Environmental DNA in a Biofilm Can Be Used to Assess Diatom Ecological Health in Stream Water Ecology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Biofilm Sampling
2.2. Extraction of Biofilm eDNA and PCR
2.3. Meta-Barcoding for Diatom Community Analysis
2.4. Diatom Community Analysis Using a Microscope
2.5. Assessment of Diatom Ecological Health
2.6. Statistical Analysis
3. Results
3.1. Difference of Diatom Community between Morphology and Biofilm eDNA Analyses
3.2. Differences of Ecological Health Assessment between Microscope and Metabarcoding
3.3. Correlation with Water Quality (Total Phosphorus, TP; Phosphate, PO4-P)
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kelly, M.; Juggins, S.; Guthrie, R.; Pritchard, S.; Jamieson, J.; Rippey, B.; Hirst, H.; Yallop, M. Assessment of ecological status in UK rivers using diatoms. Freshw. Biol. 2008, 53, 403–422. [Google Scholar] [CrossRef]
- Kim, N.-Y. Study on the Improvement of Biological Water Quality Assessment Method Using the Distribution of Benthic Diatoms in Korea Stream. Ph.D. Thesis, Konkuk University, Seoul, Republic of Korea, 2012. [Google Scholar]
- Hynes, H.B.N. The Biology of Polluted Waters; Liverpool University Press: Liverpool, UK, 1960. [Google Scholar]
- Environmental Protection Agency (EPA). Biological Assessments and Criteria: Crucial Components of Water Quality Programs; Office of Water, United States Environmental Protection Agency: Washington, DC, USA, 2002.
- Gaiser, E. Periphyton as an indicator of restoration in the Florida Everglades. Ecol. Indic. 2009, 9, S37–S45. [Google Scholar] [CrossRef]
- Ewe, S.M.; Gaiser, E.E.; Childers, D.L.; Iwaniec, D.; Rivera-Monroy, V.H.; Twilley, R.R. Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades. Hydrobiologia 2006, 569, 459–474. [Google Scholar] [CrossRef]
- Allan, J.D.; Castillo, M.M.; Capps, K.A. Stream Ecology: Structure and Function of Running Waters; Springer: Dordrecht, The Netherlands, 2021. [Google Scholar]
- McCormick, P.V.; Stevenson, R.J. Periphyton as a tool for ecological assessment and management in the Florida Everglades. J. Phycol. 1998, 34, 726–733. [Google Scholar] [CrossRef]
- Choi, J. Research Study on Development of Comprehensive Water Environment Assessment Method (Ⅲ) Final Report; Korean Environment Institute, Ministry of Environment: Seoul, Republic of Korea, 2006. [Google Scholar]
- NIER. Biomonitering Survey and Assessment Manual; Office of Water and Environmental Engineering, National Institute of Environmental Research: Seoul, Republic of Korea, 2019; p. 129. [Google Scholar]
- Kelly, M.; Whitton, B.A. The trophic diatom index: A new index for monitoring eutrophication in rivers. J. Appl. Phycol. 1995, 7, 433–444. [Google Scholar] [CrossRef]
- Vasselon, V.; Rimet, F.; Domaizon, I.; Monnier, O.; Reyjol, Y.; Bouchez, A. Assessing pollution of aquatic environments with diatoms’ DNA metabarcoding: Experience and developments from France Water Framework Directive networks. Metabarcoding Metagenom. 2019, 3, 101–115. [Google Scholar] [CrossRef]
- Kawecka, B.; Olech, M. Diatom communities in the Vanishing and Ornithologist Creek, King George Island, South Shetlands, Antarctica. In Proceedings of the Twelfth International Diatom Symposium, Renesse, The Netherlands, 30 August–5 September 1992. [Google Scholar]
- Round, F.E.; Crawford, R.M.; Mann, D.G. Diatoms: Biology and Morphology of the Genera; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Yoon, S.-K. A Taxonomic Study on the Genus Synedra (Bacillariophyceae) in Korea. Master’s Thesis, Catholic University, Washington, DC, USA, 2001. [Google Scholar]
- Cho, K. Algal Flora of Korea; National Institute of Biological Resource, Ministry of Environment: Sejong, Republic of Korea, 2010.
- Ramadan, H.; Baeshen, N.A. Biological Identifications through DNA Barcodes. In Biodiversity Conservation and Utilization in a Diverse World; IntechOpen: London, UK, 2012; pp. 109–128. [Google Scholar]
- Mann, D.G.; Sato, S.; Trobajo, R.; Vanormelingen, P.; Souffreau, C. DNA barcoding for species identification and discovery in diatoms. Cryptogam. Algol. 2010, 31, 557–577. [Google Scholar]
- Schlötterer, C.; Kofler, R.; Versace, E.; Tobler, R.; Franssen, S. Combining experimental evolution with next-generation sequencing: A powerful tool to study adaptation from standing genetic variation. Heredity 2015, 114, 431–440. [Google Scholar] [CrossRef]
- Shokralla, S.; Spall, J.L.; Gibson, J.F.; Hajibabaei, M. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 2012, 21, 1794–1805. [Google Scholar] [CrossRef]
- Snyder, T.M.; Khush, K.K.; Valantine, H.A.; Quake, S.R. Universal noninvasive detection of solid organ transplant rejection. Proc. Natl. Acad. Sci. USA 2011, 108, 6229–6234. [Google Scholar] [CrossRef]
- Fan, H.C.; Gu, W.; Wang, J.; Blumenfeld, Y.J.; El-Sayed, Y.Y.; Quake, S.R. Non-invasive prenatal measurement of the fetal genome. Nature 2012, 487, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Weber-Lehmann, J.; Schilling, E.; Gradl, G.; Richter, D.C.; Wiehler, J.; Rolf, B. Finding the needle in the haystack: Differentiating “identical” twins in paternity testing and forensics by ultra-deep next generation sequencing. Forensic Sci. Int. Genet. 2014, 9, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Brenner, S.; Johnson, M.; Bridgham, J.; Golda, G.; Lloyd, D.H.; Johnson, D.; Luo, S.; McCurdy, S.; Foy, M.; Ewan, M. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol. 2000, 18, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Margulies, M.; Egholm, M.; Altman, W.E.; Attiya, S.; Bader, J.S.; Bemben, L.A.; Berka, J.; Braverman, M.S.; Chen, Y.-J.; Chen, Z. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Faust, K.; Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef]
- Kim, K.H.; Yoon, Y.; Hong, W.-Y.; Kim, J.; Cho, Y.-C.; Hwang, S.-J. Application of metagenome analysis to characterize the molecular diversity and saxitoxin-producing potentials of a cyanobacterial community: A case study in the North Han River, Korea. Appl. Biol. Chem. 2018, 61, 153–161. [Google Scholar] [CrossRef]
- Minamoto, T.; Miya, M.; Sado, T.; Seino, S.; Doi, H.; Kondoh, M.; Nakamura, K.; Takahara, T.; Yamamoto, S.; Yamanaka, H. An illustrated manual for environmental DNA research: Water sampling guidelines and experimental protocols. Environ. DNA 2021, 3, 8–13. [Google Scholar] [CrossRef]
- Kelly, M.; Boonham, N.; Juggins, S.; Kille, P.; Mann, D.; Pass, D.; Sapp, M.; Sato, S.; Glover, R.; Walsh, K. A DNA Based Diatom Metabarcoding Approach for Water Framework Directive Classification of Rivers; Department for Environment, Food & Rural Affairs: Bristol, UK, 2018; p. 157.
- Murali, A.; Bhargava, A.; Wright, E.S. IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 2018, 6, 140. [Google Scholar] [CrossRef]
- Wright, E.S. Using DECIPHER v2. 0 to analyze big biological sequence data in R. R J. 2016, 8, 352–359. [Google Scholar] [CrossRef]
- Krammer, K.; Lange-Bertalot, H. Süßwasserflora von Mitteleuropa, Bd 2/1. Bacillariophyceae. 1. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae; Gustav Fischer: Jena, Germany, 1988. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H.; Pascher, A.; Ettl, H. Bacillariophyceae 3/4: Centrales, Fragilariaceae, Eunotiaceae; Gustav Fischer: Jena, Germany, 1991. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H.; Pascher, A.; Ettl, H. Bacillariophyceae 4/4: Achnanthaceae, kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis; Gustav Fischer: Jena, Germany, 1991. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Süßwasserflora von Mitteleuropa, Bd 2/2. Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae; Gustav Fischer: Jena, Germany, 1988. [Google Scholar]
- Watanabe, T.; Ohtsuka, T.; Tuji, A.; Houki, A. Picture Book and Ecology of the Freshwater Diatoms; Uchida-Rokakuho: Tokyo, Japan, 2005; pp. 1–666. [Google Scholar]
- Simonsen, R. The diatom system: Ideas on phylogeny. Bacillaria 1979, 2, 9. [Google Scholar]
- Kim, K.; Kim, N.-y.; No, S.; Park, J.; Hwang, S.-j. Diatom community analysis and Trophic diatom index assessment by eDNA in stream biofilm. In Proceedings of the Korean Society of Limnology Annual Conference, Research center of K-Water, Daejeon, Republic of Korea, 14–18 October 2019; p. 8. [Google Scholar]
- Rimet, F.; Aylagas, E.; Borja, A.; Bouchez, A.; Canino, A.; Chauvin, C.; Chonova, T.; Ciampor, F., Jr.; Costa, F.O.; Ferrari, B.J. Metadata standards and practical guidelines for specimen and DNA curation when building barcode reference libraries for aquatic life. Metabarcoding Metagenom. 2021, 5, 17–33. [Google Scholar] [CrossRef]
- Kim, D.-K.; Park, K.; Jo, H.; Kwak, I.-S. Comparison of water sampling between environmental DNA metabarcoding and conventional microscopic identification: A case study in Gwangyang Bay, South Korea. Appl. Sci. 2019, 9, 3272. [Google Scholar] [CrossRef]
- Park, J.; An, J.-H.; Kim, Y.; Kim, D.; Yang, B.-G.; Kim, T. Database of National Species List of Korea: The taxonomical systematics platform for managing scientific names of Korean native species. J. Species Res. 2020, 9, 233–246. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G. AlgaeBase; National University of Ireland: Galway, Ireland, 2008. [Google Scholar]
- Stoeck, T.; Breiner, H.W.; Filker, S.; Ostermaier, V.; Kammerlander, B.; Sonntag, B. A morphogenetic survey on ciliate plankton from a mountain lake pinpoints the necessity of lineage-specific barcode markers in microbial ecology. Environ. Microbiol. 2014, 16, 430–444. [Google Scholar] [CrossRef] [PubMed]
- Santoferrara, L.F.; Grattepanche, J.-D.; Katz, L.A.; McManus, G.B. Patterns and processes in microbial biogeography: Do molecules and morphologies give the same answers? ISME J. 2016, 10, 1779–1790. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.B.; Johnson, S.B.; Fisher, J.L.; Peterson, W.T.; Vrijenhoek, R.C. Comparison of morphological and next generation DNA sequencing methods for assessing zooplankton assemblages. J. Exp. Mar. Biol. Ecol. 2017, 487, 113–126. [Google Scholar] [CrossRef]
- Benson, D.A.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Rapp, B.A.; Wheeler, D.L. GenBank. Nucleic Acids Res. 2000, 28, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Patil, J.S.; Anil, A.C. Quantification of diatoms in biofilms: Standardisation of methods. Biofouling 2005, 21, 181–188. [Google Scholar] [CrossRef]
- Taylor, J.; Harding, W.; Archibald, C. A Methods Manual for the Collection, Preparation and Analysis of Diatom Samples, TT 281/07; Water Research Commission: Pretoria, South Africa, 2007; p. 60. [Google Scholar]
- Bahls, L. Cymbellafalsa, Cymbopleura and Delicatophycus (Bacillariophyta)—Taxonomy, Ecology, Biogeography; Independent Publisher, The Montana Diatom Collection: Helena, MT, USA, 2019. [Google Scholar]
- Hasle, G.R.; Fryxell, G.A. Diatoms: Cleaning and mounting for light and electron microscopy. Trans. Am. Micros. Soc. 1970, 89, 469–474. [Google Scholar] [CrossRef]
- Coello-Camba, A.; Agustí, S. Acidification counteracts negative effects of warming on diatom silicification. Biogeosci. Discuss 2016, 1–5. [Google Scholar]
Site | Dominance Based on LMS | Subdominance Based on LMS | |||
---|---|---|---|---|---|
Site Name | Species | RA (%) | Species | RA (%) | |
Site 1 | 1st | Nitzschia inconspicua | 26.1 | Navicula subminuscula | 19.6 |
2nd | Nitzschia inconspicua | 27.9 | Navicula subminuscula | 25.9 | |
3rd | Nitzschia amphibia | 36.0 | Nitzschia inconspicua | 33.9 | |
4th | Nitzschia inconspicua | 33.7 | Navicula minima | 29.3 | |
Site 2 | 1st | Navicula cryptocephala | 41.3 | Surirella minuta | 8.6 |
2nd | Navicula subminuscula | 48.6 | Nitzschia inconspicua | 15.4 | |
3rd | Nitzschia inconspicua | 59.1 | Navicula minima | 20.6 | |
4th | Nitzschia inconspicua | 38.0 | Navicula minima | 15.9 | |
Site 3 | 1st | Gomphonema olivaceum | 18.0 | Fragilaria capucina | 17.2 |
2nd | Achnanthes alteragracillima | 20.3 | Fragilaria elliptica | 13.1 | |
3rd | Navicula minima | 30.1 | Nitzschia amphibia | 18.6 | |
4th | Navicula minima | 24.6 | Achnanthes subhudsonis | 23.2 | |
Site 4 | 1st | Achnanthes minutissima | 48.2 | Cymbella silesiaca | 10.6 |
2nd | Navicula minima | 16.4 | Nitzschia sinuata var. tabellaria | 15.4 | |
3rd | Navicula minima | 29.7 | Fragilaria elliptica | 14.8 | |
4th | Navicula minima | 41.0 | Fragilaria elliptica | 22.5 | |
Site 5 | 1st | Navicula cryptocephala | 43.4 | Nitzschia inconspicua | 18.4 |
2nd | Navicula subminuscula | 34.8 | Nitzschia inconspicua | 16.1 | |
3rd | Navicula minima | 50.7 | Nitzschia inconspicua | 15.0 | |
4th | Navicula subminuscula | 30.5 | Nitzschia inconspicua | 28.6 | |
Site 6 | 1st | Nitzschia inconspicua | 30.0 | Nitzschia amphibia | 23.1 |
2nd | Fragilaria elliptica | 44.2 | Nitzschia palea | 11.7 | |
3rd | Navicula minima | 34.6 | Navicula subminuscula | 27.0 | |
4th | Nitzschia inconspicua | 59.8 | Nitzschia frustulum | 13.7 | |
Site 7 | 1st | Nitzschia inconspicua | 26.9 | Navicula minima | 13.0 |
2nd | Navicula minima | 18.0 | Navicula seminulum | 14.2 | |
3rd | Navicula subminuscula | 53.4 | Nitzschia inconspicua | 14.5 | |
4th | Nitzschia inconspicua | 35.0 | Cymbella turgidula var. nipponica | 25.1 | |
Site 8 | 1st | Nitzschia inconspicua | 27.7 | Navicula minima | 14.2 |
2nd | Gomphonema minutum | 11.4 | Fragilaria elliptica | 10.4 | |
3rd | Navicula subminuscula | 42.9 | Nitzschia inconspicua | 15.5 | |
4th | Navicula minima | 48.4 | Navicula subminuscula | 24.2 | |
Site 9 | 1st | Nitzschia inconspicua | 50.8 | Navicula cryptocephala | 11.3 |
2nd | Navicula minima | 24.2 | Nitzschia inconspicua | 23.7 | |
3rd | Navicula subminuscula | 35.9 | Navicula minima | 25.2 | |
4th | Nitzschia inconspicua | 36.5 | Navicula minima | 28.3 | |
Site 10 | 1st | Nitzschia amphibia | 16.1 | Navicula cryptocephala | 15.4 |
2nd | Fragilaria elliptica | 21.7 | Cocconeis pediculus | 18.7 | |
3rd | Navicula minima | 33.5 | Nitzschia palea | 13.6 | |
4th | Navicula viridula var. rostellata | 22.5 | Nitzschia palea | 15.0 | |
Site 11 | 1st | Nitzschia inconspicua | 21.9 | Navicula cryptocephala | 21.1 |
2nd | Fragilaria elliptica | 26.5 | Nitzschia paleacea | 13.7 | |
3rd | Fragilaria elliptica | 51.7 | Fragilaria construens f. binodis | 10.0 | |
4th | Navicula minima | 53.2 | Nitzschia inconspicua | 18.5 | |
Site 12 | 1st | Nitzschia inconspicua | 33.4 | Gomphonema parvulum | 25.6 |
2nd | Nitzschia inconspicua | 32.1 | Fragilaria elliptica | 14.4 | |
3rd | Nitzschia inconspicua | 60.9 | Navicula subminuscula | 18.9 | |
4th | Nitzschia inconspicua | 69.5 | Navicula subminuscula | 14.2 | |
Total | Nitzschia inconspicua | 48.6 | Navicula subminuscula | 8.1 |
Site | Dominance (eDNA) | Subdominance (eDNA) | |||
---|---|---|---|---|---|
Site Name | Species | RA (%) | Species | RA (%) | |
Site 1 | 1st | Navicula subminuscula | 80.6 | Nitzschia palea | 3.7 |
2nd | Navicula subminuscula | 48.3 | Nitzschia amphibia | 19.1 | |
3rd | Nitzschia palea | 33.0 | Navicula subminuscula | 22.4 | |
4th | Melosira varians | 30.7 | Nitzschia palea | 21.0 | |
Site 2 | 1st | Navicula subminuscula | 30.9 | Nitzschia palea | 15.3 |
2nd | Navicula subminuscula | 64.0 | Gomphonema pumilum | 16.9 | |
3rd | Navicula sp. | 63.1 | Nitzschia palea | 54.0 | |
4th | Melosira varians | 9.2 | Navicula sp. | 8.5 | |
Site 3 | 1st | Fragilaria construens | 21.2 | Achnanthes microcephala | 14.9 |
2nd | Achnanthidium minutissimum | 29.9 | Fragilaria construens | 20.5 | |
3rd | Nitzschia palea | 43.6 | Navicula sp. | 9.1 | |
4th | Nitzschia inconspicua | 19.7 | Melosira varians | 13.7 | |
Site 4 | 1st | Achnanthidium minutissimum | 60.5 | Navicual radiosa | 11.4 |
2nd | Achnanthidium minutissimum | 40.1 | Fragilaria construens | 25.3 | |
3rd | Nitzschia palea | 32.6 | Fragilaria flavovirens | 26.6 | |
4th | Nitzschia palea | 19.3 | Navicula sp. | 15.3 | |
Site 5 | 1st | Navicula subminuscula | 63.4 | Diatoma tenuis | 6.2 |
2nd | Nitzschia palea | 31.5 | Fragilaria flavovirens | 27.5 | |
3rd | Navicula subminuscula | 25.7 | Nitzschia palea | 10.3 | |
4th | Nitzschia filiformis | 11.7 | Nitzschia amphibia | 9.8 | |
Site 6 | 1st | Navicula subminuscula | 39.2 | Nitzschia soratensis | 25.1 |
2nd | Nitzschia palea | 30.1 | Gomphonema pumilum | 27.8 | |
3rd | Nitzschia palea | 31.7 | Navicula subminuscula | 7.2 | |
4th | Nitzschia inconspicua | 15.5 | Navicula sp. | 8.4 | |
Site 7 | 1st | Nitzschia soratensis | 30.9 | Navicula subminuscula | 19.2 |
2nd | Gomphonema minutum | 20.0 | Navicula minima | 12.6 | |
3rd | Nitzschia palea | 50.9 | Navicula minima | 16.8 | |
4th | Melosira varians | 55.0 | Nitzschia palea | 13.8 | |
Site 8 | 1st | Diatoma tenuis | 61.8 | Nitzschia soratensis | 7.7 |
2nd | Gomphonema minutum | 40.8 | Fragilaria construens | 18.3 | |
3rd | Nitzschia inconspicua | 20.0 | Navicula subminuscula | 13.7 | |
4th | Gomphonema subclavatum | 11.5 | Navicula sp. | 7.7 | |
Site 9 | 1st | Nitzschia soratensis | 42.7 | Navicula subminuscula | 13.0 |
2nd | Navicula subminuscula | 35.7 | Navicula minima | 16.8 | |
3rd | Navicula subminuscula | 30.3 | Nitzschia palea | 11.2 | |
4th | Nitzschia inconspicua | 24.9 | Gomphonema subclavatum | 23.3 | |
Site 10 | 1st | Fragilaria flavovirens | 31.1 | Nitzschia amphibia | 27.7 |
2nd | Cyclotella meneghiniana | 24.3 | Nitzschia palea | 12.3 | |
3rd | Achnanthidium minutissimum | 37.4 | Fragilaria construens | 30.3 | |
4th | Nitzschia palea | 8.2 | Navicula sp. | 7.5 | |
Site 11 | 1st | Diatoma tenuis | 75.0 | Nitzschia soratensis | 4.7 |
2nd | Cyclotella pseudostelligera | 32.2 | Nitzschia palea | 31.2 | |
3rd | Nitzschia palea | 59.1 | Navicula sp. | 12.6 | |
4th | Navicula minima | 10.0 | Fragilaria construens | 8.9 | |
Site 12 | 1st | Nitzschia soratensis | 17.1 | Navicula saprophila | 11.3 |
2nd | Nitzschia palea | 62.8 | Cyclotella pseudostelligera | 6.4 | |
3rd | Nitzschia inconspicua | 21.3 | Gomphonema subclavatum | 16.8 | |
4th | Navicula sp. | 32.1 | Navicula minima | 12.1 | |
Total | Nitzschia palea | 16.4 | Navicula subminuscula | 11.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Cho, H.; Kim, J.-H.; Yang, Y.-M.; Ju, H.; Jang, M.-H.; Jeong, H.-G. Environmental DNA in a Biofilm Can Be Used to Assess Diatom Ecological Health in Stream Water Ecology. Diversity 2024, 16, 8. https://doi.org/10.3390/d16010008
Kim K, Cho H, Kim J-H, Yang Y-M, Ju H, Jang M-H, Jeong H-G. Environmental DNA in a Biofilm Can Be Used to Assess Diatom Ecological Health in Stream Water Ecology. Diversity. 2024; 16(1):8. https://doi.org/10.3390/d16010008
Chicago/Turabian StyleKim, Keonhee, Hyeonjin Cho, Jeong-Hui Kim, Yun-Mo Yang, Hyunji Ju, Min-Ho Jang, and Hyun-Gi Jeong. 2024. "Environmental DNA in a Biofilm Can Be Used to Assess Diatom Ecological Health in Stream Water Ecology" Diversity 16, no. 1: 8. https://doi.org/10.3390/d16010008
APA StyleKim, K., Cho, H., Kim, J. -H., Yang, Y. -M., Ju, H., Jang, M. -H., & Jeong, H. -G. (2024). Environmental DNA in a Biofilm Can Be Used to Assess Diatom Ecological Health in Stream Water Ecology. Diversity, 16(1), 8. https://doi.org/10.3390/d16010008