Water Reserves for the Environment: A Strategic and Temporal Analysis (2012–2022) for the Implementation of Environmental Flows in Mexico
Abstract
:1. Introduction
2. Materials and Methods
- Natural areas such as protected areas, internationally important wetlands (Ramsar sites), and gaps in epicontinental aquatic conservation which are country-scale conservation goals for species, habitats, and vegetation types of freshwater-dependent environments set at 1:1,000,000 resolution based on the optimization of their ecological importance (i.e., risk national or international protection listings), distribution, coverage, species richness, and anthropogenic threats (MARXAN model 1.8.10 was used [23]), officially recognized by the Mexican state [14].
2.1. Definitions, Data Sources, and Geographic Processing
2.2. Criteria for Prioritizing Basins for Environmental Water Allocation
2.3. Temporal Analysis: The Path to the Current State and Assessment of Achievements
2.3.1. Conservation and Management of Protected Areas
2.3.2. Water Reserves for Water Planning Based on Reference Values
2.3.3. Potential Contribution to the Conservation of the Connectivity of Aquatic Ecosystems
3. Results and Discussion
3.1. Feasibility Status of Water Reseves
3.2. Effect of the Change on Protected Areas and Recognized Conservation Gaps
3.3. Environmental Objectives for Environmental Flow Assessments
3.4. Gaps in Water Reserves for Management Planning
3.5. Strategic Contributions of the Reserves to Public Policy and Potential Gains for the Conservation of Aquatic Ecosystem Connectivity
4. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forslund, A.D.; Renöfält, B.M.; Barchiesi, S.; Cross, K.; Davidson, S.; Farrell, T.; Korsgaard, L.; Krchnak, K.; McClain, M.; Meijer, K.; et al. Securing Water for Ecosystems and Human Well-Being: The Importance of Environmental Flows. SIWI. 2009. Available online: https://siwi.org/wp-content/uploads/2015/03/1250435228124report24_e-flows-low-res-3.pdf (accessed on 29 February 2024).
- Arthington, A.H.; Bhaduri, A.; Bunn, S.E.; Jackson, S.E.; Tharme, R.E.; Tickner, D.; Young, B.; Acreman, M.; Baker, N.; Capon, S.; et al. The Brisbane Declaration and Global Action Agenda on Environmental Flows (2018). Front. Environ. Sci. 2018, 6, 45. [Google Scholar] [CrossRef]
- Tickner, D.; Opperman, J.; Abell, R.; Acreman, M.; Arthington, A.H.; Bunn, S.E.; Cooke, S.J.; Dalton, J.; Darwall, W.; Edwards, G.; et al. Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. BioScience 2020, 70, 330–342. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; Maccormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef]
- Strayer, D.L.; Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. J. N. Am. Benthol. Soc. 2010, 29, 344–358. [Google Scholar] [CrossRef]
- World Wildlife Fund for Nature (WWF). Living Planet Report 2022—Building a Naturepositive Society; WWF: Gland, Switzerland, 2022; Available online: https://wwfint.awsassets.panda.org/downloads/embargo_13_10_2022_lpr_2022_full_report_single_page_1.pdf (accessed on 19 December 2023).
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Perry, D.; Harrison, I.; Fernandes, S.; Burnham, S.; Nichols, A. Global Analysis of Durable Policies for Free-Flowing River Protections. Sustainability 2021, 13, 2347. [Google Scholar] [CrossRef]
- Acreman, M.; Arthington, A.H.; Colloff, M.J.; Couch, C.; Crossman, N.D.; Dyer, F.; Overton, I.; Pollino, C.A.; Stewardson, M.J.; Young, W. Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Front. Ecol. Environ. 2014, 12, 466–473. [Google Scholar] [CrossRef]
- Secretaría de Economía. Norma Mexicana. Que Establece el Procedimiento para la Determinación del Caudal Ecológico en Cuencas Hidrológicas. 2012. Available online: https://www.gob.mx/cms/uploads/attachment/file/166834/NMX-AA-159-SCFI-2012.pdf (accessed on 19 December 2023).
- Barrios Ordóñez, J.E.; Salinas Rodríguez, S.A.; Martínez, A.; López Pérez, M.; Villón Bracamonte, R.A.; Rosales Ángeles, F. National Water Reserves Program in Mexico. Experiences with Environmental Flows and the Allocation of Water for the Environment; BID-TN-864; Inter-American Development Bank, Water and Sanitation Sector, IDB: Washington, DC, USA, 2015. [Google Scholar] [CrossRef]
- Salinas-Rodríguez, S.A.; Barrios-Ordóñez, J.E.; Sánchez-Navarro, R.; Wickel, A.J. Environmental flows and water reserves: Principles, strategies, and contributions to water and conservation policies in Mexico. River Res. Appl. 2018, 34, 1057–1084. [Google Scholar] [CrossRef]
- Comisión Nacional del Agua (CONAGUA). Identificación de Reservas Potenciales de Agua para el Medio Ambiente en México. 2011. Available online: https://www.conagua.gob.mx/CONAGUA07/Publicaciones/Publicaciones/SGT-3-11Media.pdf (accessed on 19 December 2023).
- Horne, A.C.; O’Donnell, E.L.; Tharme, R.E. Chapter 17—Mechanisms to Allocate Environmental Water. In Water for the Environment; Horne, A.C., Webb, J.A., Stewardson, M.J., Richter, B., Acreman, M., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 361–398. [Google Scholar] [CrossRef]
- Opperman, J.J.; Kendy, E.; Tharme, R.E.; Warner, A.T.; Barrios, E.; Richter, B.D. A Three-Level Framework for Assessing and Implementing Environmental Flows. Front. Environ. Sci. 2018, 6, 76. [Google Scholar] [CrossRef]
- Salinas-Rodríguez, S.A.; Barba-Macías, E.; Infante-Mata, D.; Nava-López, M.Z.; Neri-Flores, I.; Domínguez-Varela, R.; González-Mora, I.D. What Do Environmental Flows Mean for Long-term Freshwater Ecosystems’ Protection? Assessment of the Mexican Water Reserves for the Environment Program. Sustainability 2021, 13, 1240. [Google Scholar] [CrossRef]
- Salinas-Rodríguez, S.A.; Sánchez-Navarro, R.; Barrios-Ordóñez, J.E. Frequency of occurrence of flow regime components: A hydrology-based approach for environmental flow assessments and water allocation for the environment. Hydrol. Sci. J. 2020, 66, 193–213. [Google Scholar] [CrossRef]
- Salinas-Rodríguez, S.A.; van de Giesen, N.C.; McClain, M.E. Inter-Annual and Seasonal Variability of Flows: Delivering Climate-Smart Environmental Flow Reference Values. Water 2022, 14, 1489. [Google Scholar] [CrossRef]
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Acuerdo por el que se Actualiza la Disponibilidad Media Anual de las Aguas Nacionales Superficiales de las 757 Cuencas Hidrológicas que Comprenden las 37 Regiones Hidrológicas en que se Encuentra Dividido los Estados Unidos Mexicanos. 2020. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5600849&fecha=21/09/2020#gsc.tab=0 (accessed on 19 December 2023).
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Programa Especial de Cambio Climático 2021–2024. 2021. Available online: https://www.gob.mx/cms/uploads/attachment/file/681172/PECC-2021-2024.pdf (accessed on 19 December 2023).
- Schroeder Aguirre, A.A.; Salinas Rodríguez, S.A. Guía para la Aplicación de la Norma Mexicana para la Determinación del Régimen de Caudal Ecológico en Cuencas Hidrológicas: Aproximaciones Hidrológicas, Hidrobiológicas y Holísticas; Comisión Nacional del Agua: Mexico City, Mexico, 2011.
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad y Comisión Nacional de Áreas Naturales Protegidas (CONABIO-CONANP). Sitios Prioritarios para la Conservación de los Ecosistemas Acuáticos Epicontinentales. 2010. Available online: http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/region/biotic/spec1mgw (accessed on 19 December 2023).
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Decreto por el que se Aprueba el Programa Nacional Hídrico 2020–2024. 2020. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5609188&fecha=30/12/2020#gsc.tab=0 (accessed on 19 December 2023).
- Abell, R.; Thieme, M.L.; Revenga, C.; Bryer, M.; Kottelat, M.; Bogutskaya, N.; Coad, B.; Mandrak, N.; Balderas, S.C.; Bussing, W.; et al. Freshwater Ecoregions of the World: A New Map of Biogeographic Units for Freshwater Biodiversity Conservation. BioScience 2008, 58, 403–414. [Google Scholar] [CrossRef]
- Sánchez Montufar, O.; Technical Advisory Manager, Transparency Liaison of the General Technical Subdirectorate, National Water Commission, Mexico City, Mexico; Salinas Rodríguez, S.A.; Associate Researcher, Department of Sustainability Sciences, El Colegio de la Frontera Sur, Villahermosa, Tabasco, Mexico. (Folio No. 1610100126621 and Official Letter No. B00.7.03-022). Personal communication, 2021.
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Acuerdo por el que se Actualiza la Disponibilidad Media Anual de Agua Subterránea de los 653 Acuíferos de los Estados Unidos Mexicanos, Mismos que Forman Parte de las Regiones Hidrológico-Administrativas que se Indican. 2020. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5600593&fecha=17/09/2020#gsc.tab=0 (accessed on 19 December 2023).
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Áreas Naturales Protegidas, Estatales, Municipales, Ejidales, Comunitarias y Privadas de México. 2020. Available online: http://www.conabio.gob.mx/informacion/gis/maps/geo/anpest20gw.zip (accessed on 19 December 2023).
- Comisión Nacional de Áreas Naturales Protegidas (CONANP). Información Espacial de las Áreas Naturales Protegidas. 2023. Available online: http://sig.conanp.gob.mx/website/pagsig/info_shape.htm (accessed on 19 December 2023).
- Comisión Nacional del Agua (CONAGUA). Distritos y Unidades de Riego. 2022. Available online: https://sinav30.conagua.gob.mx:8080/SINA/?opcion=distritosr (accessed on 6 February 2024).
- Comisión Nacional del Agua (CONAGUA). Presas Principales. 2022. Available online: https://sinav30.conagua.gob.mx:8080/SINA/?opcion=monitoreo (accessed on 6 February 2024).
- Comisión Nacional de Población (CONAPO). Proyección de la Población de los Municipios de México, 2015–2030. 2019. Available online: http://www.conapo.gob.mx/work/models/CONAPO/Datos_Abiertos/Proyecciones2018/base_municipios_final_datos_02.rar (accessed on 6 February 2024).
- Insituto Nacional de Estadística Geografía e Informática (INEGI). Censo de Población y Vivienda 2010. 2010. Available online: https://www.inegi.org.mx/programas/ccpv/2010/#Datos_abiertos (accessed on 6 February 2024).
- Insituto Nacional de Estadística Geografía e Informática (INEGI). Censo de Población y Vivienda 2020. 2020. Available online: https://www.inegi.org.mx/programas/ccpv/2020/#Datos_abiertos (accessed on 6 February 2024).
- Gleeson, T.; Richter, B. How much groundwater can we pump and protect environmental flows through time? Presumptive standards for conjunctive management of aquifers and rivers. River Res. Appl. 2018, 34, 83–92. [Google Scholar] [CrossRef]
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Poff, N.L.; Tharme, R.E.; Arthington, A.H. Evolution of Environmental Flow Assessments: Science, principles, and methodologies. In Water for the Environment: From Policy and Science to Implementation and Management; Horne, A., Webb, J.A., Stewardson, M.J., Richter, B., Acreman, M., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 203–236. [Google Scholar] [CrossRef]
- Salinas Rodríguez, S.A. Contribución de las Reservas de Agua para Protección Ecológica en Materia de Conservación de la Biodiversidad: Línea Base para la Selección de Objetos Estratégicos de Conservación; Red de Monitoreo de Reservas de Agua: Mexico City, Mexico, 2022; p. 20. [Google Scholar]
- Bunn, S.E.; Arthington, A.H. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef] [PubMed]
- Davies, S.P.; Jackson, S.K. The biological condition gradient: A descriptive model for interpreting change in aquatic ecosystems. Ecol. Appl. 2006, 16, 1251–1266. [Google Scholar] [CrossRef]
- Martínez-Pacheco, A.I.; Salinas-Rodríguez, S.A. Servidor Cartográfico del Programa Nacional de Reservas de Agua, Versión 10.2; World Wildlife Fund Inc.: Mexico City, Mexico, 2018.
- Secretaría de Medio Ambiente y Recursos Naturales y Comisión Nacional de Áreas Naturales Protegidas (SEMARNAT-CONANP). Programa de Manejo: Reserva de la Biósfera Marismas Nacionales; SEMARNAT-CONANP: Mexico City, Mexico, 2013; p. 199. Available online: https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/2013/MARISMAS.pdf (accessed on 29 February 2024).
- Sood, A.; Smakhtin, V.; Eriyagama, N.; Villholth, K.G.; Liyanage, N.; Wada, Y.; Ebrahim, G.; Dickens, C. Global Environmental Flow Information for the Sustainable Development Goals; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2017; p. 37. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed]
- Messager, M.L.; Dickens, C.W.S.; Eriyagama, N.; Tharme, R.E. Limited comparability of global and local estimates of environmental flow requirements to sustain river ecosystems. Environ. Res. Lett. 2024, 19, 024012. [Google Scholar] [CrossRef]
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Decreto por el que se deja Insubsistente el Diverso por el que se Suprimen las Vedas Existentes en las Cuencas Hidrológicas Río Actopan y Río Antigua, de la Subregión Hidrológica Papaloapan A, de la Región Hidrológica Número 28 Papaloapan, y se Establecen Reservas Superficiales para Usos Doméstico, Público Urbano y Ambiental o para la Conservación Ecológica en las Mismas Cuencas Hidrológicas, Publicado el 6 de Junio de 2018. 2022. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5652171&fecha=17/05/2022#gsc.tab=0 (accessed on 19 December 2023).
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Decreto por el que se Deja sin Efectos el Diverso por el que se Suprimen las Vedas Existentes en las Cuencas Hidrológicas Río Papagayo 1, Río Petaquillas, Río Omitlán, Río Papagayo 2, Río Papagayo 3, Río Papagayo 4, Río Nexpa 1, Río Nexpa 2, Río La Arena 1 y Río La Arena 2, Pertenecientes a la Región Hidrológica Número 20 Costa Chica de Guerrero y se Establecen Zonas de Reserva de Aguas Nacionales Superficiales para los Usos Doméstico, Público Urbano y Ambiental o para Conservación Ecológica en las Cuencas Hidrológicas que se Señalan, las Cuales Forman Parte de la Región Hidrológica antes Referida, Publicado el 6 de Junio de 2018. 2022. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5650819&fecha=03/05/2022#gsc.tab=0 (accessed on 19 December 2023).
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Ward, J. The four-dimensional nature of lotic ecosystems. J. N. Am. Benthol. Soc. 1989, 8, 2–8. [Google Scholar] [CrossRef]
- Junk, W.; Bailey, P.B.; Sparks, R.E. The Flood pulse concept in river-floodplain systems. In Proceedings of the International Large River Symposium; Dodge, D.P., Ed.; Fish and Aquatic Science: Honey Harbour, ON, Canada, 1989; Volume 106, pp. 110–127. Available online: https://publications.gc.ca/collections/collection_2016/mpo-dfo/Fs41-31-106-eng.pdf (accessed on 29 February 2024).
- Junk, W.J. The flood pulse concept of large rivers: Learning from the tropics. SIL Proc. 1922–2010 2001, 27, 3950–3953. [Google Scholar] [CrossRef]
- Grantham, T.E.; Matthews, J.H.; Bledsoe, B.P. Shifting currents: Managing freshwater systems for ecological resilience in a changing climate. Water Secur. 2019, 8, 100049. [Google Scholar] [CrossRef]
- Poff, N.L. A river that flows free connects up in 4D. Nature 2019, 569, 201–202. [Google Scholar] [CrossRef] [PubMed]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime: A new paradigm for riverine conservation and restoration. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Richter, B.; Baumgartner, J.; Wigington, R.; Braun, D. How Much Water Does A River Need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef]
- Arthington, A.H.; Tickner, D.; McClain, M.E.; Acreman, M.C.; Anderson, E.P.; Babu, S.; Dickens, C.W.S.; Horne, A.C.; Kaushal, N.; Monk, W.A.; et al. Accelerating environmental flows implementation to bend the curve of global freshwater biodiversity loss. Environ. Rev. 2023, 1–27. [Google Scholar] [CrossRef]
- Piczak, M.; Perry, D.; Cooke, S.J.; Harrison, I.; Benitez, S.; Koning, A.A.; Peng, L.; Limbu, P.; Smokorowski, K.; Salinas-Rodríguez, S.A.; et al. Protecting and restoring habitats to benefit freshwater biodiversity. Environ. Rev. 2023. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B. Mapping the world’s free-flowing rivers: Data set and technical documentation. Nature 2019. [Google Scholar] [CrossRef]
- Comisión Nacional de Áreas Naturales Protegidas (CONANP). Numeralia Sobre la Áreas Naturales Protegidas de México; CONANP: Mexico City, Mexico, 2023.
- Ramsar Convention Secretariat. Wetlands of International Importance in Mexico. 2023. Available online: https://www.ramsar.org/es/country-profile/mexico (accessed on 19 December 2023).
- De La Lanza Espino, G.; Carbajal Pérez, J.L.; Salinas Rodríguez, S.A.; Barrios Ordoñez, J.E. Medición del caudal ecológico del río Acaponeta, Nayarit, comparando distintos intervalos de tiempo. Investig. Geográficas 2012, 78, 62–74. [Google Scholar] [CrossRef]
- De la Lanza Espino, G.; Carbajal Pérez, J.L.; Salinas Rodríguez, S.A. Cálculo de flujo ambiental como sustento para la reserva de agua del río Piaxtla, Sinaloa, México. Investig. Geográficas 2014, 87, 25–38. [Google Scholar] [CrossRef]
- Opperman, J.J.; Kendy, E.; Barrios, E. Securing Environmental Flows Through System Reoperation and Management: Lessons From Case Studies of Implementation. Front. Environ. Sci. 2019, 7, 104. [Google Scholar] [CrossRef]
- Lyons, T.J.; Máiz, T.L.; Tognelli, M.; Daniels, A.; Meredith, C.; Bullock, R.; Harrison, I. The Status and Distribution of Freshwater Fishes in Mexico; IUCN: Cambridge, UK; Albuquerque, NM, USA, 2020; Available online: https://portals.iucn.org/library/sites/library/files/documents/RL-72-002.pdf (accessed on 29 February 2024).
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Lineamientos para Incluir Volúmenes no Comprometidos de Aguas Nacionales Superficiales en los 10 Decretos de Reservas de Agua, Publicados el 6 de Junio de 2018 a Través de la Programación Hídrica. 2019. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5564306&fecha=27/06/2019#gsc.tab=0 (accessed on 19 December 2023).
Variable | Reasoning | Source |
---|---|---|
Water availability. For surface waters, it is the difference in volume that results between the mean annual runoff from the hydrological basin downstream and the volume committed by water usage. For groundwater, it is the difference between the mean annual recharge volume, the natural committed discharge, and the extraction of groundwater. | It is the determining indicator for the creation of reserves with a preventive focus. If there is no water available in the hydrological basin, water cannot be allocated to the environment. | Surface and groundwater mean annual site-specific balances; SEMARNAT and CONAGUA [20,26,27]. |
Water Stress. The percentage relationship between the mean annual surface runoff, including that generated within the own basin and that coming from upstream sources (or recharge in the case of aquifers), and the volumes extracted for productive water uses, losses due to evaporation, and reservoir level variations. | It is an indicator of the degree of water resource exploitation (i.e., pressure for use). With higher demand, there is increased competition for water and reduced potential for establishing reserves. | Calculated based on water availability studies [20,26,27]. |
Water bans. A management tool in response to water overexploitation, or in situations of extreme drought (severe scarcity), or in an emergency caused by water pollution, exploitation, use, or utilization. | The existence of water bans is crucial for the establishment of reserves as they provide legal precedent, and are the basis for the reserves with an availability preventive cause. | SEMARNAT and CONAGUA [20,26,27]. |
Water reserves. A management tool to allocate volumes for domestic or urban–public use, energy generation for public service, or to ensure minimum flows for ecological protection, including the conservation or restoration of vital ecosystems. | Legal foundation for their establishment and an indicator of progress in public policy for the allocation of water to the environment. | Environmental flow site specific assessments; SEMARNAT and CONAGUA [17,20,26,27]. |
Conservation value. Natural Protected Areas at federal, state, and municipal levels, as well as areas voluntarily designated for conservation, internationally important wetlands (Ramsar sites), and the priorities, gaps, or omissions in the conservation of epicontinental aquatic biodiversity. | The circulation of water in the environment is fundamental for sustaining the ecological functioning of natural areas recognized by the state. Conservation objectives such as species, habitats, and vegetation types are linked to these spaces; therefore, they require the establishment of water reserves for ecological protection. | CONABIO and CONANP [23,28,29]. |
Irrigation districts and units. | Irrigation farming has a direct effect on land use change and alterations to the natural runoff regime, which is key to establishing the environmental flows that support the reserves. | CONAGUA [30]. |
Location and volumes of large dams (≥15 m curtain height compared to the maximum level of ordinary flow or ≥3 Hm3 capacity). | Demand of water use indicator; it may limit the reserves. | CONAGUA [31]. |
Total population, density, and growth rate. | Development indicators; the higher the population, density, and growth rate, the larger the demand for water use and lower feasibility for establishing reserves. | CONAPO and INEGI [32,33,34]. |
Variable | Interpretation | Criterion | Value |
---|---|---|---|
Surface water availability (I) | Excluding | Availability < 0 Hm3 | (-.--) |
Water stress | Excluding | Exploitation ≥ 10% | (-.--) |
Surface water availability (II) | Positive | Volume > 0 Hm3 | 1 |
Conservation value | Positive | Presence of Ramsar site | 1 |
Presence of a Federal NPA | 1 | ||
A total of ≥34 gaps and omissions of epicontinental aquatic conservation | 1 | ||
Bans | Positive | Presence | 1 |
Irrigation districts | Negative | Ids/Bs ≤ 1% | 0 |
Ids/Bs ≤ 10% | −0.25 | ||
Ids/Bs > 10% | −0.5 | ||
Dams | Negative | Dcv/Bmar ≤ 1% | 0 |
Dcv/Bmar ≤ 10% | −0.25 | ||
Dcv/Bmar > 10% | −0.5 | ||
Risk of impact to the basin from groundwater extraction (groundwater stress) | Negative | Low= As/Bs < 100% | 0 |
High= As/Bs < 1% | 0 | ||
High= As/Bs ≤ 10% | −0.25 | ||
High= As/Bs > 10% | −0.5 | ||
Population density | Negative | Density ≤ 25 inhab/km2 | 0 |
Density ≤ 50 inhab/km2 | −0.25 | ||
Density > 50 inhab/km2 | −0.5 |
Feasibility | 2011 | 2013 | 2016 | 2022 |
---|---|---|---|---|
Very High | 19 | 19 | 3 | 4 |
High | 54 | 48 | 36 | 26 |
Medium | 116 | 116 | 108 | 116 |
Potential water reserve | 189 | 183 | 147 | 146 |
Non eligible | 268 | 276 | 286 | 301 |
Analyzed basins | 457 | 459 | 433 | 447 |
Excluded basins | 271 | 273 | 298 | 310 |
Total basins | 728 | 732 | 731 | 757 |
Feasibility | Very High | High | Medium | Total |
---|---|---|---|---|
Potential water reserve | 26,241 | 144,450 | 241,289 | 411,980 |
Natural Protected Areas | 15,431 | 23,718 | 37,575 | 76,723 |
Flora and Fauna Protection Area | 1366 | 8603 | 8527 | 18,496 |
Natural Resources Protection Area | 0 | 16 | 4310 | 4326 |
National Monument | 0 | 27 | 42 | 69 |
National Park | 0 | 194 | 443 | 637 |
Biosphere Reserve | 14,064 | 14,875 | 24,241 | 53,179 |
Sanctuary | 0 | 4 | 11 | 15 |
Ramsar Sites | 7387 | 18,525 | 11,467 | 37,379 |
Gaps and omissions (class) | 8953 | 38,400 | 81,055 | 128,408 |
Extreme | 3899 | 9367 | 23,287 | 36,553 |
High | 3112 | 12,203 | 16,643 | 31,957 |
Medium | 1942 | 16,830 | 41,125 | 59,897 |
Description | 2012 | 2016 | 2022 |
---|---|---|---|
Pressure for water use | |||
Low | 423 | 387 | 399 |
Medium | 68 | 64 | 76 |
High | 34 | 35 | 33 |
Very High | 207 | 245 | 249 |
Ecological importance | |||
Low | 174 | 182 | 170 |
Medium | 262 | 252 | 292 |
High | 230 | 227 | 236 |
Very High | 66 | 70 | 59 |
Environmental objective—Desired conservation status | |||
D—Deficient | 156 | 144 | 219 |
C—Medium | 304 | 276 | 106 |
B—Good | 82 | 93 | 292 |
A—Very good | 190 | 218 | 140 |
Environmental Objective—Desired Conservation Status | Surplus | Deficit | Total |
---|---|---|---|
D—Deficient | 87 | 132 | 219 |
C—Medium | 80 | 26 | 106 |
B—Good | 285 | 7 | 292 |
A—Very good | 137 | 3 | 140 |
Total | 589 | 168 | 757 |
Conservation Objects Dependent on the Flow Regime | Current Reserves (266 Baseline) | Potential Reserves (146) | Basins with a Class “A” Environmental Objective |
---|---|---|---|
Federal Natural Protected Areas (km2) | 59,852 | 76,723 | 68,841 |
Wetlands of international importance (km2) | 12,217 | 37,379 | 36,438 |
Ecohydrological connectivity of free-flowing rivers at least in good conservation state (km) | 41,632 | 25,306 | 22,162 |
Free-flowing rivers from source to mouth | 37,974 | 23,377 | 20,668 |
Good conservation status | 3657 | 1930 | 1494 |
Freshwater ecoregions (km2) | 442,742 | 409,483 | 337,772 |
Ameca–Manantlan | 23,632 | 16,292 | 11,939 |
Chiapas–Fonseca | 455 | 14,762 | 8083 |
Coatzacoalcos | 19,392 | 65 | 65 |
Colorado | 0 | 6566 | 6566 |
Cuatro Cienegas | 0 | 0 | 0 |
Gila | 0 | 1492 | 1492 |
Grijalva–Usumacinta | 69,325 | 46,010 | 44,030 |
Guzman–Samalayuca | 39 | 5318 | 5318 |
Lerma–Chapala | 4621 | 688 | 305 |
Llanos El Salado | 8831 | 5231 | 5231 |
Lower Rio Grande–Bravo | 23,469 | 7430 | 7240 |
Mayran–Viesca | 16,741 | 44,297 | 21,505 |
Panuco | 73,710 | 17,590 | 26,647 |
Papaloapan | 50,337 | 15,691 | 10,732 |
Quintana Roo–Motagua | 0 | 29,801 | 29,801 |
Rio Balsas | 1706 | 2134 | 1296 |
Rio Conchos | 743 | 259 | 0 |
Rio Salado | 0 | 0 | 0 |
Rio San Juan (Mexico) | 304 | 53 | 53 |
Rio Santiago | 84,418 | 16,028 | 14,080 |
Sierra Madre of the South | 8149 | 9372 | 4134 |
Sinaloa | 34,175 | 17,112 | 13,428 |
Sonora | 70 | 7888 | 319 |
Southern California Coastal–Baja California | 0 | 70,311 | 50,415 |
Upper Rio Grande–Bravo | 22,627 | 11,362 | 0 |
Upper Usumacinta | 0 | 63,731 | 11,362 |
Yucatan | 0 | 0 | 63,731 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinas-Rodríguez, S.A.; Martínez Pacheco, A.I. Water Reserves for the Environment: A Strategic and Temporal Analysis (2012–2022) for the Implementation of Environmental Flows in Mexico. Diversity 2024, 16, 190. https://doi.org/10.3390/d16030190
Salinas-Rodríguez SA, Martínez Pacheco AI. Water Reserves for the Environment: A Strategic and Temporal Analysis (2012–2022) for the Implementation of Environmental Flows in Mexico. Diversity. 2024; 16(3):190. https://doi.org/10.3390/d16030190
Chicago/Turabian StyleSalinas-Rodríguez, Sergio A., and Anuar I. Martínez Pacheco. 2024. "Water Reserves for the Environment: A Strategic and Temporal Analysis (2012–2022) for the Implementation of Environmental Flows in Mexico" Diversity 16, no. 3: 190. https://doi.org/10.3390/d16030190
APA StyleSalinas-Rodríguez, S. A., & Martínez Pacheco, A. I. (2024). Water Reserves for the Environment: A Strategic and Temporal Analysis (2012–2022) for the Implementation of Environmental Flows in Mexico. Diversity, 16(3), 190. https://doi.org/10.3390/d16030190