Next Article in Journal
Seasonal Diversity and Morphometric Variations of Rotifers in Relation to Selected Environmental Variables from a Tropical High-Altitude Lake in Mexico
Next Article in Special Issue
Can the Empty Shells of Pinna nobilis Maintain the Ecological Role of the Species? A Structural and Functional Analysis of the Associated Mollusc Fauna
Previous Article in Journal
California Sea Cucumber (Apostichopus californicus) Abundance and Movement on a Commercial Shellfish Aquaculture Farm
Previous Article in Special Issue
Possible Interactions between Invasive Caulerpa Taxa and Native Macrozoobenthos: The Case Study of Favignana Island
Article Menu
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:

Polychaetes (Annelida) of Cyprus (Eastern Mediterranean Sea): An Updated and Annotated Checklist including New Distribution Records

Maria Rousou
Joachim Langeneck
Chara Apserou
Christos Arvanitidis
Stephanos Charalambous
Kyproula Chrysanthou
George Constantinides
Panagiotis D. Dimitriou
Sergio Carlos García Gómez
Soteria Irene Hadjieftychiou
Nikolaos Katsiaras
Periklis Kleitou
Demetris Kletou
Frithjof C. Küpper
Paraskevi Louizidou
Roberto Martins
Manos L. Moraitis
Nafsika Papageorgiou
Magdalene Papatheodoulou
Antonis Petrou
Dimitris Xevgenos
Lavrentios Vasiliades
Eleni Voultsiadou
Chariton Charles Chintiroglou
20 and
Alberto Castelli
add Show full author list remove Hide full author list
Department of Fisheries and Marine Research (DFMR), Ministry of Agriculture, Rural Development and the Environment of the Republic of Cyprus, 101 Vithleem Street, Strovolos, 2033 Nicosia, Cyprus
Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), U.L.R. di Lecce, Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Strada Provinciale Lecce-Monteroni, 73100 Lecce, Italy
AP Marine Environmental Consultancy Ltd., P.O. Box 26728, 1647 Nicosia, Cyprus
Institute of Marine Biology Biotechnology & Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Gournes Pediados, Crete, P.O. Box 2214, 71003 Heraklion, Greece
GreeceLifeWatch Eric, Sector I-III Plaza de España, 41071 Seville, Spain
T.C. Geomatic Ltd., 1095 Nicosia, Cyprus
George Constantinides, Freelance, 95th Makariou Av., Lakatamia, 2313 Nicosia, Cyprus
Marine Ecology Laboratory, Department of Biology, University of Crete, 70013 Heraklion, Greece
Sergio Carlos García Gómez, Freelance, Calle Jalón 32, Portal 4, 3B, 29004 Málaga, Spain
Institute of Oceanography, Hellenic Centre for Marine Research, 44.6km Athinon-Souniou, 19013 Anavissos, Greece
Marine & Environmental Research (MER) Lab Ltd., 4533 Limassol, Cyprus
Department of Maritime Transport and Commerce, Frederick University, 3080 Limassol, Cyprus
School of Biological Sciences, University of Aberdeen, Cruickshank Bldg, St. Machar Drive, Aberdeen AB24 3UU, UK
Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
Institute of Oceanography, Hellenic Centre for Marine Research, Hydrobiological Station of Rhodes, Cos Street, 85100 Rhodes, Greece
CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
Cyprus Marine and Maritime Institute, CMMI House, Vasileos Pavlou Square, 6023 Larnaca, Cyprus
Department of Agricultural Development, Agri-Food & Natural Resources Management, National and Kapodistrian University of Athens Evripos Complex, 34400 Psachna, Greece
Engineering Systems & Services Department, Technology Policy & Management Faculty, Delft University of Technology, Jaffalaan 5, 2628 BX Delft, The Netherlands
Department of Zoology, School of Biology, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece
Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Diversity 2023, 15(8), 941;
Submission received: 30 June 2023 / Revised: 8 August 2023 / Accepted: 17 August 2023 / Published: 19 August 2023


The diversity and distribution of polychaetes in the coastal area and the EEZ of the Republic of Cyprus is presented based on both the literature records and new data acquired in a wide range of environmental monitoring programmes and research projects. A total of 585 polychaete species belonging to 49 families were reported in Cyprus waters; among them, 205 species (34%) were recorded based on the literature only, 149 (26%) were new records based on our own data, and a total of 231 spp. (40%) were recorded from both the literature and new data. A total of 51 polychaete species were identified as non-indigenous; among them, 32 were confirmed as alien species, 4 were considered cryptogenic, and 15 were considered questionable as there were doubts about their identity. The Indo-Pacific Schistomeringos loveni was reported for the first time in the Mediterranean Sea, while four species already reported in the literature, namely, Bispira melanostigma, Fimbriosthenelais longipinnis Leonnates aylaoberi, and Rhodopsis pusilla, were added to the list of non-indigenous polychaetes in the Mediterranean Sea. The current work highlights the importance of implementing environmental monitoring programmes and carrying out research surveys targeting benthic macrofauna assemblages.

1. Introduction

Polychaetes (Annelida) are one of the most important groups of benthic organisms, and they are often characterised by high diversity, abundance and biomass in benthic communities from a wide depth range [1,2,3,4]. Due to the high biomass reached in several environments, polychaetes often play an important role in benthic community food webs [5,6], and often represent an important food item for benthic and nektonic species with commercial interest, both in the wild [7,8,9] and in aquaculture plants [10,11], thus contributing to their sustainable exploitation. In addition, several species of polychaetes show tolerance to different types of pollution [12,13,14] and might be successfully used for both environmental monitoring and water quality assessment [15,16,17] as well as bioremediation of polluted environments [18,19,20].
The identification of polychaetes to the species level is often crucial to obtain reliable datasets that can be effectively used for environmental monitoring and cross-comparisons with other studies [21,22]. However, taxonomic and parataxonomic expertise on this group is globally decreasing [23,24], following a well-known and general trend [25]. In addition, polychaetes have been historically considered as a group with relatively low diversity and characterised by the widespread occurrence of cosmopolitan species [26,27] with extremely variable morphology, ecology, and reproductive traits [28,29]. Even though current polychaete research is revealing a widespread pattern of cryptic and pseudocryptic diversity in several allegedly cosmopolitan species [30,31,32], taxonomic keys are often outdated, and a critical re-evaluation of the diversity is not available for several polychaete species. In fact, integrative taxonomy studies taking into account many lines of evidence other than morphology need to take in consideration not only the existence of new species but also the occurrence of overlooked old taxa, described in the XIX century and subsequently incorrectly put into the synonymy of allegedly cosmopolitan species [33,34]. The extent of the phenomenon of diversity underestimation in polychaetes is unclear, but taking into account already published studies, in which species complexes were found to include up to >20 divergent lineages [31,34], a coarse estimate would suggest that we are currently underestimating the actual species diversity of polychaetes by approximately one order of magnitude. Even though the Mediterranean Sea is widely considered as one of the best-known marine areas in the world, it is clear that its polychaete fauna is still incompletely known, and further studies are needed to unravel its actual diversity.
At present, comprehensive checklists are available for relatively few Mediterranean areas, mostly corresponding to national waters and/or administrative regions. In particular, national checklists are available for Italy [35], Türkiye [36], Greece [37], Algeria [38], and Tunisia [39,40]. A considerably less frequent approach in the compilation of checklists entails focusing on biogeographic sectors. A first attempt at creating a checklist for the Levant Basin is by Ben-Eliahu [41], and this list, albeit incomplete, remains the only attempt at collating the available evidence on polychaete diversity in the Levant Sea. A more detailed work in the same direction is represented by the commented checklist of Adriatic polychaetes by Mikac [42]. Still, comprehensive checklists are missing for several Mediterranean countries/biogeographic areas, including the island of Cyprus.
Information on marine polychaete species along the Cypriot coasts can be considered scarce in time and space. The first works on the topic are by Ben-Eliahu [43,44] followed by Ben-Eliahu & Fiege [45] and Ben-Eliahu [41]. Hadjichristophorou et al. [46] provided the first checklist of macrofaunal taxa, including several polychaetes species, while Ben-Eliahu & Payiatas [47] focused on the family Serpulidae. Results of a sampling cruise carried out in the late 1990s along the north coast of Cyprus provided a sizable amount of data on the macrofauna of Cyprus; annelid checklists, and sometimes species redescriptions, were provided by Çinar & Ergen [48], Çinar et al. [49], and Çinar [50]. While a comprehensive checklist of polychaetes recorded from Cyprus is still missing, this latter author compiled all the literature available at the time, stating that 456 polychaete species had been reported from Cyprus to date, among which 15 should be considered non-indigenous. Later, Katsanevakis et al. [51] listed 19 non-indigenous annelid species in Cyprus waters. Further data are available in general ecology papers [52,53,54] or on works dedicated to a specific family [55,56,57,58].
In recent years, a PhD thesis was devoted to a detailed study of the benthic assemblages along the southern coast of Cyprus, with a specific focus on Vassilikos Bay [59]. While findings referring to other taxonomic groups have been published, allowing one to retrieve new records and new species and to provide updated checklists [60,61,62], data regarding polychaetes are still unpublished. In addition, the recent implementation of the Marine Strategy Framework Directive in Cyprus represents a further precious source of additional data on benthic assemblages.
This work aims to compile a checklist of polychaete species recorded in the coastal waters and the Economic Exclusive Zone of the Republic of Cyprus based on both the literature records and new data.

2. Materials and Methods

2.1. Development of the Polychaeta Dataset

A bibliographic review was carried out, and all the articles published in scientific journals and conference abstracts that included information on polychaete species recorded in the marine waters of Cyprus were identified. Where polychaeta species were reported in the scientific literature resources, but no information on the exact sampling stations were noted, we contacted the authors and asked them to provide, if available, the Supplementary Materials checklist.
The new records and unpublished data on polychaeta species presence came from: (i) monitoring programmes that are implemented as part of the EU Water Framework Directive (WFD) 2000/60/EU and the EU Marine Strategy Framework Directive (MSFD) 2008/56/EU, (ii) environmental monitoring programmes of the open-sea aquaculture units, (iii) implementation of Environmental Impact Assessments (EIAs) related to marine works, (iv) environmental monitoring of Artificial Reef Marine Protected Areas, (v) research projects: OIKAPAV, IDREEM, WATERMINING, EMBOS, and AQUA-Plos, and (iv) some samples collected by J. Langeneck around Limassol Bay, from the surface to approximately 12 m depth, during a visit to Cyprus in July 2015. Information on each of the projects is presented in Supplementary Table S2.
All the bibliographic and new or unpublished data indicated above were included in an Excel document (Supplementary Table S3). Specifically, for each species record, information, when present, was recorded on: (i) species taxonomy (family, genus, species, subspecies, scientific name, WoRMS code), (ii) taxonomic notes (new record, non-indigenous species, species complex), (iii) the locality (country, region, sampling station names, coordinates, depth), (iv) habitat information (habitat type, type of artificial construction when present, sediment type, TOM %, TOC%, flora associations), (v) human activities, if present, (vi) sampling method information (method, sieve size), and (vii) information on the data (taxonomic experts and institutions, citation/reference).
Following that, the data were uploaded to the OBIS System and can be downloaded from the following link ( (accessed on 16 August 2023).
With regard to the non-indigenous polychaetes that were found along the Cypriot coasts, three categories indicated by Langeneck et al. [63] were used: (i) non-indigenous species (NIS): all species whose status of NIS could be confirmed were assigned to this category; (ii) cryptogenic species (CS): following Carlton [64], we defined cryptogenic species as all species with reasonably clear taxonomy that are not demonstrably native or introduced; (iii) questionable species: species records with uncertain occurrence in Mediterranean environments; these are chiefly species that were reported only once in Cypriot waters, whose records were not supported by morphological studies and lack reference material, and which in most cases, were likely to be misidentifications of native species. Following Tsiamis et al. [65], we also included in this category species commonly recorded in Mediterranean environments but showing discrepancies in morphology and/or ecology that might suggest the occurrence of an overlooked undescribed native species.

2.2. Data Analysis

As the main aim of the current study was to develop an updated Polychaeta checklist, only descriptive data analyses were carried out based on species presence. Specifically, the following were estimated: number of species with regard to the bibliographic and new data (development of Venn diagrams); number of species per category (NIS, new records, species complexes); number of newly recorded species records per year; number of species per family; number of species per region; and number of species found to be in association with habitat types, with seagrasses and macroalgae, and with human activities.

3. Results

3.1. Bibliographic Sources and New Surveys

A total of 31 bibliographic references were found to include information on polychaeta species presence in Cyprus dating from 1972 to the year 2022 (Table S1). The new polychaeta data came from 44 surveys that were carried out between the years 2011 and 2022 (Table S2). From these, 30 were annual environmental monitoring surveys of open-sea aquaculture units, 7 surveys were research funded projects, 4 were baseline survey assessments as part of the implementation of environmental impact assessments, 2 were multiannual surveys that were carried out as part of the WFD and the MSFD, and 1 was related to the Fisheries Data Collection Programme that is implemented in Cyprus. The spatial distribution of the bibliographic references and the new surveys is presented in Figure 1.

3.2. Polychaete Diversity in Cyprus, including New Records and Non-Indigenous Species

A total of 585 polychaete species belonging to 49 families were recorded along the Cypriot coasts (Table 1; Supplementary Files S1 and S2). Of these, 436 species were reported in the published literature, 231 of which were also retrieved during the implementation of new research surveys; while 149 species were newly reported for Cyprus waters (Figure 2). The distribution of new records in time presents two main sharp increases; during the years 2005–2008, when a total of 262 species were reported, and the year 2023, which refers to the current study (149 new records) (Figure 3).
The family Syllidae presented the highest number of species (100 species) followed by Serpulidae (44 species) and Sabellidae (39 species) (Table 2). In total, 51 species belonging to 20 families were considered non-indigenous; among them, the families showing the highest numbers of non-indigenous species were Serpulidae (7 species) and Capitellidae, Nereididae, and Syllidae (5 species each). According to the classification used by Langeneck et al. [63], 32 of the non-indigenous species recorded were confirmed as alien species, 4 were cryptogenic, and 15 were questionable (Figure 4, Table 1). The Indo-Pacific Schistomeringos loveni was reported for the first time in the Mediterranean Sea, while four species already reported in literature, namely, Bispira melanostigma, Fimbriosthenelais longipinnis, Leonnates aylaoberi, and Rhodopsis pusilla, were added to the list of non-indigenous polychaetes in the Mediterranean Sea (see Supplementary File S2).

3.3. Spatial Distribution of Polychaeta Species

The spatial distribution of polychaeta species records from the literature review and the new records are presented in Figure 5. Overall, the region of Larnaca presented the highest number of polychaeta species (357), accounting to 60% of the overall recorded species, followed by Ammochostos (339 sp., 58%), Limassol (235 spp., 40%), Keryneia (232 spp., 40%), Nicosia (26 spp., 26%), and Paphos (89 spp., 15%), while available data on the Cyprus Economic Exclusive Zone included 5 species (0.86%) (Figure 5). The majority of the newly recorded species was found in the Larnaca region with 126 species followed by Limassol (50 spp.) and Ammochostos (3 spp.). The Vassilikos Bay, which is located in Larnaca, presented 113 new species records. With regard to spatial distribution of the polychaeta NIS, the highest number was recorded in Larnaca (26 spp.), Ammochostos (23 spp.), Limassol (20 spp.), Keryneia (9 spp.), and Nicosia and Paphos (with 3 spp. each) (Figure 5).

3.4. Habitat Characteristics and Associations with Flora and Human Activities

Based on the data that included information on habitat type characteristics, a total of 500 species were found in soft sediments, 186 species were found on hard substrates and rocks, 179 species were found on a combination of soft/hard substrates, 51 species were found in associations with sponges, 13 species were found on artificial constructions, 7 species were found in sea caves, and 16 species were found in a combination of habitats. Of the 149 newly recorded species, 147 were found in soft sediments while just 2 spp. were found in hard substrates. Similarly, soft sediments exhibited the highest number of NIS (35 spp.) followed by hard substrates and rocks (11 spp.), a combination of soft/hard (7 spp.), artificial constructions (3 spp.), and sponge (1 spp.).
A total of 405 polychaeta species were recorded in samples with flora associations (seagrasses and/or macroalgae); of these, 23 were NIS and 63 were newly recorded species (Table 3). The highest number of records was found to be associated with Posidonia oceanica (280 spp. accounting to 48% of the overall recorded species), followed by Caulerpa prolifera, C. racemose, and C. cylindracea (192, 164, and 137 spp., respectively). A higher number of NIS species were found to be associated with the P. oceanica meadows (11 spp.), while the highest numbers of newly recorded species were found at the associations with Caulerpa prolifera, Caulerpa cylindracea, and Caulerpa racemosa (52, 33, and 18 spp., respectively).
With regard to identified human activities, the highest species presence was found to be associated with fish farms (254 species), followed by desalination plants (68 species), ports (55 species), and single buoy moorings (41 species) (Table 3). The highest number of newly recorded species and NIS were recorded near fish farms (70 and 19 species, respectively). At the stations associated with the artificial reefs, fish farms, ports, and touristic facilities (areas near hotels), 7–8.3% of the recorded species were identified as NIS (Table 3).

4. Discussion

4.1. On the Path to Modern Checklists: What Is Complete and What Is Still Missing

The present work allowed us to reconstruct an updated checklist of polychaetes occurring in coastal waters and the EEZ of The Republic of Cyprus. Overall, we recorded the occurrence of 585 polychaete species, even though the identity of some species still needs to be checked, possibly using molecular markers, as their ecology and morphology do not fully correspond to what is typically known for the species (see Supplementary File S2). It is noteworthy that 149 species, coarsely corresponding to ¼ of all polychaete species reported for Cyprus, were reported on the basis of new data collected in the context of public or private monitoring programmes. This outcome highlights the importance of environmental surveys, such as the ones compulsory for the environmental monitoring of fish farm activities and the implementation of the Marine Strategy Framework Directive (MSFD) and the Water Framework Directive (WFD), not only to evaluate the environmental quality of water bodies but also to increase knowledge on marine organism diversity, even in relatively well-known areas.
After several decades of research focusing mostly on functional diversity of ecosystems, an unexpected outcome of the current biodiversity crisis consisted of a renewed interest in the so-called alpha-taxonomy, i.e., the identification and description of species occurring in a specific environment [66,67]. In this context, the traditional approach for compiling species checklists, envisaged as tables detailing the geographical distribution of species at a coarse level, usually lacking comments on potential taxonomic uncertainties [35,36], does not seem to be up to the task of providing a relevant tool to face environmental challenges and evaluate biodiversity changes. With this checklist, we aimed at providing georeferenced distributional data for the majority of species reported from Cyprus waters, in order to allow a detailed reconstruction of their distribution.
Based on the spatial distributional data, we identified areas that need to be further investigated in order to increase our knowledge. From our study, it has become clear that there is a need to carry out more surveys in the Paphos region. In addition, information on polychaeta distribution in the EEZ was available only from one bibliographic resource, the Eratosthenes Seamount [68], which identified five polychaeta species. As the MSFD is applied not only to coastal waters but also in the deep-sea, information on such great depths, although difficult to be sampled due to the high cost of such surveys, shall also be carried out. Another finding was that the majority of the data were recorded from soft-sediment substrates; additional surveys need to be carried out to target reefs.
Moreover, in the age of the Internet, we believe that uploading public distributional data is of paramount importance for the establishment of informed environmental policies. Of course, there is still a lot of room for improvement along the path to modern checklists. A relevant hurdle is represented by the fixed nature of published checklists. By definition, all annelid checklists compiled so far [35,36,37,38,39,40,41], this one included, are unmodifiable scientific literature, and, as such, need regular updates with the increase in studies expanding the knowledge about the distribution and diversity of marine annelids. A possible alternative might entail the compilation of online checklists, associated with publicly available databases, which might be readily modified with the increase in knowledge. A similar practice has been put in place by the redactors of the popular site “World Register of Marine Species” [69] and is already one of the aims of the update of other national or international checklists (e.g., [70,71]). The main issue with this kind of interactive project is represented by the fact that updates typically depend on the effort of unpaid volunteers, and this kind of scientific contribution, despite its relevance for the scientific community, is scarcely valued from a professional point of view.
An additional set of data, aside from precise geographical coordinates, is represented by the ecological data regarding the type of sediment, the association with anthropic disturbance, and/or artificial habitats, and with specific flora and habitat-forming fauna. While the association between vagile invertebrates and habitat formers is considered a relevant topic in ecological studies (e.g., [72,73]), ecological information is usually missing from checklists, or it is available only for a limited part of the data considered [42]. In this work, we included all the available environmental information in our checklist, and although the main scope of the current study was to develop the checklist, we carried out some basic descriptive statistics with regard to species presence and environmental parameters and identified some main findings, gaps, and needs. In general, from our findings, the majority of data targeted soft substrates and, therefore, there is a need to increase surveys on other types of habitats including rocky substrates and coralligenous substrates. With regard to flora associations, P. oceanica meadows as well as the Cystoseira spp. forests were found to provide habitats to a high number of polychaeta species. In addition, for the first time, information on the association between the Lessepsian seagrass Halophila stipulacea and polychaetes are presented for the Levantine Sea. With the increase in this kind of information at the basin scale, hopefully, these data, especially if available to the public, will allow us to expand our knowledge about the ecology of polychaete species and to understand their relationship with specific marine flora and other habitat-forming species.
A further element typically missing from checklists is represented by molecular data. Modern taxonomic studies largely rely on molecular data, and the link between “traditional” taxonomy, based on morphological characters, and integrative taxonomy is of paramount importance for the effective implementation of monitoring programmes based on eDNA and metabarcoding [74,75,76]. However, the available libraries for marine invertebrates are still very scanty, even in the comparatively well-known European waters. In this context, the Eastern Mediterranean Sea is particularly interesting. On one hand, it is considered an area of genetic diversification [77,78], hosting unique lineages [79,80], and sometimes even distinct species [81,82]. On the other hand, the eastern sub-basin is affected by a strong pressure from invasive species, mostly arriving from the Red Sea through the Suez Canal. The existence of a reliable barcoding library on these species would allow to track their occurrence using eDNA in early stages of the invasion process and help in establishing effective management policies [83,84]. However, molecular data on non-indigenous polychaetes in European waters are still partial and, in particular, the majority of Lessepsian species is still unknown from the molecular point of view [85,86]. At present, the polychaete fauna of the Eastern Mediterranean Sea is largely unexplored from the molecular point of view, and the fauna of Cyprus is not an exception; to our knowledge, partial data are available only for L. mediterranea and A. assimilis [87,88]. An increase in the molecular data available for polychaetes in the Mediterranean Sea and, in particular, in the Eastern sub-basin, is necessary to understand their diversity and evolution and to effectively face the currently ongoing biodiversity crisis.

4.2. Non-Indigenous Polychaetes in Cyprus Waters

Non-indigenous species represent one of the descriptors (D2) addressed by the MSFD. Cyprus, given its geographical position, being located near the Suez Canal, has received an exception under Article 14(a) of the MSFD on applying targeted measures to address this issue. However, the NIS are being monitored and recorded as part of various studies, including the implementation of the WFD.
In the compilation of this checklist, we identified 51 non-indigenous polychaete species overall, in contrast to the 15 reported by Çinar [50] and the 19 reported by Katsanevakis et al. [51]. This increase in the number of non-indigenous polychaetes is not just a consequence of the well-studied increase in bioinvasions in the Mediterranean Sea [89], but it is also due to the increased sampling effort in Cyprus waters. The combination of a critical re-analysis of the literature together with new data allowed us to greatly increase the number of species reported for Cyprus, making it closer to the 47 species known for Greece [37] and the 66 known for Türkiye [36], and confirming the trend indicating a higher number of non-indigenous polychaetes in the Eastern Mediterranean Sea with respect to the Western Mediterranean Sea [63]. When looking at human activities, the stations associated with artificial reefs, fish farms, ports, and touristic facilities (areas near hotels), a percentage ranging between 7 and 8.3% of the recorded species were NIS. Given that the majority of the new data focused on areas adjusted to fish farms, there is a need to increase surveys, especially in ports, fisheries shelters, and marinas, that, despite being considered as hot-spot areas for NIS, suffer from relevant gaps in knowledge [90].
Out of the 51 species reported, 32 are confirmed as aliens, while 4 are considered cryptogenic, and the remaining 15 are considered questionable. The number of questionable non-indigenous polychaetes is lower than that reported for other Mediterranean areas [63]. This calls for detailed taxonomic studies on some scarcely known groups, where the available evidence is inconclusive. In two cases, the non-indigenous status of a species is not under discussion, and the doubt is in regard to its actual occurrence in Cyprus waters. This is the case for the invasive Serpulidae Hydroides heterocera and Spirobranchus tetraceros, reported by Ben-Eliahu & Payiatas [47] for Famagusta Harbour based on a personal communication by Helmut Zibrowius, but not personally recorded by the authors nor ever recorded afterwards, despite the number of studies on Serpulidae. Twenty-one species are here introduced as new records; among them, Schistomeringos loveni represents a first record at the Mediterranean scale. Four species, already known for the Mediterranean Sea in the literature, are re-evaluated as non-indigenous. The small Serpulidae Rhodopsis pusilla, has an allegedly circumtropical distribution, but its Mediterranean records are limited to the Levant Sea [91], suggesting that it might represent a Lessepsian immigrant. The nereidid Leonnates aylaoberi has type locality in the Mediterranean Sea [92] but belongs to a genus mostly limited to the Indo-Pacific province and, as postulated for other species recently described from the Mediterranean Sea [93,94,95,96], it probably represents a non-indigenous species. Pending further investigations, we considered it as a cryptogenic species. A similar situation accounts for the sigalionid Fimbriosthenelais longipinnis, currently known from European waters only for Cyprus [56], whose presence is confirmed as part of our study. This species was originally described after material from the Ehrenberg expedition, likely originating from the Red Sea, and was never reported for the Atlantic Ocean [97]. However, the mistreatment of the material from the Ehrenberg expedition leads to some uncertainties on the actual origin of the majority of the species [98]; therefore, also in this case, we prefer to consider this species as cryptogenic. Lastly, the tropical sabellid Bispira melanostigma was reported by Ben-Eliahu [41] as Sabella bipunctata Baird, 1865 (currently considered synonymous); considering the difficult taxonomy of the genus Bispira, together with the recent description of some Mediterranean species [99,100], and the absence of a description of the examined specimens and deposited material, we decided to keep this record and consider it questionable.

5. Conclusions

The aim of this study was to develop an annotated checklist of the polychaeta species reported in the Republic of Cyprus. The framework allowed us to also include all the available information on their spatial distribution, environmental parameters, and human activities, which were compiled into a dataset that can be used as an important tool for metadata analyses. Some examples of such analyses include the development of species distribution models (SDMs) or artificial neural networks (ANNs), which can be used to investigate species distribution with regard to environmental parameters and allow for the prediction of possible species present in a given space (e.g., [101,102,103]). The information on sediment characteristics in terms of total organic matter and total organic carbon could also be used for the re-evaluation of polychaeta sensitivity to organic pollution and to update or validate polychaeta species scores that are assigned when applying the WFD indices such the BENTIX and BQI index.
This review has also allowed us to identify knowledge gaps that need to be addressed in the future, which were highlighted across this paper. New surveys need to be carried out targeting regions and areas where there is limited data availability (e.g., Paphos region, EEZ of Cyprus), investigating specific human activities (e.g., ports, marinas, and fisheries ports) and targeting specific habitats (e.g., reefs). Furthermore, it is important to note that the collaboration among scientists in order to develop such datasets is important and shall be promoted especially in order to avoid data being “forgotten or left in the hard-drives” when research projects are completed. The scientific knowledge that can be hidden in such data can contribute significantly to different fields of disciplines and allow policymakers to take up measures when and where they are needed. Finally, given that the current study focuses on the Polychaeta species, it is important to note that there is a need to also develop similar checklists for other taxonomic groups of the marine organisms of Cyprus.

Supplementary Materials

The following supporting information can be downloaded at:, Supplementary File S1: Polychaeta species from Cyprus Dataset (xls file) including Table S1: A list of references with Polychaeta records from Cyprus; Table S2: A list of new surveys with Polychaeta records from Cyprus; Table S3: Dataset of Polychaeta species from Cyprus.; Supplementary File S2: Notes on the checklist of the polychaetes (Annelida) recorded in Cyprus waters (PDF file). Including Figure S1: Schistomeringos loveni from Cyprus. A- anterior part of the specimen; B- midbody parapodium; C- maxillary apparatus; D- teeth of the superior row; E- teeth of the inferior row; F- capillary serrated chaeta; G- cultriform chaeta from the 2nd chaetiger; H- furcate chaeta from the 5th chaetiger; I- compound heterogomph falcigers from a midbody parapodium. (Including references [104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281]).

Author Contributions

Conceptualization: M.R. and J.L.; data curation: M.R., J.L., P.D.D. and G.C.; formal analysis: M.R., J.L. and P.D.D.; investigation: all authors; methodology: M.R. and J.L.; resources: all authors; supervision: A.C. and C.C.C.; visualization: M.R. and J.L.; writing—original draft: M.R. and J.L.; writing—review and editing: all authors. All authors have read and agreed to the published version of the manuscript.


The current manuscript was prepared as part of the project 25245 “Investigation and evaluation of sensitive benthic marine ecosystems in the territorial waters and the Exclusive Economic Zone of the Republic of Cyprus”, which is co-financed by the Operational Program “Thalassa 2014–2020” (European Maritime and Fisheries Fund (EMFF) 2014–2020 and national resources). The following research projects contributed by submitting data: (i) the OS Aqua project was co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation with grant number INTEGRATED/0918/0046 and the data analysed as part of MaRITeC-X Teaming project H2020; (ii) the Water-Mining Project was funded through the EU Horizon 2020 Research and Innovation programme under grant agreement 869474; (iii) the RECONNECT project was co-funded by the European Union through the Interreg Balkan Med 2014- 20202 and by the National Funds of the participating countries; (iv) the COST Action ES1003 Development and implementation of a pan-European Marine Biodiversity Observatory System (EMBOS) was supported by COST (European Cooperation in Science and Technology); (v) the “A holistic approach for the evaluation of ecological status of coastal areas: the case of Vasiliko Bay” (OIKAPAV Project) was co-funded by the Research Promotion Foundation of Cyprus and the European Regional Development Fund (grant agreement SMES/Product/0609/74); (vii) monitoring survey of artificial reefs MPA that were implemented as part of the Project 25709 “Creation of Marine Protected Areas (MPAs) with Artificial Reefs (ARs) in Larnaca and Chrysochou Bay and extension of AR projects in existing MPAs in Paralimni, Ayia Napa, Amathounta, Dasoudi and Yeroskipou” was co-financed by the Operational Program “Thalassa 2014–2020” (European Maritime and Fisheries Fund (EMFF) 2014–2020 and national resources); (viii) the “Increasing Industrial Resource Efficiency in European Mariculture (IDREEM)” project was funded by the European Union’s FP7 Programme (grant agreement 308571). The environmental monitoring of fish farms in Cyprus for the private companies Blue Island Plc, Kimagro fisheries Ltd. (Levantina), Seawave Fisheries Ltd. and Telia Vasiliko Ltd., Telia Aqua Marine Ltd. were funded by the fish farm companies. The 2016 MEDITS survey that was carried out as part of the Cypriot Data Collection Framework was co-financed by the Operational Program “Thalassa 2014–2020” (European Maritime and Fisheries Fund (EMFF) 2014–2020 and national resources). The implementation of WFD 2000/60/EC in the coastal waters of the Republic of Cyprus was funded with national resources. The EastMed Pipeline Project is a Project of Common Interest (PCI), co-financed by the European Commission. The project promoter is IGI Poseidon S.A., equally owned by the Greek Depa International Projects S.A. and the Italian Edison SpA. R. Martins (2021.00386.CEECIND) and CESAM (UIDP/50017/2020 + UIDB/50017/2020 + LA/P/0094/2020) are funded by national funds, through the Portuguese Foundation for Science and Technology (FCT). The environmental baseline survey (EBS) for the LNG Project («Provision of the Environmental Management and Monitoring Plan in respect to The Project Vasilikos LNG Receiving and Regasification Terminal LNG Project») was funded by CMC Ltd. (CPP—METRON CONSORTIUM Ltd.), implemented by ENVECO INTERNATIONAL Ltd., and partly subcontracted to I.A.CO Environmental and Water Consultants Ltd. and the Marine and Environmental Research (MER) Lab. The environmental baseline survey (EBS) for the construction of Paralimni Marina was funded by PMV Maritime Holding Ltd., implemented by I.A.CO Environmental and Water Consultants Ltd., and partly subcontracted to the Marine and Environmental Research (MER) Lab.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

The data presented in this study are openly available in OBIS ( (accessed on 16 August 2023).


The authors would like to thank as part of the OIKAPAV Project the following taxonomists that contributed to the polychaeta species validations: Giorgos Chatzigeorgiou (HCMR, Greece), Luis Fernando Carrera-Parra (Dept. Sistemática y Ecología Acuática, El Colegio de la Frontera Sur, Mexico), Katie Mortimer (National Museum Wales, UK), Güley Kurt (Department of Biology, Faculty of Arts and Sciences, Sinop University, Türkiye), Adriana Giangrande (Laboratory of Zoology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Italy), and Andrey Sikorski of the Akvaplan-niva AS, NORWAY and the following taxonomists for providing taxonomic material and guidance: Melih Ertan Çinar (Faculty of Fisheries, Department of Hydrobiology, Ege University, Türkiye), Ruth Barnich (Marine Evertebraten II Senckenberg Forschungsinstitut und Naturmuseum, Germany), Vasily Radashevsky (Russian Academy of Sciences, Moscow, Russa), and Julio Parapar (Dep. Bioloxía Animal, Bioloxía Vexetal e Ecoloxía Fac. Ciencias, Universidade da Coruña, Spain). As part of the Water-Mining Project, we would like to thank Eleni Avramidi, Kleopatra Grammatiki, and Vasilis Reisakos for their participation in the sampling surveys, sorting of organisms, and provision of background data. Finally, we would like to thank all the staff at the Department of Fisheries and Marine Research, the Marine Environmental Research (MER) Lab, and AP Marine Environmental Consultancy Ltd. for their contribution to the sampling surveys, laboratory analysis, and data provision.

Conflicts of Interest

The authors declare no conflict of interest.


AP MarineAP Marine Environmental Consultancy Ltd.
ARArtificial Reef
AUTHAristotle University of Thessaloniki
DFMRDepartment of Fisheries and Marine Research (DFMR)
MERMarine and Environmental (MER) Lab Ltd.
MPAMarine Protected Area
IEFIchthys EcoFarm Ltd.
BIBlue Island Plc
SWSeawave Fisheries Ltd.
TVTelia Vasiliko Ltd.
TLTelia Liopetri Ltd.
KM1Kimagro Fishfarming Ltd. (Fishfarm 1)
KM2Kimagro Fishfarming Ltd. (Fishfarm 2)


  1. Hutchings, P. Biodiversity and functioning of polychaetes in benthic sediments. Biodiv. Conserv. 1998, 7, 1133–1145. [Google Scholar] [CrossRef]
  2. Salen-Picard, C.; Arlhac, D. Long-term changes in a Mediterranean benthic community: Relationships between the polychaete assemblages and hydrological variations of the Rhône River. Estuaries 2002, 25, 1121–1130. [Google Scholar] [CrossRef]
  3. Langeneck, J.; Busoni, G.; Aliani, S.; Lardicci, C.; Castelli, A. Distribution and diversity of polychaetes along a bathyal escarpment in the western Mediterranean Sea. Deep Sea Res. Part I 2019, 144, 85–94. [Google Scholar] [CrossRef]
  4. Checon, H.H.; Amaral, A.C.Z. Taxonomic sufficiency and the influence of rare species on variation partitioning analysis of a polychaete community. Mar. Ecol. 2017, 38, e12384. [Google Scholar] [CrossRef]
  5. Golubkov, S.; Tiunov, A.; Golubkov, M. Food-web modification in the eastern Gulf of Finland after invasion of Marenzelleria arctia (Spionidae, Polychaeta). NeoBiota 2021, 66, 75–94. [Google Scholar] [CrossRef]
  6. Ben-Eliahu, M.N.; Golani, D. Polychaetes (Annelida) in the gut contents of goatfishes (Mullidae), with new polychaete records for the Mediterranean coast of Israel and the Gulf of Elat. Mar. Ecol. 2008, 11, 193–205. [Google Scholar] [CrossRef]
  7. Beal, B.; Meredith, S.D.; Jourdet, C.B.; Pepperman, K.E. Diet of an underappreciated benthic intertidal fish, Cryptacanthodes maculatus (Cryptacanthodidae), in eastern Maine, USA. AIMS Environ. Sci. 2016, 3, 488–508. [Google Scholar] [CrossRef]
  8. Eriksen, E.; Benzik, A.N.; Dolgov, A.B.; Skjoldal, H.R.; Vihtakari, M.; Johannesen, E.; Prokhorova, T.A.; Keulder-Stenevik, F.; Prokopchuk, I.; Strand, E. Diet and trophic structure of fishes in the Barents Sea: The Norwegian-Russian program “Year of Stomachs” 2015—Establishing a baseline. Prog. Oceanogr. 2020, 183, 102262. [Google Scholar] [CrossRef]
  9. Naranjo Ortíz, A.P.; Tobías Jiménez, F.J.; Sardá Borroy, R.; Gil, J. Producción de poliquetos libres de enfermedades para su uso como alimento vivo en la industria camaronera de Ecuador. Aquacultura 2019, 128, 44–48. [Google Scholar]
  10. Nederlof, M.A.J.; Fang, J.; Dahlgren, T.G.; Rastrick, S.P.S.; Smaal, A.C.; Strand, Ø.; Sveier, H.; Verdegem, M.C.J.; Jansen, H.M. Application of polychaetes in (de)coupled integrated aquaculture: An approach for fish waste bioremediation. Aquacult. Environ. Interact. 2020, 12, 385–399. [Google Scholar] [CrossRef]
  11. Reish, D. Use of polychaetous annelids as test organisms for marine bioassay experiments. In Aquatic Invertebrate Bioassays; Buikema, A.L., Jr., Cairns, J., Jr., Eds.; American Society for Testing and Materials: Philadelphia, PA, USA, 1980; pp. 140–154. [Google Scholar]
  12. Durou, C.; Pourier, L.; Amiard, J.C.; Budzinski, H.; Gnassia-Barelli, M.; Lemenach, K.; Peluhet, L.; Mouneyrac, C.; Roméo, M.; Amiard-Triquet, C. Biomonitoring in a clean and multi-contaminated estuary based on biomarkers and chemical analyses in the endobenthic worm Nereis diversicolor. Environ. Pollut. 2007, 148, 445–458. [Google Scholar] [CrossRef] [PubMed]
  13. Weis, W.A.; Lemes Soares, C.H.; Cunha de Quadros, D.P.; Scheneider, M.; Pagliosa, P.R. Urbanization effects on different biological organization levels of an estuarine polychaete tolerant to pollution. Ecol. Indic. 2017, 73, 698–707. [Google Scholar] [CrossRef]
  14. Méndez, N.; Flos, J.; Romero, J. Littoral soft-bottom polychaete communities in a pollution gradient in front of Barcelona (Western Mediterranean, Spain). Bull. Mar. Sci. 1998, 63, 167–178. [Google Scholar]
  15. Belan, T.A. Marine environmental quality assessment using polychaete taxocene characteristics in Vancouver Harbour. Mar. Environ. Res. 2004, 57, 89–101. [Google Scholar] [CrossRef]
  16. Dean, H.K. The use of polychaetes (Annelida) as indicator species of marine pollution: A review. Rev. Biol. Trop. 2008, 56, 11–38. [Google Scholar]
  17. Stabili, L.; Schirosi, R.; Licciano, M.; Mola, E.; Giangrande, A. Bioremediation of bacteria in aquaculture waste using the polychaete Sabella spallanzanii. New Biotech. 2010, 27, 774–781. [Google Scholar] [CrossRef]
  18. Pajand, Z.O.; Soltani, M.; Bahmani, M.; Kamali, A. The role of the polychaete Nereis diversicolor in bioremediation of wastewater and its growth performance and fatty acid composition in an integrated culture system with Huso huso (Linnaeus, 1758). Aquacult. Res. 2017, 48, 5271–5279. [Google Scholar] [CrossRef]
  19. Mandario, M.A.E.; Alava, V.R.; Añasco, N.C. Evaluation of the bioremediation potential of mud polychaete Marphysa sp. in aquaculture pond sediments. Environ. Sci. Pollut. Res. Int. 2019, 26, 29810–29821. [Google Scholar] [CrossRef]
  20. Musco, L.; Terlizzi, A.; Licciano, M.; Giangrande, A. Taxonomic structure and the effectiveness of surrogates in environmental monitoring: A lesson from polychaetes. Mar. Ecol. Prog. Ser. 2009, 383, 199–210. [Google Scholar] [CrossRef]
  21. Hutchings, P.; Lavesque, N. I know who you are, but do others know? Why correct scientific names are so important for the biological sciences. Zoosymposia 2020, 19, 151–163. [Google Scholar] [CrossRef]
  22. Giangrande, A.; Licciano, M. Factors influencing latitudinal pattern of biodiversity: An example using Sabellidae (Annelida, Polychaeta). Biodiv. Conserv. 2004, 13, 1633–1646. [Google Scholar] [CrossRef]
  23. Hutchings, P.A. Major issues facing taxonomy—A personal perspective. Megataxa 2020, 1, 46–48. [Google Scholar] [CrossRef]
  24. Engel, M.S.; Ceriaco, L.M.P.; Daniel, G.M.; Dellapé, P.M.; Löbl, I.; Marinov, M.; Reis, R.E.; Young, M.T.; Dubois, A.; Agarwal, I.; et al. The taxonomic impediment: A shortage of taxonomists, not the lack of technical approaches. Zool. J. Linn. Soc. 2021, 193, 381–387. [Google Scholar] [CrossRef]
  25. Fauchald, K. Polychaete distribution patterns, or: Can animals with Palaeozoic cousins show large-scale geographical patterns? In Proceedings of the First International Polychaete Conference; Hutchings, P., Ed.; The Linnean Society of New South Wales: Sydney, Australia, 1984; pp. 1–6. [Google Scholar]
  26. Hutchings, P.; Kupriyanova, E. Cosmopolitan polychaetes—Fact or fiction? Personal and historical perspectives. Invertebr. Syst. 2018, 32, 1–9. [Google Scholar] [CrossRef]
  27. Fauvel, P. Faune de France 5: Polychètes Errantes; Paul Lechevalier: Paris, France, 1923; 488p. [Google Scholar]
  28. Fauvel, P. Faune de France 16: Polychètes Sédentaires; Paul Lechevalier: Paris, France, 1927; 494p. [Google Scholar]
  29. Barroso, R.; Klautau, M.; Solé-Cava, A.M.; Paiva, P.C. Eurythoe complanata (Polychaeta: Amphinomidae), the ‘cosmopolitan’ fireworm, consists of at least three cryptic species. Mar. Biol. 2010, 157, 69–80. [Google Scholar] [CrossRef]
  30. Nygren, A. Cryptic polychaete diversity: A review. Zool. Scr. 2014, 43, 172–183. [Google Scholar] [CrossRef]
  31. Nygren, A.; Parapar, J.; Pons, J.; Meißner, K.; Bakken, T.; Kongsrud, J.A.; Oug, E.; Gaeva, D.; Sikorski, A.; Johansen, R.A.; et al. A megacryptic species complex hidden among one of the most common annelids in the NorthEast Atlantic. PLoS ONE 2018, 13, e0198356. [Google Scholar] [CrossRef]
  32. Arias, A.; Paxton, H. Hidden diversity within the polychaete Onuphis eremita sensu lato (Annelida: Onuphidae)—Redescription of O. eremita Audouin & Milne-Edwards, 1833 and reinstatement of Onuphis pancerii Claparède, 1868. Zootaxa 2014, 3861, 145–169. [Google Scholar]
  33. Barroso, M.; Moreira, J.; Parapar, J. Long forgotten: Eunice woodwardi Baird, 1869 (Annelida, Eunicidae) revisited, with an insight on internal anatomy. PeerJ. 2022, 10, e13126. [Google Scholar] [CrossRef]
  34. Teixeira, M.A.L.; Langeneck, J.; Vieira, P.E.; Hernandes, J.C.; Sampieri, B.R.; Kasapidis, P.; Mucciolo, S.; Bakken, T.; Ravara, A.; Nygren, A.; et al. Reappraisal of the hyperdiverse Platynereis dumerilii (Annelida, Nereididae) species complex in the Northern Atlantic, with the description of two new species. Invertebr. Syst. 2022, 36, 1017–1061. [Google Scholar] [CrossRef]
  35. Castelli, A.; Bianchi, C.N.; Cantone, G.; Çinar, M.E.; Gambi, M.C.; Giangrande, A.; Iraci Sareri, D.; Lanera, P.; Licciano, M.; Musco, L.; et al. Annelida Polychaeta. Biol. Mar. Medit. 2008, 15, 323–373. [Google Scholar]
  36. Çinar, M.E.; Dağli, E.; Kurt Şahin, G. Checklist of Annelida from the coast of Turkey. Turkish J. Zool. 2014, 38, 734–764. [Google Scholar] [CrossRef]
  37. Faulwetter, S.; Simboura, N.; Katsiaras, N.; Chatzigeorgiou, G.; Arvanitidis, C. Polychaetes of Greece: An updated and annotated checklist. Biodiv. Data J. 2017, 5, e20997. [Google Scholar] [CrossRef]
  38. Bakalem, A.; Gillet, P.; Pezy, J.-P.; Dauvin, J.-C. Inventory and the biogeographical affinities of Annelida Polychaeta in the Algerian coastline (Western Mediterranean). Mediterr. Mar. Sci. 2020, 21, 157–182. [Google Scholar] [CrossRef]
  39. Zaabi, S.; Gillet, P.; Chambers, S.; Afli, A.; Boumaiza, M. Inventory and new records of polychaete species from the Cap Bon Peninsula, north-east coast of Tunisia, Western Mediterranean Sea. Mediterr. Mar. Sci. 2012, 13, 36–48. [Google Scholar] [CrossRef]
  40. Ayari-Kliti, R.; Bakalem, A.; Fersi, A.; Afli, A.; Dauvin, J.-C. Polychaete diversity in Tunisian waters as of 2021: An update with special emphasis on Non-Indigenous species. Mediterr. Mar. Sci. 2022, 23, 698–724. [Google Scholar] [CrossRef]
  41. Ben-Eliahu, M.N. A list of Polychaeta along the Levant coast. Haasiana 1995, 1, 78–93. [Google Scholar]
  42. Mikac, B. A sea of worms: Polychaete checklist of the Adriatic Sea. Zootaxa 2015, 3943, 172p. [Google Scholar] [CrossRef]
  43. Ben-Eliahu, M.N. Littoral Polychaeta from Cyprus. Tethys 1972, 4, 85–94. [Google Scholar]
  44. Ben-Eliahu, M.N. Red Sea serpulids (Polychaeta) in the eastern Mediterranean. Ophelia 1991, S5, 515–528. [Google Scholar]
  45. Ben-Eliahu, M.N.; Fiege, D. Polychaeta from the continental shelf and slope of Israel collected by the “Meteor” 5 Expedition (1987). Senckenberg. Maritima 1995, 25, 85–105. [Google Scholar]
  46. Hadjichristophorou, M.; Argyrou, A.; Demetropoulous, A.; Bianchi, T.S. A species list of the sublittoral soft-bottom macrobenthos of Cyprus. Acta Adriat. 1997, 38, 3–32. [Google Scholar]
  47. Ben-Eliahu, M.N.; Payiatas, G. Searching for Lessepsian migrant serpulids (Annelida: Polychaeta) on Cyprus—Some results of a recent expedition. Israel J. Zool. 1999, 45, 101–119. [Google Scholar]
  48. Çinar, M.E.; Ergen, Z. Eusyllinae and Syllinae (Annelida: Polychaeta) form northern Cyprus (eastern Mediterranean Sea) with a checklist of species reported from the Levant Sea. Bull. Mar. Sci. 2003, 72, 769–793. [Google Scholar]
  49. Çinar, M.E.; Ergen, Z.; Benli, H.A. Autolytinae and Exogoninae (Polychaeta: Syllidae) from northern Cyprus (eastern Mediterranean Sea) with a checklist of species reported from the Levant Sea. Bull. Mar. Sci. 2003, 72, 741–767. [Google Scholar]
  50. Çinar, M.E. Polychaetes from the coast of northern Cyprus (eastern Mediterranean Sea), with two new records for the Mediterranean Sea. Cahiers Biol. Mar. 2005, 46, 143–159. [Google Scholar]
  51. Katsanevakis, S.; Tsiamis, K.; Ioannou, G.; Michailidis, N.; Zenetos, A. Inventory of alien marine species of Cyprus (2009). Mediterr. Mar. Sci. 2009, 10, 109–134. [Google Scholar] [CrossRef]
  52. Russo, A.R. Epifauna living on sublittoral seaweeds around Cyprus. Hydrobiologia 1997, 344, 169–179. [Google Scholar] [CrossRef]
  53. Argyrou, M.; Demetropoulos, A.; Hadjichristophorou, M. Expansion of the macroalga Caulerpa racemosa and changes in soft-bottom macrofaunal assemblages in Moni Bay, Cyprus. Oceanolog. Acta 1999, 22, 517–528. [Google Scholar] [CrossRef]
  54. Pavloudi, C.; Christodoulou, M.; Mavidis, M. Macrofaunal assemblages associated with the sponge Sarcotragus foetidus Schmidt, 1862 (Porifera, Demospongiae) at the coasts of Cyprus and Greece. Biodiv. Data J. 2016, 30, e8210. [Google Scholar] [CrossRef]
  55. Böggemann, M. Revision of the Glyceridae Grube, 1850 (Annelida: Polychaeta). Abhand. Senckenb. Naturfosch. Ges. 2002, 555, 249p. [Google Scholar]
  56. Barnich, R.; Fiege, D. The Aphroditoidea (Annelida: Polychaeta) of the Mediterranean Sea. Abhand. Senckenb. Naturfosch. Ges. 2003, 559, 1–167. [Google Scholar]
  57. Böggemann, M. Revision of the Goniadidae. Abhand. Naturwissenschaft. Ver. Hamburg 2005, 39, 1–354. [Google Scholar]
  58. Guido, A.; Jiménez, C.; Achilleos, K.; Rosso, A.; Sanfilippo, R.; Hadjioannou, L.; Petrou, A.; Russo, F.; Mastandrea, A. Cryptic serpulid-microbialite bioconstructions in the Kakoskali submarine cave (Cyprus, Eastern Mediterranean). Facies 2017, 63, 21. [Google Scholar] [CrossRef]
  59. Rousou, M. Investigation of Soft Bottom Benthic Macrofauna Communities of Vasiliko Bay (Cyprus, East Mediterranean Sea). Unpublished. Ph.D. Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2018. (In Greek). [Google Scholar]
  60. Gerovasileiou, V.; Akel, E.H.K.; Akyol, O.; Alongi, G.; Azevedo, F.; Babali, N.; Bakiu, R.; Bariche, M.; Bennoui, A.; Castriota, L.; et al. New Mediterranean biodiversity records (July; 2017). Mediterr. Mar. Sci. 2017, 18, 355–384. [Google Scholar]
  61. Myers, A.; Plaiti, W.; Rousou, M. A new species of Microdeutopus, M. periergos sp. nov. (Crustacea, Amphipoda, Senticaudata, Aoridae) from Cyprus (East Mediterranean Sea). Zootaxa 2018, 4378, 144–150. [Google Scholar] [CrossRef]
  62. Rousou, M.; Plaiti, W.; Lowry, J.; Charalambous, S.; Chintiroglou, C.C. Amphipoda species (Suborders: Amphilochidea and Senticaudata) from Vasiliko Bay, Cyprus: New records, information on their biogeography and an annotated checklist from the coasts of Cyprus. Zootaxa 2020, 4896, 373–408. [Google Scholar] [CrossRef]
  63. Langeneck, J.; Lezzi, M.; Del Pasqua, M.; Musco, L.; Gambi, M.C.; Castelli, A.; Giangrande, A. Non-indigenous polychaetes along the coasts of Italy: A critical review. Mediterr. Mar. Sci. 2020, 21, 238–275. [Google Scholar] [CrossRef]
  64. Carlton, J.T. Biological invasions and cryptogenic species. Ecology 1996, 77, 1653–1655. [Google Scholar] [CrossRef]
  65. Tsiamis, K.; Zenetos, A.; Deriu, I.; Gervasini, E.; Cardoso, A.C. The native distribution range of the European marine non-indigenous species. Aquat. Invasions 2018, 13, 187–198. [Google Scholar] [CrossRef]
  66. Mayo, S.J.; Allkin, R.; Baker, W.; Blagoderov, V.; Brake, I.; Clark, B.; Govaerts, R.; Godfray, C.; Haigh, A.; Hand, R.; et al. Alpha E-taxonomy: Responses from the systematics community to the biodiversity crisis. Kew Bull. 2008, 63, 1–16. [Google Scholar] [CrossRef]
  67. Melville, J.; Chapple, D.G.; Keogh, J.S.; Sumner, J.; Amey, A.; Bowles, P.; Brennan, I.G.; Couper, P.; Donnellan, S.C.; Doughty, P.; et al. A return-on-investment approach for prioritization of rigorous taxonomy research needed to inform responses to the biodiversity crisis. PLoS Biol. 2021, 19, e3001210. [Google Scholar] [CrossRef] [PubMed]
  68. Galil, B.S.; Zibrowius, H. First benthos samples from Eratosthenes Seamount, eastern Mediterranean. Mar. Biodivers. 1998, 28, 111–121. [Google Scholar] [CrossRef]
  69. World Register of Marine Species (WoRMS). Available online: (accessed on 27 June 2023).
  70. de Jong, Y.; Verbeek, M.; Michelsen, V.; de Place Bjørn, P.; Los, W.; Steeman, F.; Bailly, N.; Basire, C.; Chylarecki, P.; Stloukal, E.; et al. Fauna Europaea—All European animal species on the web. Biodiv. Data J. 2014, 2, e4034. [Google Scholar] [CrossRef] [PubMed]
  71. Checklist Fauna d’Italia. Available online: (accessed on 27 June 2023).
  72. Musco, L. Ecology and diversity of Mediterranean hard-bottom Syllidae (Annelida): A community-level approach. Mar. Ecol. Prog. Ser. 2012, 461, 107–119. [Google Scholar] [CrossRef]
  73. Tempesti, J.; Langeneck, J.; Romani, L.; Garrido, M.; Lardicci, C.; Maltagliati, F.; Castelli, A. Characterization of fouling structure components and their relationship with associated macrofauna in three Northern Tyrrhenian port systems (Mediterranean Sea). Estuar. Coast. Shelf Sci. 2022, 279, 108156. [Google Scholar] [CrossRef]
  74. Lobo, J.; Teixeira, M.A.L.; Borges, L.M.S.; Ferreira, M.S.G.; Hollatz, C.; Gomes, P.T.; Sousa, R.; Ravara, A.; Costa, M.H.; Costa, F.O. Starting a DNA barcode reference library for shallow water polychaetes from the Southern European Atlantic coast. Mol. Ecol. Res. 2016, 16, 298–313. [Google Scholar] [CrossRef]
  75. Gold, Z.; Curd, E.E.; Goodwin, K.D.; Choi, E.S.; Frable, B.W.; Thompson, A.R.; Walker, H.J., Jr.; Burton, R.S.; Kacev, D.; Martz, L.D.; et al. Improving metabarcoding taxonomic assignment: A case study of fishes in a large marine ecosystem. Mol. Ecol. Res. 2021, 21, 2546–2564. [Google Scholar] [CrossRef]
  76. Pappalardo, P.; Collins, A.G.; Pagenkopp Lohan, K.M.; Hanson, K.M.; Truskey, S.B.; Jaeckle, W.; Lewis Ames, C.; Goodheart, J.A.; Bush, S.L.; Biancani, L.M.; et al. The role of taxonomic expertise in interpretation of metabarcoding studies. ICES J. Mar. Sci. 2021, 78, 3397–3410. [Google Scholar] [CrossRef]
  77. Nikula, R.; Väinölä, R. Phylogeography of Cerastoderma glaucum (Bivalvia: Cardiidae) across Europe: A major break in the Eastern Mediterranean. Mar. Biol. 2003, 143, 339–350. [Google Scholar] [CrossRef]
  78. Moussa, M.; Choulak, S.; Rhouma-Chatti, S.; Chatti, N.; Said, K. First insight of genetic diversity, phylogeographic relationships, and population structure of marine sponge Chondrosia reniformis from the eastern and western Mediterranean coasts of Tunisia. Ecol. Evol. 2022, 12, e8494. [Google Scholar] [CrossRef] [PubMed]
  79. Deli, T.; Kalkan, E.; Karhan, S.Ü.; Uzunova, S.; Keikhosravi, A.; Bilgin, R.; Schubart, C.D. Parapatric genetic divergence among deep evolutionary lineages in the Mediterranean green crab, Carcinus aestuarii (Brachyura, Portunoidea, Carcinidae), accounts for a sharp phylogeographic break in the Eastern Mediterranean. BMC Evol. Biol. 2018, 18, 53. [Google Scholar] [CrossRef] [PubMed]
  80. Langeneck, J.; Englezou, C.; Di Maggio, M.; Castelli, A.; Maltagliati, F. Phylogeography of Aphanius fasciatus (Osteichthyes: Aphaniidae) in the Mediterranean Sea, with a focus on its conservation in Cyprus. Hydrobiologia 2021, 848, 4093–4114. [Google Scholar] [CrossRef]
  81. Iannotta, M.A.; Gambi, M.C.; Patti, F.P. Molecular evidence of intraspecific variability in Lysidice ninetta (Polychaeta: Eunicidae) in the Mediterranean Sea. Aquat. Biol. 2009, 6, 121–132. [Google Scholar] [CrossRef]
  82. Barco, A.; Aissaoui, C.; Houart, R.; Bonomolo, G.; Crocetta, F.; Oliverio, M. Revision of the Ocinebrina aciculata species complex (Mollusca: Gastropoda: Muricidae) in the northeastern Atlantic Ocean and Mediterranean Sea. J. Molluscan Stud. 2018, 84, 19–29. [Google Scholar] [CrossRef]
  83. Larson, E.R.; Graham, B.M.; Achury, R.; Coon, J.J.; Daniels, M.K.; Gambrell, D.K.; Jonasen, K.L.; King, G.D.; LaRacuente, N.; Perrin-Stowe, T.I.N.; et al. From eDNA to citizen science: Emerging tools for the early detection of invasive species. Front. Ecol. Environ. 2020, 18, 194–202. [Google Scholar] [CrossRef]
  84. Thomas, A.C.; Tank, S.; Nguyen, P.L.; Ponce, J.; Sinnesael, M.; Goldberg, C.S. A system for rapid eDNA detection of aquatic invasive species. Environ. DNA 2020, 2, 261–270. [Google Scholar] [CrossRef]
  85. Duarte, S.; Vieira, P.E.; Costa, F.O. Assessment of species gaps in DNA barcode libraries of non-indigenous species (NIS) occurring in European coastal regions. Metabarcoding Metagenom. 2020, 4, 35–46. [Google Scholar] [CrossRef]
  86. Lavrador, A.S.; Fontes, J.T.; Vieira, P.E.; Costa, F.O.; Duarte, S. Compilation, revision, and annotation of DNA barcodes of marine invertebrate non-indigenous species (NIS) occurring in European coastal regions. Diversity 2023, 15, 174. [Google Scholar] [CrossRef]
  87. Sikorski, A.V.; Radashevsky, V.I.; Castelli, A.; Pavlova, L.V.; Nygren, A.; Malyar, V.V.; Borisova, P.B.; Mikac, B.; Rousou, M.; Martin, D.; et al. Revision of the Laonice bahusiensis complex (Annelida: Spionidae) with a description of three new species. Zootaxa 2021, 4996, 253–283. [Google Scholar] [CrossRef]
  88. Langeneck, J.; Fourreau, C.J.L.; Rousou, M.; Barbieri, M.; Maltagliati, F.; Musco, L.; Castelli, A. Environmental features drive lineage diversification in the Aricidea assimilis species complex (Annelida, Paraonidae) in the Mediterranean Sea. Eur. Zool. J. 2022, 89, 1246–1258. [Google Scholar] [CrossRef]
  89. Zenetos, A.; Albano, P.G.; Lopez Garcia, E.; Stern, N.; Tsiamis, K.; Galanidi, M. Established non-indigenous species increased by 40% in 11 years in the Mediterranean Sea. Mediterr. Mar. Sci. 2022, 23, 196–212. [Google Scholar] [CrossRef]
  90. Tempesti, J.; Mangano, M.C.; Langeneck, J.; Lardicci, C.; Maltagliati, F.; Castelli, A. Non-indigenous species in Mediterranean ports: A knowledge baseline. Mar. Environ. Res. 2020, 161, 105056. [Google Scholar] [CrossRef] [PubMed]
  91. Ben-Eliahu, M.N.; ten Hove, H.A. Serpulids (Annelida: Polychaeta) along the Mediterranean coast of Israel—New population build-ups of Lessepsian migrants. Israel J. Zool. 1992, 38, 35–53. [Google Scholar]
  92. Çinar, M.E.; Dağli, E. Polychaetes (Annelida: Polychaeta) from the Aegean and Levantine coasts of Turkey, with descriptions of two new species. J. Nat. Hist. 2013, 47, 911–947. [Google Scholar] [CrossRef]
  93. Galil, B.S.; Spanier, E.; Ferguson, W.W. The Scyphomedusae of the Mediterranean coast of Israel, including two Lessepsian migrants new to the Mediterranea. Zool. Meded. 1990, 64, 95–105. [Google Scholar]
  94. Galil, B.S.; Gershwin, L.-A.; Douek, J.; Rinkevich, B. Marivagia stellata gen. et sp. nov. (Scyphozoa: Rhizostomeae: Cepheidae), another alien jellyfish from the Mediterranean coast of Israel. Aquat. Invasions 2010, 5, 331–340. [Google Scholar] [CrossRef]
  95. Çinar, M.E.; Bakir, K.; Öztürk, B.; Katağan, T.; Doğan, A.; Açik, S.; Kurt-Şahin, G.; Özcan, T.; Dağli, E.; Bitlis-Bakir, B.; et al. Macrobenthic fauna associated with the invasive alien species Brachidontes pharaonis (Mollusca: Bivalvia) in the Levantine Sea (Turkey). J. Mar. Biol. Assoc. UK 2017, 97, 613–628. [Google Scholar] [CrossRef]
  96. Mutlu, E.; Çağatay, I.T.; Olguner, M.T.; Yilmaz, H.E. A new sea-nettle from the Eastern Mediterranean Sea: Chrysaora pseudoocellata sp. nov. (Scyphozoa: Pelagiidae). Zootaxa 2020, 4790, 229–244. [Google Scholar] [CrossRef]
  97. Barnich, R.; Van Haaren, T. Revision of Sthenelais Kinberg, 1856, Fimbriosthenelais Pettibone, 1971 and Eusthenelais McIntosh, 1876 (Polychaeta, Sigalionidae) in the Northeast Atlantic. Eur. J. Taxon. 2021, 740, 138–171. [Google Scholar] [CrossRef]
  98. Chaibi, M.; Azzouna, A.; Martín, D. First record of Lepidonotus tenuisetosus (Annelida: Polynoidae) from Tunisia with distributional notes. Mediterr. Mar. Sci. 2023, 24, 7–18. [Google Scholar] [CrossRef]
  99. Cepeda, D.; Lattig, P. New reports and description of a new species of Sabellidae (Annelida) for the Iberian Peninsula and Balearic Archipelago. Mar. Biol. Res. 2017, 13, 832–853. [Google Scholar] [CrossRef]
  100. Enrichetti, F.; Baldrighi, E.; Bavestrello, G.; Betti, F.; Canese, S.; Costa, A.; del Pasqua, M.; Giangrande, A.; Langeneck, J.; Misic, C.; et al. Ecological role and phylogenetic position of a new habitat-forming species (Canalipalpata, Sabellidae) from the Mediterranean mesophotic soft bottoms. Estuar. Coast. Shelf Sci. 2022, 265, 107737. [Google Scholar] [CrossRef]
  101. Gogina, M.; Zettler, M.L. Diversity and distribution of benthic macrofauna in the Baltic Sea: Data inventory and its use for species distribution modelling and prediction. J. Sea Res. 2010, 64, 313–321. [Google Scholar] [CrossRef]
  102. Lee, S.; Park, I.; Koo, B.J.; Ryu, J.-H.; Choi, J.-K.; Woo, H.J. Macrobenthos habitat potential mapping using GIS-based artificial neural network models. Mar. Pollut. Bull. 2013, 67, 177–186. [Google Scholar] [CrossRef] [PubMed]
  103. Moraitis, M.L.; Tsikopoulou, I.; Geropoulos, A.; Dimitriou, P.D.; Papageorgiou, N.; Giannoulaki, M.; Valavanis, V.D.; Karakassis, I. Molluscan indicator species and their potential use in ecological status assessment using species distribution modeling. Mar. Environ. Res. 2018, 140, 10–17. [Google Scholar] [CrossRef] [PubMed]
  104. Pettibone, M.H. Revision of the aphroditoid polychaetes of the family Acoetidae Kinberg (= Polyodontidae Augener) and reestablishment of Acoetes Audouin and Milne-Edwards, 1832, and Euarche Ehlers, 1887. Smithsonian Contrib. Zool. 1989, 464, 1–138. [Google Scholar] [CrossRef]
  105. Holmer, M.; Argyrou, M.; Dalsgaard, T.; Danovaro, R.; Diaz-Almela, E.; Duarte, C.M.; Frederiksen, M.; Grau, A.; Karakassis, I.; Marbà, N.; et al. Effects of fish farm waste on Posidonia oceanica meadows: Synthesis and provision of monitoring and management tools. Mar. Pollut. Bull. 2008, 56, 1618–1629. [Google Scholar] [CrossRef]
  106. Arias, A.; Barroso, R.; Anadón, N.; Paiva, P.C. On the occurrence of the fireworm Eurythoe complanata complex (Annelida, Amphinomidae) in the Mediterranean Sea with an updated revision of the alien Mediterranean amphinomids. Zookeys 2013, 337, 19–33. [Google Scholar] [CrossRef]
  107. Heilskov, A.C.; Alperin, M.; Holmer, M. Benthic fauna bio-irrigation effects on nutrient regeneration in fish farm sediments. J. Exp. Mar. Biol. Ecol. 2006, 339, 204–225. [Google Scholar] [CrossRef]
  108. Aristeidou, K.; Gerovasileiou, V.; Koutsoubas, D. Wrecks as artificial reefs and marine areas of diving interest: The case of Zenobia wreck from Cyprus (E. Mediterranean). In Proceedings of the 9th Symposium on Oceanography & Fisheries, Patra, Greece, 4–8 May 2009. [Google Scholar]
  109. Jiménez, C.; Hadjioannou, L.; Petrou, A.; Andreou, V.; Georgiou, A. Fouling communities of two accidental artificial reefs (modern shipwrecks) in Cyprus (Levantine Sea). Water 2017, 9, 11. [Google Scholar] [CrossRef]
  110. Papatheodoulou, M.; Jimenez, C.; Petrou, A.; Thasitis, I. Endobiotic communities of marine sponges in Cyprus (Levantine Sea). Heliyon 2019, 5, e01392. [Google Scholar] [CrossRef]
  111. Çinar, M.E. Alien polychaete species (Annelida: Polychaeta) on the southern coast of Turkey (Levantine Sea, eastern Mediterranean), with 13 new records for the Mediterranean Sea. J. Nat. Hist. 2009, 42, 1975–1990. [Google Scholar] [CrossRef]
  112. Grassle, J.P.; Grassle, J.F. Sibling species in the marine pollution indicator Capitella (Polychaeta). Science 1976, 192, 567–569. [Google Scholar] [CrossRef] [PubMed]
  113. Wu, B.; Qian, P.-Y.; Zhang, S. Morphology, reproduction, ecology and allozyme electrophoresis of three Capitella sibling species in Qingdao (Polychaeta: Capitellidae). In Systematics, Biology and Morphology of World Polychaeta; Brill: Leiden, The Netherlands, 1991; pp. 391–400. [Google Scholar]
  114. Blake, J.A.; Grassle, J.P.; Eckelbarger, K.J. Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature for confirmed records. Zoosymposia 2009, 2, 25–53. [Google Scholar] [CrossRef]
  115. Silva, C.F.; Seixas, V.C.; Barroso, R.; Di Domenico, M.; Amaral, A.C.Z.; Paiva, P.C. Demystifying the Capitella capitata complex (Annelida, Capitellidae) diversity by morphological and molecular data along the Brazilian coast. PLoS ONE 2017, 12, e0177760. [Google Scholar] [CrossRef]
  116. Blake, J.A. Redescription of Capitella capitata (Fabricius) from West Greenland and designation of a neotype (Polychaeta, Capitellidae). Zoosymposia 2009, 2, 55–80. [Google Scholar] [CrossRef]
  117. Kurt-Şahin, G.; Çinar, M.E. A check-list of polychaete species (Annelida: Polychaeta) from the Black Sea. J. Black Sea Mediterr. Environ. 2012, 18, 10–48. [Google Scholar]
  118. Akoumianaki, I.; Hughes, J.A. The distribution of macroinfauna along a Mediterranean submarine cave with sulphur springs. Cahiers Biol. Mar. 2004, 45, 355–364. [Google Scholar]
  119. Zenetos, A.; Gofas, S.; Verlaque, M.; Çinar, M.E.; Garcia Raso, J.E.; Bianchi, C.N.; Morri, C.; Azzurro, E.; Bilecenoglu, M.; Froglia, C.; et al. Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. spatial distribution. Medit. Mar. Sci. 2010, 11, 381–493. [Google Scholar] [CrossRef]
  120. Viéitez, J.M.; Alós, C.; Parapar, J.; Besteiro, C.; Moreira, J.; Núñez, J.; Laborda, A.J.; San Martín, G. Annelida Polychaeta I. Fauna Iberica; Museo Nacional de Ciencias Naturales, CSIC: Madrid, Spain, 2004; Volume 25, 530p. [Google Scholar]
  121. Fauvel, P. Quatrième note préliminaire sur les Polychètes provenant des campagnées de l’Hirondelle et de la Princesse-Alice, ou deposées dans le Musée Océanographique de Monaco. Bull. Inst. Océanogr. Monaco 1913, 270, 1–80. [Google Scholar]
  122. Lezzi, M. Caulleriella mediterranea, a new species of polychaete (Annelida: Cirratulidae) from the central Mediterranean Sea. Eur. Zool. J. 2017, 84, 380–389. [Google Scholar] [CrossRef]
  123. Blake, J.A. Bitentaculate Cirratulidae (Annelida, Polychaeta) collected chiefly during cruises of the R/V Anton Bruun, USNS Eltanin, USCG Glacier, R/V Hero, RVIB Nathaniel B. Palmer, and R/V Polarstern from the Southern Ocean, Antarctica, and off Western South America. Zootaxa 2018, 4537, 130p. [Google Scholar] [CrossRef] [PubMed]
  124. Çinar, M.E.; Ergen, Z. The presence of Chaetozone corona (Polychaeta: Cirratulidae) in the Mediterranean Sea: An alien or a native species? Cahiers Biol. Mar. 2007, 48, 339–346. [Google Scholar]
  125. Le Garrec, V.; Grall, J.; Chevalier, C.; Guyonnet, B.; Jourde, J.; Lavesque, N.; Bonifacio, P.; Blake, J.A. Chaetozone corona (Polychaeta, Cirratulidae) in the Bay of Biscay: A new alien species for the North-east Atlantic waters? J. Mar. Biol. Assoc. UK 2017, 97, 433–445. [Google Scholar] [CrossRef]
  126. Grosse, M.; Bakken, T.; Nygren, A.; Kongsrud, J.A.; Capa, M. Species delimitation analysis of NE Atlantic Chaetozone (Annelida, Cirratulidae) reveals hidden diversity among a common and abundant marine annelid. Mol. Phylogenet. Evol. 2020, 149, 106582. [Google Scholar] [CrossRef]
  127. Grosse, M.; Capa, M.; Bakken, T. Describing the hidden species diversity of Chaetozone (Annelida, Cirratulidae) in the Norwegian Sea using morphological and molecular diagnostics. Zookeys 2021, 1039, 139–176. [Google Scholar] [CrossRef]
  128. Çinar, M.E.; Dağli, E. Bioeroding (boring) polychaete species (Annelida: Polychaeta) from the Aegean Sea (eastern Mediterranean). J. Mar. Biol. Assoc. UK 2021, 101, 309–318. [Google Scholar] [CrossRef]
  129. Blake, J.A. Kirkegaardia (Polychaeta, Cirratulidae), new name for Monticellina Laubier, preoccupied in the Rhabdocoela, together with new records and descriptions of eight previously known and sixteen new species from the Atlantic, Pacific, and Southern Oceans. Zootaxa 2016, 4166, 1–93. [Google Scholar] [CrossRef]
  130. Bogdanos, C.; Fredj, G. Sur la présence de Cossura coasta Kitamori, 1960 (Polychaeta, Cossuridae) dans les eaux côtières grecques (Mer Égée, Mer Ionienne). Thalassographica 1983, 6, 5–15. [Google Scholar]
  131. Wehe, T.; Fiege, D. Annotated checklist of the polychaete species of the seas surrounding the Arabian Peninsula: Red Sea, Gulf of Aden, Arabian Sea, Gulf of Oman, Arabian Gulf. Fauna Arab. 2002, 19, 7–238. [Google Scholar]
  132. Arvanitidis, C. Systematic and Bionomic Study of the Macrobenthic Polychaete (Annelida) of the Northern Aegean. Ph.D. Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 1994; 512p. (In Greek). [Google Scholar]
  133. Grosse, M.; Zhadan, A.; Langeneck, J.; Fiege, D.; Martínez, A. Still digging: Advances and perspectives in the study of the diversity of several sedentarian annelid families. Diversity 2021, 13, 132. [Google Scholar] [CrossRef]
  134. Corsini-Foka, M.; Zenetos, A.; Crocetta, F.; Çinar, M.E.; Koçak, F.; Golani, D.; Katsanevakis, S.; Tsiamis, K.; Cook, E.; Froglia, C.; et al. Inventory of alien and cryptogenic species of the Dodecanese (Aegean Sea; Greece): Collaboration through COST action training school. Manag. Biol. Invasions 2015, 6, 351–366. [Google Scholar] [CrossRef]
  135. Tempesti, J.; Langeneck, J.; Romani, L.; Garrido, M.; Lardicci, C.; Maltagliati, F.; Castelli, A. Harbour type and use destination shape fouling community and non-indigenous species assemblage: A study of three Northern Tyrrhenian port systems (Mediterranean Sea). Mar. Pollut. Bull. 2022, 174, 113191. [Google Scholar] [CrossRef] [PubMed]
  136. Paavo, B.; Bailey-Brock, J.H.; Åkesson, B. Morphology and life history of Ophryotrocha adherens sp. nov. (Polychaeta, Dorvilleidae). Sarsia 2000, 85, 251–264. [Google Scholar] [CrossRef]
  137. Munari, C.; Ebbe, B. A new species of Protodorvillea (Polychaeta: Dorvilleidae) from the Western Mediterranean Sea. Europ. J. Zool. 2019, 86, 196–209. [Google Scholar] [CrossRef]
  138. Hutchings, P.A.; Murray, A. Taxonomy of polychaetes from the Hawkesbury River and the southern estuaries of New South Wales, Australia. In Records of the Australian Museum; Australian Museum: Darlinghurst, Australia, 1984; pp. 1–118. [Google Scholar]
  139. Hartmann-Schröder, G. Die Polychaeten der antiborealen Südküste Australiens (zwischen Port Lincoln im Westen und Port Augusta im Osten). Teil 11. Mitt. Zool. Mus. Hamburg 1985, 82, 61–99. [Google Scholar]
  140. Haswell, W.A. Observation on some Australian Polychaeta. Part I. I. Syllidae. II. Staurocephalus. III. Eulalia. IV. Psamathe. IV. Siphonostoma. V. Halla. Proc. Linn. Soc. N. S. Wales 1886, 10, 733–756. [Google Scholar] [CrossRef]
  141. Marenzeller, E.V. Berichte der Commission für Oceanographische Erforschung des Östlichen Mittelmeeres. Zweite Reihe. VI. Zoologische Ergebnisse II. Polychäten des Grundes, gesammelt 1890, 1891, 1892. Denkschr. Akad. Wissensch. Wien 1893, 60, 25–48. [Google Scholar]
  142. Pruvot, G.; Racovitza, E.G. Matériaux pour la faune des annélides de Banyuls. Arch. Zool. Exp Gen. Sér. 3 1895, 3, 339–492. [Google Scholar]
  143. Gravina, M.F.; Pierri, C.; Mercurio, M.; Nonnis Marzano, C.; Giangrande, A. Polychaete diversity related to different mesophotic bioconstructions along the Southeastern Italian coast. Diversity 2021, 13, 239. [Google Scholar] [CrossRef]
  144. Zanol, J.; Halanych, K.M.; Fauchald, K. Reconciling taxonomy and phylogeny in the bristleworm family Eunicidae (polychaete, Annelida). Zool. Scr. 2014, 43, 79–100. [Google Scholar] [CrossRef]
  145. Martín, D. Anélidos poliquetos y moluscos asociados a algas calcáreas del litoral catalán. Miscellània Zool. 1987, 11, 61–75. [Google Scholar]
  146. Kurt-Şahin, G.; Çinar, M.E. Eunicidae (Polychaeta) species in and around Iskenderun Bay (Levantine Sea, Eastern Mediterranean) with a new alien species for the Mediterranean Sea and a re-description of Lysidice collaris. Turk. J. Zool. 2009, 33, 331–347. [Google Scholar]
  147. Lavesque, N.; Daffe, G.; Bonifácio, P.; Hutchings, P. A new species of the Marphysa sanguinea complex from French waters (Bay of Biscay, NE Atlantic) (Annelida, Eunicidae). Zookeys 2017, 716, 1–17. [Google Scholar] [CrossRef] [PubMed]
  148. Martín, D.; Gil, J.; Zanol, J.; Meca, M.A.; Pérez Portela, R. Digging the diversity of Iberian bait worms Marphysa (Annelida, Eunicidae). PLoS ONE 2020, 15, e0226749. [Google Scholar] [CrossRef]
  149. Elgetany, A.H.; El-Ghobashy, A.E.; Ghoneim, A.; Struck, T.H. Description of a new species of the genus Marphysa (Eunicidae), Marphysa aegypti sp. n., based on molecular and morphological evidence. Invertebr. Zool. 2018, 15, 71–84. [Google Scholar] [CrossRef]
  150. Lavesque, N.; Hutchings, P.; Abe, H.; Daffe, G.; Gunton, L.M.; Glasby, C.J. Confirming the exotic status of Marphysa victori Lavesque, Daffe, Bonifácio & Hutchings, 2017 (Annelida) in French waters and synonymy of Marphysa bulla Liu, Hutchings & Kupriyanova, 2018. Aquat. Invasions 2020, 15, 355–366. [Google Scholar]
  151. Katsiaras, N.; Simboura, N.; Koutsoubas, D. The rare subgroup C1 of Marphysa (Polychaeta, Eunicidae): Re-description of species and first records in the Mediterranean Sea. Zootaxa 2014, 3873, 201–217. [Google Scholar] [CrossRef]
  152. Molina-Acevedo, I.C. Morphological revision of the Subgroup 1 Fauchald, 1970 of Marphysa de Quatrefages, 1865 (Eunicidae: Polychaeta). Zootaxa 2018, 4480, 125p. [Google Scholar] [CrossRef]
  153. Salazar-Vallejo, S.I. Revision of Stylarioides Delle Chiaje, 1831 (Annelida: Flabelligeridae). Ital. J. Zool. 2011, 78, 163–200. [Google Scholar] [CrossRef]
  154. Grube, A.E. Beschreibungen einiger von Georg Ritter von Frauenfeld gesammelter Anneliden und Gephyreen des rothen Meeres. Verhandlungen Kais. Königlichen Zool. Bot. Ges. Wien 1868, 18, 629–650. [Google Scholar]
  155. Borghese, J.; Musco, L.; Arduini, D.; Tamburello, L.; Del Pasqua, M.; Giangrande, A. A comparative approach to detect macrobenthic response to the conversion of an inshore mariculture plant into an IMTA system in the Mar Grande of Taranto (Mediterranean Sea, Italy). Water 2023, 15, 68. [Google Scholar] [CrossRef]
  156. Parapar, J.; Adarraga, I.; Aguado, M.T.; Aguirrezabalaga, F.; Arias, A.; Besteiro, C.; Bleidorn, C.; Capa, M.; Capaccioni-Azzati, R.; El-Haddad, M.; et al. Fauna Iberica 45. Annelida; Polychaeta V.; Museo Nacional de Ciencias Naturales, CSIC: Madrid, Spain, 2018; 631p. [Google Scholar]
  157. Moraitis, M.; Papageorgiou, N.; Dimitriou, P.D.; Petrou, A.; Karakassis, I. Effects of offshore tuna farming on benthic assemblages in the Eastern Mediterranean. Aquacult. Environ. Interact. 2013, 4, 41–51. [Google Scholar] [CrossRef]
  158. Salazar-Vallejo, S.I. Revision of Hesione Savigny in Lamarck, 1818 (Annelida, Errantia, Hesionidae). Zoosystema 2018, 40, 227–325. [Google Scholar] [CrossRef]
  159. Kurt-Şahin, G.; Çinar, M.E.; Gönülal, O. A new species of Augeneria (Polychaeta: Lumbrineridae) from deep waters of the Aegean Sea (eastern Mediterranean). Mediterr. Mar. Sci. 2016, 17, 708–713. [Google Scholar] [CrossRef]
  160. Katsiaras, N.; Rousou, M.; Carrera-Parra, L.; Garcia-Gomez, S.; Simboura, N.; Louizidou, P.; Chintiroglou, C.C.; Martins, R. Taxonomy; ecology and geographic distribution of Gallardoneris iberica (Polychaeta; Lumbrineridae) in southern Europe. J. Mar. Biol. Assoc. UK 2018, 98, 1609–1618. [Google Scholar] [CrossRef]
  161. Martin, D.; Estefa, J.; Gil, J. Taxonomic review of Gallardoneris nonatoi (Ramos, 1976) comb. nov. (Annelida, Lumbrineridae), and description of a new species of Lumbrineris from the Gulf of Mexico. Zookeys 2022, 1114, 35–57. [Google Scholar] [CrossRef]
  162. Carrera-Parra, L.F. Lumbrineridae (Annelida: Polychaeta) from the Gran Caribbean region with the description of six new species. J. Mar. Biol. Assoc. UK 2001, 81, 599–621. [Google Scholar] [CrossRef]
  163. Ramos, J.M. Lumbrineridae (Polychètes errantes) de Méditerranée. Ann. Inst. Océanogr. 1976, 52, 103–137. [Google Scholar]
  164. Grube, A.E. Beschreibung neuer oder wenig bekannter Anneliden. Sechster Beitrag. Arch. Für Naturgeschichte 1863, 29, 37–69. [Google Scholar] [CrossRef]
  165. Claparède, É. Les annélides chétopodes du Golfe de Naples. Mém. Soc. Phys. Hist. Nat. Genève 1868, 19, 313–584. [Google Scholar]
  166. Ehlers, E.H. Die Borstenwürmer (Annelida Chaetopoda) Nach Systematischen und Anatomischen Untersuchungen Dargestellt; Wilhelm Enelmann: Leipzig, Germany, 1868; 748p. [Google Scholar]
  167. Hartmann-Schröder, G. Annelida, Borstenwürmer, Polychaeta. 2nd Revised ed. The Fauna of Germany and Adjacent Seas with Their Characteristics and Ecology, 58; Gustav Fischer: Jena, Germany, 1996; 648p. [Google Scholar]
  168. Oug, E. Guide to Identification of Lumbrineridae (Polychaeta) in North East Atlantic Waters v.3.2; NMBAQC 2010 Taxonomic Workshop; Dove Marine Laboratory: North Shields, UK, 2012; 31p. [Google Scholar]
  169. Quatrefages, A. Histoire Naturelle des Annelés Marins et D’Eau Douce. Annélides et Gephyriens. Volume 2; Librarie Encyclopédique de Roret: Paris, France, 1866; 794p. [Google Scholar]
  170. Çinar, M.E.; Bilecenoglu, M.; Öztürk, B.; Katağan, T.; Aysel, V. Alien species on the coasts of Turkey. Mediterr. Mar. Sci. 2005, 6, 119–146. [Google Scholar] [CrossRef]
  171. Zenetos, A.; Çinar, M.E.; Pancucci-Papadopoulou, M.A.; Harmelin, J.-G.; Furnari, G.; Andaloro, F.; Bellou, N.; Streftaris, N.; Zibrowius, H. Annotated list of marine alien species in the Mediterranean with records of the worst invasive species. Mediterr. Mar. Sci. 2005, 6, 63–118. [Google Scholar] [CrossRef]
  172. Kuş, S.; Kurt, G.; Çinar, M.E. Nephtyidae (Annelida: Polychaeta) from the Sea of Marmara and Black Sea, with descriptions of two new species. Zootaxa 2021, 5060, 33–64. [Google Scholar] [CrossRef] [PubMed]
  173. Christomanos, A.; Giannitsis, D. Dredging results from the oceanographic cruise “Tethys” during August-September 1961. Mar. Sci. Pap. 1962, 1, 7–11. [Google Scholar]
  174. Occhipinti-Ambrogi, A.; Andaloro, F.; Azzurro, E.; Cardeccia, A.; Carnevali, L.; Castelli, A.; Cecere, E.; Cerri, J.; Donnarumma, L.; Ferrario, J.; et al. Prioritizzazione delle specie aliene marine italiane per l’implementazione di una lista di specie aliene invasive di rilevanza nazionale ai sensi del regolamento EU 1143/2014 e del decreto legislativo 230/2017. Biol. Mar. Medit. 2019, 26, 219–222. [Google Scholar]
  175. Teixeira, M.A.L.; Bakken, T.; Vieira, P.E.; Langeneck, J.; Sampieri, B.R.; Kasapidis, P.; Ravara, A.; Nygren, A.; Costa, F.O. The curious and intricate case of the European Hediste diversicolor (Annelida, Nereididae) species complex, with description of two new species. Syst. Biodivers. 2022, 20, 2116124. [Google Scholar] [CrossRef]
  176. Muir, A.I.; Smith, B.D.; Garcia-Alonso, J. Neanthes nubila (Annelida: Polychaeta)—A review of its biogeography and breeding habits. Cah. Biol. Mar. 2014, 55, 275–280. [Google Scholar]
  177. Villalobos-Guerrero, T.F.; Kara, J.; Simon, C.; Idris, I. Systematic review of Neanthes Kinberg, 1865 (Annelida: Errantia: Nereididae) from southern Africa, including a preliminary molecular phylogeny of the genus. Mar. Biodivers. 2022, 52, 21. [Google Scholar] [CrossRef]
  178. López, E.; Richter, A. Non-indigenous species (NIS) of polychaetes (Annelida: Polychaeta) from the Atlantic and Mediterranean coasts of the Iberian Peninsula: An annotated checklist. Helgol. Mar. Res. 2017, 71, 19. [Google Scholar] [CrossRef]
  179. Gravina, M.F.; Lezzi, M.; Bonifazi, A.; Giangrande, A. The genus Nereis L., 1758 (Polychaeta, Nereididae): State of the art for identification of Mediterranean species. Atti Soc. Toscana Sci. Nat. Mem. Ser. B 2015, 122, 147–164. [Google Scholar]
  180. Malmgren, A.J. Annulata Polychaeta Spetsbergiæ, Grœnlandiæ, Islandiæ et Scandinaviæ Hactenus Cognita; Ex Officina Frenckelliana: Helsinki, Finland, 1867; 127p. [Google Scholar]
  181. Maltagliati, F.; Camilli, L.; Lardicci, C.; Castelli, A. Evidence for morphological and genetic divergence in Perinereis cultrifera (Polychaeta: Nereididae) from two habitat types at Elba Island. J. Mar. Biol. Assoc. UK 2001, 81, 411–414. [Google Scholar] [CrossRef]
  182. Rouabah, A.; Scaps, P. Two-dimensional electrophoresis analysis of proteins from epitokous forms of the polychaete Perineris cultrifera from the English Channel and the Mediterranean Sea. Cah. Biol. Mar. 2003, 44, 227–236. [Google Scholar]
  183. Özpolat, B.D.; Randel, N.; Williams, E.A.; Bezares-Calderón, L.A.; Andreatta, G.; Balavoine, G.; Bertucci, P.Y.; Ferrier, D.E.K.; Gambi, M.C.; Gazave, E.; et al. The Nereid on the rise: Platynereis as a model system. EvoDevo 2021, 12, 10. [Google Scholar] [CrossRef] [PubMed]
  184. Wäge, J.; Valvassori, G.; Hardege, J.D.; Schulze, A.; Gambi, M.C. The sibling polychaetes Platynereis dumerilii and Platynereis massiliensis in the Mediterranean Sea: Are phylogeographic patterns related to exposure to ocean acidification? Mar. Biol. 2017, 164, 199. [Google Scholar] [CrossRef]
  185. Cantone, G. Primo rinvenimento in Mediterraneo di Rullierinereis Pettibone, 1971 (Policheti Nereidi) con descrizione di una nuova specie. Animalia 1982, 9, 103–107. [Google Scholar]
  186. Tena, J.; Capaccioni-Azzati, R.; Porras, R.; Torres-Gavilá, F.J. Cuatro especies de poliquetos nuevas para las costas mediterráneas españolas en los sedimentos del antepuerto de Valencia. Miscellània Zool. 1991, 15, 29–41. [Google Scholar]
  187. Borisova, P.B.; Schepetov, D.M.; Budaeva, N.E. Aponuphis Kucheruk, 1978 (Annelida: Onuphidae) from western African waters. Invertebr. Zool. 2018, 15, 19–41. [Google Scholar] [CrossRef]
  188. Paxton, H. A new species of Diopatra (Annelida: Onuphidae) from Namibia, southwestern Africa. Mar. Biodiv. 2016, 46, 889–895. [Google Scholar] [CrossRef]
  189. Elgetany, A.H.; van Rensburg, H.; Hektoen, M.; Matthee, C.; Budaeva, N.; Simon, C.A.; Struck, T.H. Species delimitation in the speciation grey zone: The case of Diopatra (Annelida, Onuphidae). Zool. Scripta 2020, 49, 516–534. [Google Scholar] [CrossRef]
  190. European Nature Information System (EUNIS). Available online: (accessed on 28 June 2023).
  191. SeaLifeBase. Available online: (accessed on 28 June 2023).
  192. De Filippi, F. Armandia nuovo genere di Annelidi nel Mediterraneo. Arch. Zool. L’anatomia Fisiol. 1861, 1, 215–219. [Google Scholar]
  193. Harmelin, J.-G. Contribution à l’étude de l’endofaune des prairies d’Halophila stipulacea de Méditerranée orientale. Recl. Trav. Stn. Mar. Endoume 1969, 45, 305–320. [Google Scholar]
  194. Blake, J.A. Polychaeta Orbiniidae from Antarctica, the Southern Ocean, the Abyssal Pacific Ocean, and off South America. Zootaxa 2018, 4218, 145p. [Google Scholar] [CrossRef]
  195. Day, J.H. Some Polychaeta from the Israel South Red Sea Expedition, 1962. Bull. Sea Fisher. Res. Stat. Haifa 1965, 38, 15–27. [Google Scholar]
  196. Blake, J.A.; Giangrande, A. Naineris setosa (Verrill) (Polychaeta, Orbiniidae), an American subtropical–tropical polychaete collected from an aquaculture facility in Brindisi (Adriatic Sea, Italy): A possible alien species. Ital. J. Zool. 2011, 78, 20–26. [Google Scholar] [CrossRef]
  197. Khedhri, I.; Lavesque, N.; Bonifácio, P.; Djabou, H.; Afli, A. First record of Naineris setosa (Verrill, 1900) (Annelida: Polychaeta: Orbiniidae) in the Western Mediterranean Sea. BioInvasions Rec. 2014, 3, 83–88. [Google Scholar] [CrossRef]
  198. Atzori, G.; López, E.; Addis, P.; Sabatini, A.; Cabiddu, S. First record of the alien polychaete Naineris setosa (Scolecida; Orbiniidae) in Tyrrhenian Sea (Western Mediterranean). Mar. Biodivers. Rec. 2016, 9, e05. [Google Scholar] [CrossRef]
  199. Tempesti, J.; Langeneck, J.; Maltagliati, F.; Castelli, A. Macrobenthic fouling assemblages and NIS success in a Mediterranean port: The role of use destination. Mar. Pollut. Bull. 2020, 150, 110768. [Google Scholar] [CrossRef]
  200. Bleidorn, C.; Kruse, I.; Albrecht, S.; Bartolomaeus, T. Mitochondrial sequence data expose the putative cosmopolitan polychaete Scoloplos armiger (Annelida, Orbiniidae) as a species complex. BMC Evol. Biol. 2006, 6, 47. [Google Scholar] [CrossRef]
  201. Luttikhuizen, P.C.; Bol, A.; Cardoso, J.F.M.F.; Dekker, R. Overlapping distributions of cryptic Scoloplos cf. armiger species in the western Wadden Sea. J. Sea Res. 2011, 66, 231–237. [Google Scholar]
  202. Koh, B.S.; Bhaud, M. Description of Owenia gomsoni n. sp. (Oweniidae, Annelida Polychaeta) from the Yellow Sea and evidence that Owenia fusiformis is not a cosmopolitan species. Vie Milieu 2001, 51, 77–86. [Google Scholar]
  203. Koh, B.S.; Bhaud, M. Identification of differentiating criteria between populations of Owenia fusiformis (Annelida Polychaeta) from different origins. Vie Milieu 2003, 53, 64–95. [Google Scholar]
  204. Langeneck, J.; Barbieri, M.; Maltagliati, F.; Castelli, A. Molecular phylogeny of Paraonidae (Annelida). Mol. Phylogenet. Evol. 2019, 136, 1–13. [Google Scholar] [CrossRef] [PubMed]
  205. Laubier, L. Sur quelques Aricidea (Polychètes, Paraonidae) de Banyuls-sur-Mer. Vie Milieu 1967, 18, 99–132. [Google Scholar]
  206. Langeneck, J.; Mazziotti, C.; Mikac, B.; Scirocco, T.; Castelli, A. Aricidea fragilis (Annelida: Paraonidae) in the Mediterranean Sea: Overlooked native or alien species? Eur. Zool. J. 2018, 85, 267–272. [Google Scholar] [CrossRef]
  207. Vatova, A. La fauna bentonica dell’alto e medio Adriatico. Nova Thalass. 1949, 1, 110p. [Google Scholar]
  208. Fauvel, P. Annélides Polychètes de la Haute-Adriatique. Thalass. Jena 1940, 4, 24p. [Google Scholar]
  209. Strelzov, V.E. Polychaete Worms of the Family Paraonidae Cerruti, 1909 (Polychaeta, Sedentaria); Akademia Nauk: Moscow, Russia, 1973; 170p. (In Russian) [Google Scholar]
  210. Çinar, M.E.; Dağli, E.; Erdoğan-Dereli, D. The diversity of polychaetes (Annelida: Polychaeta) in a long-term pollution monitoring study from the Levantine coast of Turkey (Eastern Mediterranean), with the descriptions of four species new to science and two species new to the Mediterranean fauna. J. Nat. Hist. 2022, 56, 1383–1426. [Google Scholar] [CrossRef]
  211. Laubier, L.; Ramos, J. Paraonidae (Polychètes Sédentaires) de Méditerranée. Bull. Mus. Natn. Hist. Nat. Paris 1974, 113, 1097–1148. [Google Scholar]
  212. Hartley, J.P. The family Paraonidae (Polychaeta) in British waters: A new species and new records with a key to species. J. Mar. Biol. Assoc. UK 1981, 61, 133–149. [Google Scholar] [CrossRef]
  213. Erdoğan-Dereli, D.; Çinar, M.E. The genus Paradoneis (Annelida: Paraonidae) from the Sea of Marmara, with descriptions of two new species. Zootaxa 2019, 4686, 465–496. [Google Scholar] [CrossRef] [PubMed]
  214. Erdoğan-Dereli, D.; Çinar, M.E. Levinsenia species (Annelida: Polychaeta: Paraonidae) from the Sea of Marmara with descriptions of two new species. Zootaxa 2021, 4908, 151–180. [Google Scholar] [CrossRef]
  215. Langeneck, J.; Barbieri, M.; Maltagliati, F.; Castelli, A. A new species of Cirrophorus (Annelida: Paraonidae) from Mediterranean organically enriched coastal environments, with taxonomic notes on the family. J. Mar. Biol. Assoc. UK 2017, 97, 871–880. [Google Scholar] [CrossRef]
  216. Langeneck, J.; Diez, M.E.; Nygren, A.; Salazar-Vallejo, S.; Carrera-Parra, L.F.; Vega Fernández, T.; Badalamenti, F.; Castelli, A.; Musco, L. Worming its way into Patagonia: An integrative approach reveals the cryptic invasion by Eulalia clavigera (Annelida: Phyllodocidae). Mar. Biodivers. 2019, 49, 851–861. [Google Scholar] [CrossRef]
  217. Teixeira, M.A.L.; Vieira, P.E.; Fenwick, D.; Langeneck, J.; Pleijel, F.; Sampieri, B.R.; Hernandez, J.C.; Ravara, A.; Costa, F.O.; Nygren, A. Revealing the diversity of the green Eulalia (Annelida, Phyllodocidae) species complex along the European coast, with description of three new species. Org. Divers. Evol. 2023, 1–27. [Google Scholar] [CrossRef]
  218. Nygren, A.; Pleijel, F. From one to ten in a single stroke—Resolving the European Eumida sanguinea (Phyllodocidae, Annelida) species complex. Mol. Phylogenet. Evol. 2011, 58, 132–141. [Google Scholar] [CrossRef]
  219. Teixeira, M.A.L.; Vieira, P.E.; Ravara, A.; Costa, F.O.; Nygren, A. From 13 to 22 in a second stroke: Revisiting the European Eumida sanguinea (Phyllodocidae: Annelida) species complex. Zool. J. Linn. Soc. 2022, 196, 169–197. [Google Scholar] [CrossRef]
  220. Pleijel, F.; Dales, R.P. Polychaetes: British Phyllodocoideans, Typhloscolecoideans and Tomopteroideans. Synop. Br. Fauna (NS) 1991, 45, 202. [Google Scholar]
  221. Pleijel, F. Polychaeta, Phyllodocidae. Marine Invertebrates of Scandinavia 8; Scandinavian University Press: Oslo, Norway, 1993; 159p. [Google Scholar]
  222. Nygren, A.; Eklöf, J.; Pleijel, F. Cryptic species of Notophyllum (Polychaeta: Phyllodocidae) in Scandinavian waters. Organisms Divers. Evol. 2010, 10, 193–204. [Google Scholar] [CrossRef]
  223. Giangrande, A.; Licciano, M. Revision of the species of Megalomma (Polychaeta: Sabellidae) from the Mediterranean Sea, with the description of M. messapicum n. sp. Ital. J. Zool. 2008, 75, 207–217. [Google Scholar] [CrossRef]
  224. Calosi, P.; Rastrick, S.P.S.; Lombardi, C.; de Guzman, H.J.; Davidson, L.; Jahnke, M.; Giangrande, A.; Hardege, J.D.; Schulze, A.; Spicer, J.I.; et al. Adaptation and acclimatization to ocean acidification in marine ectotherms: An in situ transplant experiment with polychaetes at a shallow CO2 vent system. Phil. Trans. Royal Soc. Ser. B 2013, 368, 20120444. [Google Scholar] [CrossRef] [PubMed]
  225. Tilic, E.; Feerst, K.G.; Rouse, G.W. Two new species of Amphiglena (Sabellidae, Anellida), with an assessment of hidden diversity in the Mediterranean. Zootaxa 2019, 4648, 337–353. [Google Scholar] [CrossRef] [PubMed]
  226. Giangrande, A.; Putignano, M.; Licciano, M.; Gambi, M.C. The Pandora’s box: Morphological diversity within the genus Amphiglena Claparède, 1864 (Sabellidae, Annelida) in the Mediterranean Sea, with description of nine new species. Zootaxa 2021, 4949, 201–239. [Google Scholar] [CrossRef] [PubMed]
  227. Del Pasqua, M.; Schulze, A.; Tovar-Hernández, M.A.; Keppel, E.; Lezzi, M.; Gambi, M.C.; Giangrande, A. Clarifying the taxonomic status of the alien species Branchiomma bairdi and Branchiomma boholense (Annelida: Sabellidae) using molecular and morphological evidence. PLoS ONE 2018, 13, e0197104. [Google Scholar] [CrossRef] [PubMed]
  228. Tovar-Hernández, M.A.; Licciano, M.; Giangrande, A. Revision of Chone Krøyer, 1856 (Polychaeta: Sabellidae) from the eastern central Atlantic and Mediterranean Sea with descriptions of two new species. Sci. Mar. 2007, 71, 315–338. [Google Scholar] [CrossRef]
  229. Fitzhugh, K. Fan worm polychaetes (Sabellidae: Sabellinae) collected during the Thai-Danish BIOSHELF Project. Phuket Mar. Biol. Center Spec. Publ. 2002, 24, 353–424. [Google Scholar]
  230. Selim, S.A.; Rzhavsky, A.V.; Britayev, T.A. Dialychone and Paradialychone (Polychaeta: Sabellidae) from the Mediterranean Coast of Egypt with description of Dialychone egyptica sp. n. Invertebr. Zool. 2012, 9, 105–114. [Google Scholar] [CrossRef]
  231. Giangrande, A.; Licciano, M. The genus Euchone (Polychaeta, Sabellidae) in the Mediterranean Sea, addition of two new species and discussion on some closely related taxa. J. Nat. Hist. 2006, 40, 1301–1330. [Google Scholar] [CrossRef]
  232. Giangrande, A. Censimento dei policheti dei mari italiani: Sabellidae Malmgren, 1867. Atti Soc. Toscana Sci. Nat. Mem. Ser. B 1989, 96, 153–189. [Google Scholar]
  233. Putignano, M.; Gravili, C.; Giangrande, A. The peculiar case of Myxicola infundibulum (Polychaeta: Sabellidae): Echo from a science 200 years old and description of four new taxa in the Mediterranean Sea. Eur. Zool. J. 2023, 90, 506–546. [Google Scholar] [CrossRef]
  234. Iroso, I. Revisione dei Serpulidi e Sabellidi del Golfo di Napoli. Pubbl. Stn. Zool. Napoli 1921, 3, 47–91. [Google Scholar]
  235. Sun, Y.; Wong, E.; Keppel, E.; Williamson, J.E.; Kupriyanova, E.K. A global invader or a complex of regionally distributed species? Clarifying the status of an invasive calcareous tubeworm Hydroides dianthus (Verrill, 1873) (Polychaeta: Serpulidae) using DNA barcoding. Mar. Biol. 2017, 164, 28. [Google Scholar] [CrossRef]
  236. Grosse, M.; Pérez, R.; Juan-Amengual, M.; Pons, J.; Capa, M. The elephant in the room: First record of invasive gregarious species of serpulids (calcareous tube annelids) in Majorca (western Mediterranean). Sci. Mar. 2021, 85, 15–28. [Google Scholar] [CrossRef]
  237. Ulman, A.; Ferrario, J.; Occhipinti-Ambrogi, A.; Arvanitidis, C.; Bandi, A.; Bertolino, M.; Bogi, C.; Chatzigeorgiou, G.; Çiçek, B.A.; Deidun, A.; et al. A massive update of non-indigenous species records in Mediterranean marinas. PeerJ. 2017, 5, e3954. [Google Scholar] [CrossRef] [PubMed]
  238. Bianchi, C.N. Guide per il Riconoscimento Delle Specie Animali Delle Acque Lagunari e Costiere Italiane. 5. Policheti Serpuloidei; Consiglio Nazionale delle Ricerche: Roma, Italy, 1981; 190p. [Google Scholar]
  239. Mastrototaro, F.; D’Onghia, G.; Corriero, G.; Matarrese, A.; Maiorano, P.; Panetta, P.; Gherardi, M.; Longo, C.; Rosso, A.; Sciuto, F.; et al. Biodiversity of the white coral bank off Cape Santa Maria di Leuca (Mediterranean Sea): An update. Deep Sea Res. Part II 2010, 57, 412–430. [Google Scholar] [CrossRef]
  240. Zibrowius, H. Étude morphologique, systématique et écologique des Serpulidae (Annelida Polychaeta) de la region de Marseille. Rec. Trav. Stn. Mar. Endoume 1968, 43, 81–252. [Google Scholar]
  241. Scacchi, A. Catalogus Conchyliorum Regni Neapolitani Quae Usque Adhuc Reperit A. Scacchi; Francisci Xaverii Tornese: Napoli, Italy, 1836; 18p. [Google Scholar]
  242. Ben-Eliahu, M.N.; ten Hove, H.A. Redescription of Rhodopsis pusilla Bush, a little known but widely distributed species of Serpulidae (Polychaeta). Zool. Scr. 1989, 18, 381–395. [Google Scholar] [CrossRef]
  243. Ben-Eliahu, M.N. Polychaeta errantia of the Suez Canal. Israel J. Zool. 1972, 21, 189–237. [Google Scholar]
  244. Palero, F.; Torrado, H.; Perry, O.; Kupriyanova, E.; Ulman, A.; Genis-Armero, R.; ten Hove, H.A.; Capaccioni-Azzati, R. Following the Phoenician example: Western Mediterranean colonization by Spirobranchus cf. tetraceros (Annelida: Serpulidae). Sci. Mar. 2020, 84, 83–92. [Google Scholar] [CrossRef]
  245. Pettibone, M.H. Partial revision of the genus Sthenelais Kinberg (Polychaeta: Sigalionidae) with diagnoses of two new genera. Smithsonian Contrib. Zool. 1971, 109, 40p. [Google Scholar] [CrossRef]
  246. Grube, A.E. Beschreibungen neuer oder weniger bekannter von Hrn. Ehrenberg gesammelter Anneliden des rothen Meeres. Monatsberichte K. Preuss. Akad. Wiss. Berl. 1869, 484–521. [Google Scholar]
  247. Meißner, K.; Götting, M.; Nygren, A. Do we know who they are? On the identity of Pholoe (Annelida: Sigalionidae: Pholoinae) species from northern Europe. Zool. J. Linn. Soc. 2020, 189, 178–206. [Google Scholar] [CrossRef]
  248. Capa, M.; Bakken, T.; Meißner, K.; Nygren, A. Three, two, one! Revision of the long-bodied sphaerodorids (Sphaerodoridae, Annelida) and synonymization of Ephesiella, Ephesiopsis and Sphaerodorum. PeerJ 2018, 6, e5783. [Google Scholar] [CrossRef]
  249. Dağli, E.; Çinar, M.E. Species of the subgenera Aquilaspio and Prionospio (Polychaeta: Spionidae: Prionospio) from the southern coast of Turkey (Levantine Sea, eastern Mediterranean), with description of a new species and two new reports for the Mediterranean fauna. Zootaxa 2009, 2275, 20p. [Google Scholar] [CrossRef]
  250. Katsanevakis, S.; Poursanidis, D.; Hoffman, R.; Rizgalla, J.; Rothman, S.B.S.; Levitt-Barmats, Y.; Hadjioannou, L.; Trkov, D.; Garmendia, J.M.; Rizzo, M.; et al. Unpublished Mediterranean records of marine alien and cryptogenic species. BioInvasions Rec. 2020, 9, 165–182. [Google Scholar] [CrossRef]
  251. Maciolek, N.J. A revision of the genus Prionospio Malmgren, with special emphasis on species from the Atlantic Ocean, and new records of species belonging to the genera Apoprionospio Foster and Paraprionospio Caullery (Polychaeta, Annelida, Spionidae). Zool. J. Linn. Soc. 1985, 84, 325–383. [Google Scholar] [CrossRef]
  252. Dağli, E.; Cinar, M.E. Species of the subgenus Minuspio (Polychaeta: Spionidae: Prionospio) from the southern coast of Turkey (Levantine Sea, eastern Mediterranean), with the description of two new species. Zootaxa 2011, 3043, 35–53. [Google Scholar] [CrossRef]
  253. Radashevsky, V. I Pseudopolydora (Annelida: Spionidae) from European and adjacent waters with a key to identification and description of a new species. Mar. Biodivers. 2021, 51, 31. [Google Scholar] [CrossRef]
  254. Meißner, K. Revision of the genus Spiophanes (Polychaeta, Spionidae) with new synonymies, new records and descriptions of new species. Zoosyst. Evol. 2005, 81, 3–65. [Google Scholar] [CrossRef]
  255. Laubier, L. Un Spionidien des vases bathyales de Banyuls-sur-Mer, Spiophanes kroyeri reyssi ssp. n. Bull. Soc. Zool. Fr. 1964, 89, 562–577. [Google Scholar]
  256. Abd-Elnaby, F.A.; San Martín, G. Eusyllinae, Anoplosyllinae, and Exogoninae (Polychaeta: Syllidae) for the Mediterranean coasts of Egypt, together the description of one new species. Life Sci. J. 2010, 7, 132–139. [Google Scholar]
  257. Çinar, M.E.; Dağli, E. New records of alien polychaete species for the coasts of Turkey. Mediterr. Mar. Sci. 2012, 13, 103–107. [Google Scholar] [CrossRef]
  258. Aguado, M.T.; San Martín, G. Syllidae (Polychaeta) from Lebanon with two new reports for the Mediterranean Sea. Cah. Biol. Mar. 2007, 48, 207–224. [Google Scholar]
  259. Nygren, A. Revision of Autolytinae (Syllidae: Polychaeta). Zootaxa 2004, 680, 314p. [Google Scholar] [CrossRef]
  260. Álvarez-Campos, P.; Giribet, G.; San Martín, G.; Rouse, G.W.; Riesgo, A. Straightening the striped chaos: Systematics and evolution of Trypanosyllis and the case of its pseudocryptic type species Trypanosyllis krohnii (Annelida, Syllidae). Zool. J. Linn. Soc. 2017, 179, 492–540. [Google Scholar] [CrossRef]
  261. Kurt-Şahin, G.; Çinar, M.E.; Dağli, E. New records of polychaetes (Annelida) from the Black Sea. Cah. Biol. Mar. 2019, 60, 153–165. [Google Scholar]
  262. San Martín, G. Fauna Iberica 21. Annelida, Polychaeta II: Syllidae; Museo Nacional de Ciencias Naturales, CSIC: Madrid, Spain, 2003; 554p. [Google Scholar]
  263. Musco, L.; Çinar, M.E.; Giangrande, A. A new species of Sphaerosyllis (Polychaeta: Syllidae: Exogoninae) from the coasts of Italy and Cyprus (Eastern Mediterranean Sea). Ital. J. Zool. 2005, 72, 161–166. [Google Scholar] [CrossRef]
  264. Del-Pilar-Ruso, Y.; San Martín, G. Description of a new species of Sphaerosyllis Claparède, 1863 (Polychaeta: Syllidae: Exogoninae) from the Alicante coast (W Mediterranean) and first reports of two other species of Syllidae for the Mediterranean Sea and the Iberian Peninsula. Mediterr. Mar. Sci. 2012, 13, 187–197. [Google Scholar] [CrossRef]
  265. Licher, F. Revision der Gattung Typosyllis Langerhans, 1879 (Polychaeta: Syllidae). Morphologie, Taxonomie und Phylogenie. Abh. Senckenb. Naturfosch. Ges. 1999, 551, 1–336. [Google Scholar]
  266. Langeneck, J.; Musco, L.; Busoni, G.; Conese, I.; Aliani, S.; Castelli, A. Syllidae (Annelida: Phyllodocida) from the deep Mediterranean Sea, with the description of three new species. Zootaxa 2018, 4369, 197–220. [Google Scholar] [CrossRef]
  267. San Martín, G. Estudio biogeografico, faunistico y sistematico de los poliquetos de la familia silidos (Stlidae: Polychaeta) en Baleares. Publicaciones de la Universidad Complutense de Madrid. Colecc. Tesis Dr. 1984, 187/84, xxii+529. [Google Scholar]
  268. Çinar, M.E. Syllis ergeni: A new species of Syllidae (Annelida: Polychaeta) from Izmir Bay (Aegean Sea, eastern Mediterranean Sea). Zootaxa 2005, 1036, 43–54. [Google Scholar] [CrossRef]
  269. Abd-Elnaby, F.A.; San Martín, G. Syllinae (Syllidae: Polychaeta) from the Mediterranean coast of Egypt with the description of two new species. Mediterr. Mar. Sci. 2011, 12, 43–52. [Google Scholar] [CrossRef]
  270. Langeneck, J.; Scarpa, F.; Maltagliati, F.; Sanna, D.; Barbieri, M.; Cossu, P.; Mikac, B.; Curini Galletti, M.; Castelli, A.; Casu, M. A complex species complex: The controversial role of ecology and biogeography in the evolutionary history of Syllis gracilis Grube; 1840 (Annelida; Syllidae). J. Zool. Syst. Evol. Res. 2020, 58, 66–78. [Google Scholar] [CrossRef]
  271. Ben-Eliahu, M.N. Polychaete cryptofauna from rims of similar intertidal vermetid reefs on the Mediterranean coast of Israel and in the Gulf of Elat: Syllinae and Eusyllinae (Polychaeta Errantia: Syllidae). Israel J. Zool. 1977, 26, 1–58. [Google Scholar]
  272. Cosentino, A. Microhabitat selection in a local syllid assemblage with the first record of Syllis hyllebergi (Syllinae) in the central Mediterranean. Ital. J. Zool. 2011, 78, 267–279. [Google Scholar] [CrossRef]
  273. Katzmann, W. Polychaeten von Sedimentboden der mittleren Adria (50–525 m). Zool. Jahrbücher Abt. Für Syst. Okol. Geogr. Tiere 1973, 100, 436–450. [Google Scholar]
  274. Ba-Akdah, M.A.; Satheesh, S.; Al-Sofyani, A.M.A.; Lucas, Y.; Álvarez-Campos, P.; San Martín, G. Taxonomy of some species of the genus Syllis (Annelida: Syllidae: Syllinae) from the Red Sea found among the first colonizers of an artificial substrate. Mar. Biol. Res. 2018, 14, 790–805. [Google Scholar] [CrossRef]
  275. Hutchings, P.; Glasby, C.J. Redescription of Loimia medusa and Amphitrite rubra (Polychaeta: Terebellidae). Mitteilungen Hambg. Zool. Mus. Inst. 1995, 92, 149–154. [Google Scholar]
  276. Lavesque, N.; Daffe, G.; Londoño-Mesa, M.H.; Hutchings, P. Revision of the French Terebellidae sensu stricto (Annelida: Terebelliformia), with descriptions of nine new species. Zootaxa 2021, 5038, 63p. [Google Scholar] [CrossRef] [PubMed]
  277. Lavesque, N.; Hutchings, P.; Daffe, G.; Londoño-Mesa, M.H. Revision of the French Polycirridae (Annelida, Terebelliformia), with descriptions of eight new species. Zootaxa 2020, 4869, 151–186. [Google Scholar] [CrossRef]
  278. Lezzi, M.; Giangrande, A. New species of Streblosoma (Thelepodidae, Annelida) from the Mediterranean Sea: S. pseudocomatus sp. nov., S. nogueirai sp. nov. and S. hutchingsae sp. nov. J. Nat. Hist. 2018, 52, 2857–2873. [Google Scholar] [CrossRef]
  279. Lavesque, N.; Hutchings, P.; Daffe, G.; Nygren, A.; Londoño-Mesa, M.H. A revision of the French Trichobranchidae (Polychaeta), with descriptions of nine new species. Zootaxa 2019, 4664, 151–190. [Google Scholar] [CrossRef] [PubMed]
  280. Parapar, J.; Capa, M.; Nygren, A.; Moreira, J. To name but a few: Descriptions of five new species of Terebellides (Annelida, Trichobranchidae) from the North East Atlantic. Zookeys 2020, 992, 58p. [Google Scholar] [CrossRef]
  281. Barroso, M.; Moreira, J.; Capa, M.; Nygren, A.; Parapar, J. A further step towards the characterisation of Terebellides (Annelida, Trichobranchidae) diversity in the Northeast Atlantic, with the description of a new species. Zookeys 2022, 1132, 85–126. [Google Scholar] [CrossRef]
Figure 1. (a) Areas of Cyprus where polychaete species have been reported according to the literature sources (red) and the current study (green). (b) Position of the Island of Cyprus in the eastern Mediterranean; the dashed area represents Cyprus’ EEZ.
Figure 1. (a) Areas of Cyprus where polychaete species have been reported according to the literature sources (red) and the current study (green). (b) Position of the Island of Cyprus in the eastern Mediterranean; the dashed area represents Cyprus’ EEZ.
Diversity 15 00941 g001
Figure 2. Venn diagram representing the number and percentage of polychaeta species reported in Cyprus from bibliographic references, unpublished surveys, and in both references and new surveys.
Figure 2. Venn diagram representing the number and percentage of polychaeta species reported in Cyprus from bibliographic references, unpublished surveys, and in both references and new surveys.
Diversity 15 00941 g002
Figure 3. Number of newly recorded species per year.
Figure 3. Number of newly recorded species per year.
Diversity 15 00941 g003
Figure 4. Repartition of non-indigenous polychaete species recorded for Cyprus into the three categories of alien, cryptogenic, and questionable species.
Figure 4. Repartition of non-indigenous polychaete species recorded for Cyprus into the three categories of alien, cryptogenic, and questionable species.
Diversity 15 00941 g004
Figure 5. Spatial distribution of polychaeta species records per region (NRs: new records; NIS: non-indigenous species).
Figure 5. Spatial distribution of polychaeta species records per region (NRs: new records; NIS: non-indigenous species).
Diversity 15 00941 g005
Table 1. Annotated checklist of the Polychaeta species recorded in the Republic of Cyprus (x: reported in a specific habitat type; NR: new record; NIS: non-indigenous species; *NIS: questionable NIS; SC: species complex)—Detailed data are provided in Supplementary File S1.
Table 1. Annotated checklist of the Polychaeta species recorded in the Republic of Cyprus (x: reported in a specific habitat type; NR: new record; NIS: non-indigenous species; *NIS: questionable NIS; SC: species complex)—Detailed data are provided in Supplementary File S1.
Depth Range
Habitat TypeSource
Hard (Including Rocks)Soft/HardSoftArtificial ConstructionSea CavesIn SpongesCombination of HabitatsIn Association with Flora
Eupanthalis kinbergi McIntosh, 1876 69–338 xx Literature; This study
Panthalis oerstedii Kinberg, 1856NR359 x This study
Acrocirrus frontifilis (Grube, 1860) 0–150x x xLiterature
Macrochaeta clavicornis (Sars, 1835) 0–92xxx xLiterature; This study
Amage adspersa (Grube, 1863) 12–210 x xLiterature; This study
Amage gallasii Marion, 1875 62–210 x xLiterature
Ampharete acutifrons (Grube, 1860) 20–210 x xLiterature; This study
Ampharete octocirrata (Sars, 1835)NR31–58 x xThis study
Amphicteis gunneri (Sars, 1835) 20–59 x xLiterature
Amphicteis midas (Gosse, 1855)NR30–37 x This study
Auchenoplax worsfoldi Jirkov & Leontovich, 2013NR141 x This study
Chloeia venusta Quatrefages, 1866 100–145 x Literature
Euphrosine armadillo Sars, 1851 100–145 x Literature
Euphrosine foliosa Audouin & Milne-Edwards, 1833 0–70xxx xLiterature; This study
Eurythoe complanata (Pallas, 1766)SC; *NIS- Literature
Hermodice carunculata (Pallas, 1766) 0–69xxxx x xLiterature; This study
Linopherus canariensis Langerhans, 1881NIS0–337xxx xLiterature
Aphrodita aculeata Linnaeus, 1758 20 xLiterature
Aphrodita perarmata Roule, 1898NR19 x xThis study
Laetmonice filicornis Kinberg, 1866 155–187 x Literature
Laetmonice hystrix (Savigny in Lamarck, 1818) 10–150 xx xLiterature; This study
Pontogenia chrysocoma (Baird, 1865) 0–47xxx x xLiterature; This study
Arenicolidae x
Branchiomaldane vincentii Langerhans, 1881NR32 x xThis study
Capitella capitata (Fabricius, 1780)SC0–600 xx x xLiterature; This study
Capitella minima Langerhans, 1880 3–14 x Literature; This study
Capitellethus dispar (Ehlers, 1907)NR; *NIS25–33 x xThis study
Dasybranchus caducus (Grube, 1846) 0–42x x xLiterature; This study
Dasybranchus gajolae Eisig, 1887 0–15x xLiterature
Heteromastus filiformis (Claparède, 1864)NR12–45 x This study
Leiocapitella dollfusi (Fauvel, 1936)NR25–27 x xThis study
Mastobranchus trinchesii Eisig, 1887NR12 x This study
Mediomastus capensis Day, 1961*NIS0–42 xx xLiterature; This study
Mediomastus fragilis Rasmussen, 1973NR37–42 x This study
Neopseudocapitella brasiliensis Rullier & Amoureux, 1979*NIS15–42 x xLiterature; This study
Notomastus aberans Day, 1957NIS0–150xxx xLiterature; This study
Notomastus formianus Eisig, 1887NR5–42 x xThis study
Notomastus latericeus Sars, 1851 0–300xxx xLiterature; This study
Notomastus lineatus Claparède, 1869 0–120x x xLiterature; This study
Notomastus mossambicus (Thomassin, 1970)NIS38–70x x xLiterature; This study
Notomastus profundus Eisig, 1887 37–600 x Literature; This study
Peresiella clymenoides Harmelin, 1968NR25–40 x This study
Pseudocapitella incerta Fauvel, 1913 20 xLiterature
Pseudoleiocapitella fauveli Harmelin, 1964 8–150 x xLiterature; This study
Arichlidon reyssi (Katzmann, Laubier & Ramos, 1974) 0–337xxx xLiterature; This study
Chrysopetalum debile (Grube, 1855) 0–131xxx x xLiterature; This study
Paleanotus chrysolepis Schmarda, 1861NR17–33 x xThis study
Aphelochaeta filiformis (Keferstein, 1862)NR4–59 x xThis study
Aphelochaeta marioni (Saint-Joseph, 1894)NR17–40 x xThis study
Caulleriella bioculata Keferstein, 1862 0–45xxx xLiterature; This study
Caulleriella mediterranea Lezzi, 2017 0–210xxx xLiterature; This study
Chaetozone caputesocis (Saint-Joseph, 1894)NR25–30 x This study
Chaetozone carpenteri McIntosh, 1911NR25–42 x xThis study
Chaetozone corona Berkeley & Berkeley, 1941NR; NIS8–42 x This study
Chaetozone gibber Woodham & Chambers, 1994NR16–42 x xThis study
Chaetozone setosa Malmgren, 1867SC20–44 x xLiterature; This study
Chaetozone zetlandica McIntosh, 1911NR38–47 x This study
Cirriformia tentaculata (Montagu, 1808) 0–50 xx xLiterature; This study
Dodecaceria concharum Örsted, 1843NR16–30 x This study
Fauvelicirratulus dollfusi (Fauvel, 1928)NR30 x This study
Kirkegaardia dorsobranchialis (Kirkegaard, 1959) 22–300 x Literature; This study
Kirkegaardia heterochaeta (Laubier, 1961) 9–300 x xLiterature; This study
Kirkegaardia marypetersenae (Lezzi, Çinar & Giangrande, 2016)NR25–30 x This study
Protocirrineris chrysoderma (Claparède, 1868)NR25 x This study
Protocirrineris purgamentorum Lezzi, Çinar & Giangrande, 2016NR37–42 x This study
Timarete filigera (Delle Chiaje, 1828) 37–70 x Literature; This study
Cossura coasta Kitamori, 1960*NIS20 x Literature
Cossura soyeri Laubier, 1964 32–69 x xLiterature; This study
Dorvillea rubrovittata (Grube, 1855) 0–300xxx x xLiterature; This study
Dorvillea similis (Crossland, 1924)NR; NIS27–49 x This study
Ophryotrocha adherens Paavo, Bailey-Brock & Åkesson, 2000 - Literature
Parougia caeca (Webster & Benedict, 1884)NR6–59 x xThis study
Pettiboneia urciensis Campoy & San Martín, 1980 0–33xxx xLiterature; This study
Protodorvillea artemidis Munari & Ebbe, 2019NR42–45 x This study
Protodorvillea kefersteini (McIntosh, 1869) 0–210xxx xLiterature; This study
Schistomeringos loveni (Kinberg, 1865)NR; NIS37–42 x This study
Schistomeringos neglecta (Fauvel, 1923) 5–145 xx xLiterature; This study
Schistomeringos rudolphi (Delle Chiaje, 1828) 0–59xxx xLiterature; This study
Eunice floridana (Pourtalés, 1867)*NIS20–50 xLiterature
Eunice pennata (O. F. Müller, 1776) 5–114 x xLiterature; This study
Eunice vittata (Delle Chiaje, 1828)SC0–300xxx xLiterature; This study
Leodice torquata (Quatrefages, 1866) 32 x xLiterature
Lysidice collaris Grube, 1868NIS0–46xxx x xLiterature; This study
Lysidice margaritacea Claparède, 1868NR17–40 x xThis study
Lysidice ninetta Audouin & Milne Edwards, 1833SC0–300xxx x xLiterature; This study
Lysidice unicornis (Grube, 1840) 0–300xxx x xLiterature
Marphysasanguinea (Montagu, 1813)SC5–100 x x xLiterature; This study
Palola siciliensis (Grube, 1840) 0–46xx x xLiterature
Palola valida (Gravier, 1900)NR; NIS32–47 x This study
Paucibranchia adenensis (Gravier, 1900)NR; *NIS25–141 x This study
Paucibranchia bellii (Audouin & Milne Edwards, 1833) 2–210 x xLiterature; This study
Paucibranchia fallax (Marion & Bobretzky, 1875) 0–300xxx xLiterature; This study
Fabricia stellaris (O. F. Müller. 1774)NR30–57 x This study
Novafabricia posidoniae Licciano & Giangrande, 2006NR6–48 x xThis study
Pseudofabricia aberrans Cantone, 1972 0–30xxx xLiterature; This study
Fauveliopsis adriatica Katzmann & Laubier, 1974NR37 x This study
Fauveliopsis fauchaldi Katzmann & Laubier, 1974 25–140 x xLiterature
Bradabyssa villosa (Rathke, 1843)NR17–25 x xThis study
Diplocirrus glaucus (Malmgren, 1867) 11–70 x xLiterature; This study
Flabelligera affinis Sars, 1829 32–145xxx xLiterature; This study
Flabelligera diplochaitus (Otto, 1820) - Literature
Pherusa plumosa (O. F. Müller, 1776) 5–50 x xLiterature; This study
Piromis eruca (Claparède, 1869) 17–70 x xLiterature; This study
Stylarioides grubei Salazar-Vallejo, 2011NR; NIS45–59 x xThis study
Stylarioides moniliferus Delle Chiaje, 1831NR2–42 x xThis study
Therochaeta flabellata (Sars in Sars, 1872) 37–210 x xLiterature; This study
Glycera alba (O. F. Müller, 1776) 10–69 x xLiterature; This study
Glycera celtica O’Connor, 1987NR22–27 x This study
Glycera fallax Quatrefages, 1850 17–324 xx xLiterature; This study
Glycera lapidum Quatrefages, 1866 20–300 x xLiterature; This study
Glycera oxycephala Ehlers, 1887NR24–47 x This study
Glycera rouxii Audouin & Milne Edwards, 1833 5–50 x Literature; This study
Glycera tesselata Grube, 1863 0–210xxx x xLiterature; This study
Glycera tridactyla Schmarda, 1861 2–150 x xLiterature; This study
Glycera unicornis Lamarck, 1818 5–59 x xLiterature; This study
Goniada emerita Audouin & Milne-Edwards, 1833 20–120 x xLiterature; This study
Goniada maculata Örsted, 1843 6–300 x xLiterature; This study
Goniada norvegica Örsted, 1845 20–60 x xLiterature; This study
Goniada vorax (Kinberg, 1866)NR8–38 x This study
Gyptis propinqua Marion & Bobretzky, 1875 6–32 x xLiterature; This study
Hesione pantherina Risso, 1826 0–20 x xLiterature
Hesiospina aurantiaca (Sars, 1842) 12–210 x xLiterature; This study
Leocrates claparedii (Costa in Claparède, 1868)NR33 x This study
Oxydromus flexuosus (Delle Chiaje, 1827) 0–55 xx xLiterature; This study
Oxydromus pallidus Claparède, 1864 11–48 x xLiterature; This study
Podarkeopsis capensis (Day, 1963)NR; *NIS17–45 x xThis study
Psamathe fusca Johnston, 1836 0–210xxx x xLiterature; This study
Syllidia armata Quatrefages, 1866 0–131xxx xLiterature; This study
Lacydonia miranda Marion, 1874 19–45 x xLiterature; This study
Abyssoninoe bidentata D’Alessandro, Cosentino, Giacobbe, Andaloro & Romeo, 2014NR6–59 x xThis study
Abyssoninoe hibernica (McIntosh, 1903)NR6–58 x xThis study
Augeneria profundicola Kurt-Şahin, Çinar & Gönülal, 2016NR310–313 x This study
Gallardoneris nonatoi (Ramos, 1976) 3–59 xx xLiterature; This study
Lumbricalus adriatica (Fauvel, 1940)NR12–58 x xThis study
Lumbrinerides amoureuxi Miura, 1981 3–120 x xLiterature; This study
Lumbrineriopsis paradoxa (Saint-Joseph, 1888) 16–58 xx xLiterature; This study
Lumbrineris coccinea (Renier, 1804) 0–120xxx xLiterature; This study
Lumbrineris geldiayi Carrera-Parra, Çinar & Dağli, 2011NR25–49 x xThis study
Lumbrineris gracilis (Ehlers, 1868) 0–210xxx xLiterature; This study
Lumbrineris latreilli Audouin & Milne-Edwards, 1833 0–210xxx x xLiterature; This study
Lumbrineris luciliae Martins, Carrera-Parra, Quintino & Rodrigues, 2012NR19–39 x This study
Lumbrineris lusitanica Martins, Carrera-Parra, Quintino & Rodrigues, 2012NR5–59 x xThis study
Lumbrineris pinaster Martins, Carrera-Parra, Quintino & Rodrigues, 2012NR5–59 x xThis study
Scoletoma funchalensis (Kinberg, 1865) - Literature
Scoletoma laurentiana (Grube, 1863) 0–150xxx xLiterature; This study
Magelona alleni Wilson, 1958 8–50 x Literature; This study
Magelona equilamellae Harmelin, 1964 14–20 x Literature; This study
Magelona filiformis Wilson, 1959NR5–55 x xThis study
Magelona minuta Eliason, 1962 10–120 x xLiterature; This study
Magelona mirabilis (Johnston, 1865)NR1 x This study
Magelona wilsoni Glémarec, 1966NR4–55 x This study
Axiothella constricta (Claparède, 1868)NR12 x This study
Chirimia biceps biceps (Sars, 1861) 35–69 x xLiterature; This study
Euclymene collaris (Claparède, 1869) 17–40 x xLiterature; This study
Euclymene lombricoides (Quatrefages, 1866) 10–150 x xLiterature; This study
Euclymene oerstedii (Claparède, 1863) 13–50 x xLiterature
Euclymene palermitana (Grube, 1840)NR25 x This study
Leiochone leiopygos (Grube, 1860) 2–42 x xLiterature; This study
Leiochone tricirrata (Bellan & Reyss, 1967) 33–120 x xLiterature; This study
Macroclymene santanderensis (Rioja, 1917) 35–38 x xLiterature
Maldane glebifex Grube, 1860NR25–40 x xThis study
Maldane sarsi Malmgren, 1865 25–120 x xLiterature; This study
Metasychis gotoi (Izuka, 1902)*NIS92–120 x Literature
Micromaldane ornithochaeta Mesnil, 1897NR15–32 x xThis study
Nicomache lumbricalis (Fabricius, 1780) 0–69xxx xLiterature
Petaloproctus terricola Quatrefages, 1866 0–120 xx xLiterature; This study
Praxillella affinis (Sars in Sars, 1872)NR30–37 x xThis study
Praxillella gracilis (Sars, 1861) 8–69 x xLiterature; This study
Praxillella lophoseta (Orlandi, 1898) 37–70 x xLiterature; This study
Praxillella praetermissa (Malmgren, 1865) 25–150xxx xLiterature; This study
Rhodine gracilior Tauber, 1879NR37 x This study
Rhodine loveni Malmgren, 1866 10–70 xx xLiterature; This study
Melinna monoceroides Fauvel, 1936NR22–55 x xThis study
Melinna palmata (Grube, 1860) 5–120xxx xLiterature; This study
Microphthalmus similis Bobretzky, 1870 0–15 xx xLiterature; This study
Aglaophamus agilis (Langerhans, 1880) 47–120 x Literature; This study
Inermonephtys inermis (Ehlers, 1887) 20–92 x xLiterature
Micronephthys longicornis (Perejaslavtseva, 1891) 6–120xxx xLiterature; This study
Micronephthys sphaerocirrata Wesenberg-Lund, 1949NR1 x This study
Nephtys assimilis Örsted, 1843NR7–12 x xThis study
Nephtys caeca (Fabricius, 1780) 5–50x Literature
Nephtys ciliata (O. F. Müller, 1788) 100 Literature
Nephtys hombergii (Savigny in Lamarck, 1818) 2–150 x xLiterature; This study
Nephtys hystricis McIntosh, 1900 20 x Literature
Nephtys incisa Malmgren, 1865 13–120 x xLiterature; This study
Nephtys paradoxa Malm, 1874 140 x Literature
Alitta virens (Sars, 1835)NR; NIS28–58 x xThis study
Ceratonereis mirabilis Kinberg, 1865NIS20–210x x xLiterature; This study
Composetia costae (Grube, 1840) 0–145xxx x xLiterature; This study
Composetia hircinicola (Eisig, 1869) 27–210 xx x xLiterature
Eunereis longissima (Johnston, 1840)NR19–42 x xThis study
Hediste diversicolor (O. F. Müller, 1776)SC45–116 x Literature
Leonnates aylaoberi Çinar & Dağli, 2013NR; NIS25–42 x xThis study
Namanereis littoralis (Grube, 1872)NR25 x This study
Neanthes acuminata (Ehlers, 1868) 0–150xxx xLiterature; This study
Neanthes fucata (Savigny, 1822) 10 Literature
Neanthes kerguelensis (McIntosh, 1885) 31–337 x xLiterature; This study
Neanthes nubila (Savigny, 1822) 19–92xxx xLiterature; This study
Neanthes rubicunda (Ehlers, 1868)NR5–50 x xThis study
Nereis agulhana Day, 1963NR; *NIS8–47 x xThis study
Nereis pelagica Linnaeus, 1758SC0–150xxx x xLiterature
Nereis rava Ehlers, 1868 0–210xxx xLiterature; This study
Nereis zonata Malmgren, 1867SC0–100xxx xLiterature
Perinereis cultrifera (Grube, 1840)SC0–35xxx xLiterature; This study
Platynereis coccinea (Delle Chiaje, 1822) 0–15x xLiterature
Platynereis dumerilii (Audouin & Milne Edwards, 1833)SC0–92xxx x xLiterature; This study
Platynereis nadiae Abbiati & Castelli, 1992NR12 x This study
Pseudonereis anomala Gravier, 1900NIS0–15x xLiterature; This study
Rullierinereis anoculata Cantone, 1982 92x xLiterature
Websterinereis glauca (Claparède, 1870) 27–45 x xLiterature; This study
Arabella geniculata (Claparède, 1868) 20–70 x xLiterature
Arabella iricolor (Montagu, 1804) 0–120xxx x xLiterature; This study
Drilonereis filum (Claparède, 1868) 0–120x x xLiterature; This study
Notocirrus scoticus McIntosh, 1879 12–42 x xLiterature; This study
Oenone fulgida (Lamarck, 1818)*NIS62–70 x xLiterature
Aponuphis bilineata (Baird, 1870)SC6–300 x xLiterature; This study
Aponuphis brementi (Fauvel, 1916)SC7–120 x xLiterature; This study
Aponuphis ornata (Fauvel, 1928)NR5–22 x xThis study
Aponuphis rigida (Claparède, 1868)NR38 x This study
Diopatra neapolitana Delle Chiaje, 1841SC2–22 x xLiterature; This study
Hyalinoecia tubicola (O. F. Müller, 1776) 10–150 x Literature
Nothria conchylega (Sars, 1835) 210 x Literature
Onuphis eremita Audouin & Milne-Edwards, 1833SC2–150 x xLiterature; This study
Paradiopatra calliopae Arvanitidis & Koukouras, 1997 25–600 x xLiterature; This study
Paradiopatra quadricuspis (Sars in Sars, 1872) 0–15x xLiterature
Armandia cirrhosa De Filippi, 1861 0–51 xx xLiterature; This study
Armandia polyophthalma Kükenthal, 1887NR3–47 x This study
Ophelina abranchiata Støp-Bowitz, 1948NR141 x This study
Ophelina cylindricaudata (Hansen, 1879) 0–210 xx xLiterature
Polyophthalmus pictus (Dujardin, 1839) 0–55xxx xLiterature; This study
Tachytrypane jeffreysi McIntosh in Jeffreys, 1876 25–210 x xLiterature; This study
Leodamas chevalieri candiensis (Harmelin, 1969) 27–45 x xLiterature; This study
Naineris laevigata (Grube, 1855) 0–210xxx xLiterature; This study
Naineris quadraticeps Day, 1965NR; NIS38 x This study
Naineris setosa Verrill, 1900NR; NIS27–50 x This study
Orbinia sertulata (Savigny, 1822) 2–10 x Literature; This study
Phylo foetida (Claparède, 1868) 4–46 x Literature; This study
Protoaricia oerstedii (Claparède, 1864)NR4–39 x xThis study
Scoloplos armiger (O. F. Müller, 1776) 0–210 xx xLiterature; This study
Scoloplos haasi (Monro, 1937)NR0.5–50 x xThis study
Scoloplos typicus (Eisig, 1914) 2–51 x xLiterature; This study
Galathowenia oculata (Zachs, 1923)NR37–40 x This study
Owenia fusiformis Delle Chiaje, 1844 4–50 x xLiterature; This study
Paralacydonia paradoxa Fauvel, 1913 30–35 x xLiterature; This study
Aricidea aberrans Laubier & Ramos, 1974 600 x Literature
Aricidea annae Laubier, 1967 92 x Literature
Aricidea assimilis Tebble, 1959SC0–141 xx xLiterature; This study
Aricidea bansei Laubier & Ramos, 1974NR5–58 x xThis study
Aricidea catherinae Laubier, 1967SC0–58 xx xLiterature; This study
Aricidea cerrutii Laubier, 1966 0–58x x xLiterature; This study
Aricidea claudiae Laubier, 1967 2–69x x xLiterature; This study
Aricidea fragilis Webster, 1879NR; NIS22–56 x This study
Aricidea jeaneteae Langeneck, Busoni, Aliani & Castelli, 2017 600 x Literature
Aricidea katzmanni Erdoğan-Dereli & Çinar, 2020NR17 x xThis study
Aricidea monicae Laubier, 1967 92–141 x Literature; This study
Aricidea pseudoarticulata Hobson, 1972 4–600 x xLiterature; This study
Aricidea simonae Laubier & Ramos, 1974 69–210 x Literature
Cirrophorus branchiatus Ehlers, 1908 0.5–300 x xLiterature; This study
Cirrophorus nikebianchii Langeneck, Barbieri, Maltagliati & Castelli, 2017 17–57 x xLiterature; This study
Cirrophorus turcicus Erdoğan-Dereli, Çinar & Dağli, 2017NR25–40 x This study
Levinsenia demiri Çinar, Dağli & Açik, 2011NR30–141 x This study
Levinsenia gracilis (Tauber, 1879) 7–600 xx xLiterature; This study
Levinsenia kosswigi Çinar, Dağli & Açik, 2011NR33 x This study
Levinsenia materi Çinar & Dağli, 2013NR25–42 x xThis study
Levinsenia vulgaris Erdoğan-Dereli & Çinar, 2021NR42 x This study
Paradoneis armata Glémarec, 1966 0–59 xx xLiterature; This study
Paradoneis heterochaeta Erdoğan-Dereli & Çinar, 2019NR25 x This study
Paradoneis ilvana Castelli, 1985NR6–31 x xThis study
Paradoneis lyra (Southern, 1914) 0–600 xx xLiterature; This study
Paraonella myriamae (Katzmann & Laubier, 1975) 210 x Literature
Paraonides neapolitana Cerruti, 1909 69–210 x Literature
Paraonis paucibranchiata Cerruti, 1909 300 x Literature
Amphictene auricoma (O. F. Müller, 1776) 10–60x x xLiterature; This study
Lagis koreni Malmgren, 1866NR12–50 x xThis study
Pectinaria belgica (Pallas, 1766) - Literature
Petta pusilla Malmgren, 1866NR38–40 x This study
Eteone flava (Fabricius, 1780)NR38 x This study
Eteone longa (Fabricius, 1780) 5 Literature
Eulalia clavigera (Audouin & Milne Edwards, 1833) 0–48xxx xLiterature; This study
Eulalia expusilla Pleijel, 1987 - Literature
Eulalia mustela Pleijel, 1987 35–92x x xLiterature
Eulalia tripunctata McIntosh, 1874 0–37x x xLiterature; This study
Eumida punctifera (Grube, 1860)NR40 x This study
Eumida sanguinea (Örsted, 1843) 0–92x x xLiterature; This study
Hesionura coineaui (Laubier, 1962) 0–15xxx xLiterature
Hesionura elongata (Southern, 1914) 3–35 x xLiterature; This study
Hypereteone foliosa (Quatrefages, 1866)NR13–40 x This study
Mysta barbata Malmgren, 1865NR14–50 x This study
Mysta picta (Quatrefages, 1866) 0–210 xx xLiterature; This study
Mysta siphodonta (Delle Chiaje, 1830) 5 Literature
Mystides caeca (Langerhans, 1880) 30–32 x xLiterature; This study
Nereiphylla paretti Blainville, 1828 0–32 xx xLiterature
Nereiphylla rubiginosa (Saint-Joseph, 1888) 0–70xxx xLiterature
Notophyllum foliosum (Sars, 1835) 0–100x x x xLiterature
Paranaitis kosteriensis (Malmgren, 1867) 19–40 x xLiterature; This study
Phyllodoce maculata (Linnaeus, 1767) 38–45 x xLiterature
Phyllodoce mucosa Örsted, 1843 0–30x x xLiterature; This study
Protomystides bidentata (Langerhans, 1880)NR6–58 x xThis study
Pseudomystides limbata limbata (Saint-Joseph, 1888) 0–210 xx xLiterature; This study
Pseudomystides limbata nigrolineata (Rioja, 1925)NR19 x This study
Pterocirrus macroceros (Grube, 1860) 0–15xx xLiterature
Sige fusigera Malmgren, 1865 50–100 x Literature
Ancistrosyllis groenlandica McIntosh, 1879 600 x Literature
Pilargis verrucosa Saint-Joseph, 1899 7–57 x xLiterature; This study
Sigambra parva (Day, 1963)NR; *NIS40 x This study
Poecilochaetus serpens Allen, 1904 210 x Literature
Bylgides groenlandicus (Malmgren, 1867) 48–60 x Literature
Harmothoe antilopes McIntosh, 1876 27–140 x Literature; This study
Harmothoe imbricata (Linnaeus, 1767)NR37 x This study
Harmothoe impar (Johnston, 1839) 0–15xx xLiterature
Harmothoe spinifera (Ehlers, 1864) 0–145xxx xLiterature; This study
Lepidasthenia elegans (Grube, 1840) 32–100xx x xLiterature
Lepidonotus clava (Montagu, 1808) 0–100xx xxLiterature; This study
Malmgrenia lilianae (Pettibone, 1993) 35 x xLiterature
Malmgrenia ljungmani (Malmgren, 1867) 35 x xLiterature
Malmgrenia lunulata (Delle Chiaje, 1830) 31–85x x xLiterature; This study
Subadyte pellucida (Ehlers, 1864) 17–300 xx xLiterature; This study
Acromegalomma adriaticum (Giangrande, Caruso, Mikac & Licciano, 2015)NR30 x This study
Acromegalomma lanigerum (Grube, 1846) 0–145xxx xLiterature; This study
Acromegalomma messapicum (Giangrande & Licciano, 2008)NR25 x This study
Acromegalomma pseudogesae (Mikac, Giangrande & Licciano, 2013)NR8–33 x This study
Amphicorina armandi (Claparède, 1864) 0–15x xLiterature
Amphiglena mediterranea (Leydig, 1851) 0–38xxx xLiterature
Bispira mariae Lo Bianco, 1893 35–131 x xLiterature
Bispira melanostigma (Schmarda, 1861)*NIS- Literature
Branchiomma boholense (Grube, 1878)NIS0–15xx xLiterature
Branchiomma bombyx (Dalyell, 1853) 0–145xxx x xLiterature; This study
Branchiomma luctuosum (Grube, 1870)NIS0–30 x xLiterature
Branchiomma lucullanum (Delle Chiaje, 1828) 0–38x x xLiterature
Branchiomma moebii Knight-Jones, 1994 0–15x xLiterature
Chone duneri Malmgren, 1867 20–145 xx xLiterature
Claviramus candela (Grube, 1863) 37–100 x x xLiterature
Dialychone acustica Claparède, 1868NR12–58 x xThis study
Dialychone arenicola (Langerhans, 1880)NR25–40 x xThis study
Dialychone collaris (Langerhans, 1880) 0–92xxx xLiterature; This study
Dialychone dunerificta (Tovar-Hernández, Licciano & Giangrande, 2007)NR12–45 x