EX | % | 2.648 | 0.815 | 1.691 | 0.688 | |
AP_PD | % | 89.495 | 91.650 | 67.357 | 69.060 | |
AP_RSL | % | 0.846 | 1.963 | 3.601 | 2.384 | |
AP_STB | % | 0.698 | 0.730 | 19.869 | 19.802 | |
CONNECTIVITY AND CIRCUITRY | CON | - | 0.24 | 0.36 | 0.39 | 0.33 |
WCON | - | 0.12 | 0.16 | 0.30 | 0.22 | |
CIR | - | −0.14 | 0.03 | 0.08 | −0.01 | |
WCIR | - | −0.32 | −0.28 | −0.05 | −0.18 |
SITE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
SCENARIO vs. CURRENT STATE | INDEX | U.o.M. | C | P | G | D | ||||
Value | % Gap | Value | % Gap | Value | % Gap | Value | % Gap | |||
MATRIX | AGR | % | 91.53 | −1.6% | 91.51 | −1.6% | 67.53 | −1.6% | 68.73 | −1.3% |
FSN | % | 5.76 | 36.2% | 5.92 | 34.7% | 27.52 | 4.1% | 24.44 | 3.9% | |
ART | % | 2.71 | 0.0% | 2.57 | 0.1% | 4.95 | 0.6% | 6.83 | 0.0% | |
DIVERSITY | DIV_TOT | - | 1.39 | 75.4% | 1.70 | 128.0% | 2.07 | 14.2% | 2.14 | 38.7% |
DIV_FSN | - | 0.27 | 25.9% | 0.27 | 30.0% | 0.63 | 6.5% | 0.50 | 6.2% | |
DIV_AGR | - | 0.99 | 121.8% | 1.31 | 213.1% | 1.25 | 21.3% | 1.41 | 67.5% | |
BIOLOGICAL TERRITORIAL CAPACITY | MBTC | Mcal/ha/yr | 1.32 | 11.6% | 1.30 | 12.6% | 2.65 | 3.2% | 2.38 | 7.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vagge, I.; Sgalippa, N.; Chiaffarelli, G. Agricultural Landscapes: A Pattern-Process-Design Approach to Enhance Their Ecological Quality and Ecosystem Services through Agroforestry. Diversity 2024, 16, 431. https://doi.org/10.3390/d16070431
Vagge I, Sgalippa N, Chiaffarelli G. Agricultural Landscapes: A Pattern-Process-Design Approach to Enhance Their Ecological Quality and Ecosystem Services through Agroforestry. Diversity. 2024; 16(7):431. https://doi.org/10.3390/d16070431
Chicago/Turabian StyleVagge, Ilda, Nicolò Sgalippa, and Gemma Chiaffarelli. 2024. "Agricultural Landscapes: A Pattern-Process-Design Approach to Enhance Their Ecological Quality and Ecosystem Services through Agroforestry" Diversity 16, no. 7: 431. https://doi.org/10.3390/d16070431
APA StyleVagge, I., Sgalippa, N., & Chiaffarelli, G. (2024). Agricultural Landscapes: A Pattern-Process-Design Approach to Enhance Their Ecological Quality and Ecosystem Services through Agroforestry. Diversity, 16(7), 431. https://doi.org/10.3390/d16070431