A Review of Chemical Composition and Bioactivity Studies of the Most Promising Species of Ganoderma spp.
Abstract
:1. Introduction
Latin Names | Common English Names | Hosts in Europe (Genus) | Geographical Distribution | References |
---|---|---|---|---|
Ganoderma adspersum (Schulzer) Donk | Southern bracket | Acacia, Acer, Aesculus, Alianthus, Alnus, Arbutus, Armeniaca, Betula, Buxus, Buddleia, Calycanthus, Castanea, Casuarina, Carpinus, Cedrus, Celtis, Cercis, Cinamomum, Citrus, Eleagnus, Eucalyptus, Fagus, Ficus, Fraxinus, Genista, Gleditsia, Juglans, Lagerstroemia, Laurus, Larix, Morus, Olea, Picea, Pittosporum, Platanus, Populus, Prunus, Pyrus, Quercus, Salix, Schinus, Sophora, Sorbus, Spirea, Tamarix, Tecomaria, Tilia, Ulmus | Europe, most often in the southern and western part; North Africa; Asia | [3,7,21,22,23,24,25,26] |
Ganoderma applanatum (Pers.) Pat. | Artist’s bracket | Abies, Acer, Aesculus, Alnus, Amygdalus, Arbutus, Armeniaca, Betula, Castanea, Carpinus, Cedrus, Celtis, Cerasus, Ceratonia, Cercis, Corylus, Crategus, Eleagnus, Eucalyptus, Fagus, Fraxinus, Hibiscus, Ilex, Juglans, Laburnum, Liliodendron, Lonicera, Malus, Morus, Picea, Pinus, Platanus, Populs, Prunus, Pterocarya, Pyracantha, Pyrus, Quercus, Robinia, Salix, Sambucus, Sophora, Sorbus, Syringa, Tamarix, Tilia, Ulmus | Europe, most often in the northern and central part; Asia; North Africa; North America | [3,7,21,22,23,24,26,27,28,29] |
Ganoderma carnosum Pat. | – | Abies, Alnus, Betula, Carpinus, Cedrus, Corylus, Fagus, Larix, Malus, Picea, Pinus, Prunus, Pseudotsuga, Pyrus, Quercus, Taxus, Tilia, Tsuga | Europe | [3,7,21,22,23,24,25] |
Ganoderma lucidum (Curtis) P. Karst. | Lacquered bracket | Abies, Acacia, Acer, Alnus, Aesculus, Arbutus, Armeniaca, Betula, Carpinus, Castanea, Cerasus, Corylus, Eriobotrya, Eucalyptus, Fagus, Ficus, Fraxinus, Juglans, Malus, Laurus, Larix, Olea, Padus, Picea, Pinus, Populus, Pyrus, Quercus, Robinia, Rosa, Salix, Tilia, Ulmus | Europe; Asia | [2,3,7,21,22,23,24,25] |
Ganoderma pfeifferi Bres. | Beeswax bracket | Acer, Aesculus, Alnus, Carpinus, Fagus, Fraxinus, Prunus, Quercus, Tilia, Ulmus | Europe | [3,7,21,22,23,24,25,30] |
Ganoderma resinaceum Boud. | – | Acacia, Acer, Aesculus, Alnus, Betula, Castanea, Catalpa, Celtis, Ceratonia, Cercis, Citrus, Cornus Eriobotrya, Eucalyptus, Fagus, Ficus, Fraxinus, Gleditsia, Juglans, Laurus, Lonicera, Liquidambar, Malus, Morus, Olea, Pistacia, Platanus, Populus, Prunus, Pyrus, Quercus, Robinia, Salix, Sophora, Sorbus, Tamarix, Tilia, Ulmus | Europe; Asia; North Africa | [3,7,21,22,23,24,25,26] |
2. Mycological Characteristics of Selected Ganoderma spp.
2.1. Ganoderma adspersum (Schulzer) Donk
2.2. Ganoderma applanatum (Pers.) Pat.
2.3. Ganoderma carnosum Pat.
2.4. Ganoderma lucidum (Curtis) P. Karst
2.5. Ganoderma pfeifferi Bres.
2.6. Ganoderma resinaceum Boud.
3. Selected Biological Activities and Therapeutic Potential of Ganoderma spp.
3.1. Immunomodulatory Action
3.2. Anticancer and Cytotoxicity Effects
3.3. Antioxidant Effects
3.4. Anti-Inflammatory Effects
3.5. Antiallergic Effects
3.6. Neuroprotective Effects
3.7. Hepatoprotective Action
3.8. Hypoglycemic Effects
3.9. Hypotensive Effects
3.10. Antibacterial and Antifungal Effects
3.11. Antimalarial Activity
3.12. Antiviral Effects
3.13. Other Activities
4. Extraction of the Bioactive Components from Ganoderma spp.
5. Safety of Using Preparations Containing Ganoderma spp.
6. Cultivation of Ganoderma spp.
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Justo, A.; Miettinen, O.; Floudas, D.; Ortiz-Santana, B.; Sjökvist, E.; Lindner, D.; Nakasone, K.; Niemelä, T.; Larsson, K.H.; Ryvarden, L.; et al. A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biol. 2017, 121, 798–824. [Google Scholar] [CrossRef]
- Sun, Y.F.; Xing, J.H.; He, X.L.; Wu, D.M.; Song, C.G.; Liu, S.; Vlasák, J.; Gates, G.; Gibertoni, T.B.; Cui, B.K. Species diversity, systematic revision and molecular phylogeny of Ganodermataceae (Polyporales, Basidiomycota) with an emphasis on Chinese collections. Stud. Mycol. 2022, 101, 287–415. [Google Scholar] [CrossRef] [PubMed]
- Fryssouli, V.; Zervakis, G.I.; Polemis, E.; Typas, M.A. A global meta-analysis of ITS rDNA sequences from material belonging to the genus Ganoderma (Basidiomycota, Polyporales) including new data from selected taxa. MycoKeys 2020, 75, 71–143. [Google Scholar] [CrossRef]
- Bernicchia, A.; Gorjón, S.P. Polypores of the Mediterranean Region; Romar SRI: Rome, Italy, 2020. [Google Scholar]
- Karsten, P.A. Enumeratio Boletinearum et Polyporearum Fennicarum, systemate novo dispositarum. Rev. Mycol. Toulouse 1881, 3, 16–19. [Google Scholar]
- Patouillard, N.T. Le genre Ganoderma. Bull. Soc. Mycol. France 1889, 5, 64–80. [Google Scholar]
- Rivoire, B.; Gannaz, M.; Pirlot, J.M. Polypores de France et d’Europe [Polypores of France and Europe]; Fédération Mycologique et Botanique Dauphiné-Savoie Annemasse Mycopolydev: Orlienas, France, 2020. [Google Scholar]
- Łakomy, P.; Kwaśna, H. Atlas Hub; Multico Oficyna Wydawnicza: Warszawa, Poland, 2008. [Google Scholar]
- Schwartze, F.W.M.R.; Engels, J.; Mattheck, C. Fungal Strategiesnof Wood Decay in Trees; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Loyd, A.L.; Held, B.W.; Linder, E.R.; Smith, J.A.; Blanchette, R.A. Elucidating wood decomposition by four species of Ganoderma from the United States. Fungal Biol. 2018, 122, 254–263. [Google Scholar] [CrossRef]
- Coelho-Moreira, J.D.S.; Brugnari, T.; Sá-Nakanishi, A.B.; Castoldi, R.; de Souza, C.G.M.; Bracht, A.; Peralta, R.M. Evaluation of diuron tolerance and biotransformation by the white-rot fungus Ganoderma lucidum. Fungal Biol. 2018, 122, 471–478. [Google Scholar] [CrossRef]
- Wang, H.; Deng, W.; Shen, M.H.; Yan, G.; Zhao, W.; Yang, Y. A laccase Gl-LAC-4 purified from white-rot fungus Ganoderma lucidum had a strong ability to degrade and detoxify the alkylphenol pollutants 4-n-octylphenol and 2-phenylphenol. J. Hazard. Mater. 2021, 408, 124775. [Google Scholar] [CrossRef] [PubMed]
- McMeekin, D. The perception of Ganoderma lucidum in Chinese and Western culture. Mycologist 2004, 18, 165–169. [Google Scholar] [CrossRef]
- Lin, Z. Ganoderma (Lingzhi) in Traditional Chinese Medicine and Chinese Culture. In Advances in Experimental Medicine and Biology; Springer: Singapore, 2019; Volume 1181, pp. 1–13. [Google Scholar]
- Wang, L.; Li, J.Q.; Zhang, J.; Li, Z.M.; Liu, H.G.; Wang, Y.Z. Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst.: A review. RSC Adv. 2020, 10, 42084–42097. [Google Scholar] [CrossRef] [PubMed]
- Basnet, B.B.; Liu, L.; Bao, L.; Liu, H. Current and future perspective on antimicrobial and anti–parasitic activities of Ganoderma sp.: An update. Mycology 2017, 8, 111–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonathan, S.G.; Awotona, F.E. Studies on antimicrobial potentials of three Ganoderma species. Afr. J. Biomed. Res. 2010, 13, 133–139. [Google Scholar]
- Xia, Q.; Zhang, H.; Sun, X.; Zhao, H.; Wu, L.; Zhu, D.; Yang, G.; Shao, Y.; Zhang, X.; Mao, X.; et al. A comprehensive review of the structure elucidation and biological activity of triterpenoids from Ganoderma spp. Molecules 2014, 19, 17478–17535. [Google Scholar] [CrossRef]
- Cör, D.; Knez, Ž.; Hrnčič, M.K. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: A review. Molecules 2018, 23, 649. [Google Scholar] [CrossRef] [Green Version]
- Prezes Urzędu Rejestracji Produktów Leczniczych Wyrobów Medycznych i Produktów Biobójczych. Farmakopea Polska XII Tom II; Polskie Towarzystwo Farmaceutyczne: Warszawa, Poland, 2020. [Google Scholar]
- Ryvarden, L.; Melo, I. Poroid fungi of Europe; Fungiflora: Oslo, Norway, 2014. [Google Scholar]
- Sokół, S. The Ganodermataceae of Poland. In Taxonomy, Ecology and Distribution; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2000. [Google Scholar]
- Ryvarden, L.; Gilbertson, R.L. European Polypores; Part 1: Abortiporus-Lindtneria; Synopsis Fungorum: Oslo, Norway, 1993. [Google Scholar]
- Kotlaba, F. Zaměpisné Rozšiřeni a Ekologie Chorošů (Polyporales s.l.); Československa Academia: Praha, Czech Republic, 1984. [Google Scholar]
- Beck, T.; Gáper, J.; Šebesta, M.; Gáperová, S. Host preferences of wood-decaying fungi of the genus Ganoderma in the urban areas in Slovakia. Ann. Univ. Paedagog. Crac. Stud. Naturae 2018, 3, 22–37. [Google Scholar] [CrossRef]
- Luangharn, T.; Karunarathna, S.C.; Dutta, A.K.; Paloi, S.; Promputtha, I.; Hyde, K.D.; Xu, J.; Mortimer, P.E. Ganoderma (Ganodermataceae, Basidiomycota) Species from the Greater Mekong Subregion. J. Fungi 2021, 7, 819. [Google Scholar] [CrossRef]
- Szczepkowski, A. Arboreal fungi in a different light—The use of sporocarps. Stud. Mater. CEPL Rogowie 2012, 32, 171–189. [Google Scholar]
- Dai, Y.C. Polypore diversity in China with an annotated checklist of Chinese polypores. Mycoscience 2012, 53, 49–80. [Google Scholar] [CrossRef]
- Zhou, L.W.; Nakasone, K.K.; Burdsall, H.H.; Ginns, J.; Vlasak, J.; Miettinen, O.; Spirin, V.; Niemelä, T.; Yuan, H.S.; He, S.H.; et al. Polypore diversity in North America with an annotated checklist. Mycol. Progress 2016, 15, 771–790. [Google Scholar] [CrossRef]
- Szczepkowski, A.; Piętka, J. New localities and new host of Ganoderma pfeifferi in Poland. Acta Mycol. 2003, 38, 59–63. [Google Scholar] [CrossRef]
- Sułkowska–Ziaja, K.; Balik, M.; Muszyńska, B. Ganoderma applanatum—źródło cennych substancji prozdrowotnych. MIR 2019, 3, 147–155. [Google Scholar]
- Breitenbach, J.; Kränzlin, F. Fungi of Switzerland; Heterobasidiomycetes, Aphyllophorales, Gasteromycetes; Verlag Mykologia: Lucerne, Switzerland, 1986; Volume 2. [Google Scholar]
- Wachtel-Galor, S.; Yuen, J.; Buswell, J.A.; Benzie, I.F.F. Ganoderma lucidum (Lingzhi or Reishi): A Medicinal Mushroom. In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; Benzie, I.F.F., Wachtel-Galor, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011. [Google Scholar]
- El Enshasy, H.A.; Hatti–Kaul, R. Mushroom immunomodulators: Unique molecules with unlimited applications. Trends Biotechnol. 2013, 31, 668–677. [Google Scholar] [CrossRef]
- Sanodiya, B.; Thakur, G.; Baghel, R.; Prasad, G.; Bisen, P. Ganoderma lucidum: A Potent Pharmacological Macrofungus. Curr. Pharm. Biotechnol. 2009, 10, 717–742. [Google Scholar] [CrossRef]
- Min, B.S.; Gao, J.J.; Hattori, M.; Lee, H.K.; Kim, Y.H. Anticomplement activity of terpenoids from the spores of Ganoderma lucidum. Planta Med. 2001, 67, 811–814. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Z.; Wang, X.F.; Bao, T.W.; Ran, L.; Lin, J.; Zhou, X.W. In vitro synthesis of a recombinant fungal immunomodulatory protein from Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae) and analysis of its immunomodulatory activity. Int. J. Med. Mushrooms 2010, 12, 347–358. [Google Scholar] [CrossRef]
- Kino, K.; Mizumoto, K.; Sone, T.; Yamaji, T.; Watanabe, J.; Yamashita, A.; Yamaoka, K.; Shimizu, K.; Ko, K.; Tsunoo, H. An immunomodulating protein, Ling Zhi–8 (LZ–8) prevents insulitis in non–obese diabetic mice. Diabetologia 1990, 33, 713–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.L.; Chen, A.F.; Lin, Z. Ganoderma lucidum polysaccharides enhance the function of immunological effector cells in immunosuppressed mice. J. Ethnopharmacol. 2007, 111, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Zhang, Z.; Yang, Y. Antioxidant and immunoregulatory activity of Ganoderma lucidum polysaccharide (GLP). Carbohydr. Polym. 2013, 95, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Zhang, J.; Zhou, K.; Yang, Y.; Zhou, S.; Jia, W.; Hao, R.; Pan, Y. Purification, NMR study and immunostimulating property of a fucogalactan from the fruiting bodies of Ganoderma lucidum. Planta Med. 2008, 74, 1730–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, L.; Zhang, J.; Zhang, T. Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Food Chem. 2021, 340, 127933. [Google Scholar] [CrossRef]
- Jeong, Y.T.; Yang, B.K.; Jeong, S.C.; Kim, S.M.; Song, C.H. Ganoderma applanatum: A promising mushroom for antitumor and immunomodulating activity. Phytother. Res. 2008, 22, 614–619. [Google Scholar] [CrossRef]
- Qu, Z.W.; Zhou, S.Y.; Guan, S.X.; Gao, R.; Duan, Z.W.; Zhang, X.; Sun, W.Y.; Fan, W.L.; Chen, S.S.; Chen, L.J.; et al. Recombinant expression and bioactivity comparison of four typical fungal immunomodulatory proteins from three main Ganoderma species. BMC Biotechnol. 2018, 18, 80. [Google Scholar] [CrossRef] [Green Version]
- Boh, B.; Berovic, M.; Zhang, J.; Zhi–Bin, L. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol. Annu. Rev. 2007, 13, 265–301. [Google Scholar] [PubMed]
- Gao, J.J.; Min, B.S.; Ahn, E.M.; Nakamura, N.; Lee, H.K.; Hattori, M. New triterpene aldehydes, lucialdehydes A–C, from Ganoderma lucidum and their cytotoxicity against murine and human tumor cells. Chem. Pharm. Bull. 2002, 50, 837–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Men, X.; Lei, P. Review on anti–tumor effect of triterpene acid compounds. J. Cancer Res. Ther. 2014, 10, 14–19. [Google Scholar]
- Yue, Q.X.; Song, X.Y.; Ma, C.; Feng, L.X.; Guan, S.H.; Wu, W.Y.; Yang, M.; Jiang, B.H.; Liu, X.; Cui, Y.J.; et al. Effects of triterpenes from Ganoderma lucidum on protein expression profile of HeLa cells. Phytomedicine 2010, 17, 606–613. [Google Scholar] [CrossRef]
- Wu, G.S.; Lu, J.J.; Guo, J.J.; Li, Y.B.; Tan, W.; Dang, Y.Y.; Zhong, Z.F.; Xu, Z.T.; Chen, X.P.; Wang, Y.T. Ganoderic acid DM, a natural triterpenoid, induces DNA damage, G1 cell cycle arrest and apoptosis in human breast cancer cells. Fitoterapia 2012, 83, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shiono, J.; Shimizu, K.; Kukita, A.; Kukita, T.; Kondo, R. Ganoderic acid DM: Anti–androgenic osteoclastogenesis inhibitor. Bioorganic Med. Chem. Lett. 2009, 19, 2154–2157. [Google Scholar] [CrossRef]
- Korczak, J.; Litwiniuk, M.; Kusnierczak, M.; Kustra, K.; Kubisz, L.; Mańkowska-Wierzbicka, D.; Mardas, M.; Stelmach-Mardas, M. Complications of hormonal therapy (ADT—Androgen deprivation therapy) and the movement system in patients with prostate cancer. Lett. Oncol. Sci. 2020, 17, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Li, C.H.; Lee, S.S.; Kan, L.S. Triterpene–enriched extracts from Ganoderma lucidum inhibit growth of hepatoma cells via suppressing protein kinase C, activating mitogen–activated protein kinases and G2–phase cell cycle arrest. Life Sci. 2003, 72, 2381–2390. [Google Scholar] [CrossRef]
- Yue, G.G.L.; Fung, K.P.; Tse, G.M.K.; Leung, P.C.; Lau, C.B.S. Comparative studies of various Ganoderma species and their different parts with regard to their antitumor and immunomodulating activities in vitro. J. Altern. Complement. Med. 2006, 12, 777–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, C.H.J.; Jesuthasan, A.C.; Bishop, K.S.; Glucina, M.P.; Ferguson, L.R. Anti–cancer activities of Ganoderma lucidum: Active ingredients and pathways. Funct. Foods Health Dis. 2013, 3, 48–65. [Google Scholar] [CrossRef]
- Liang, Z.; Yi, Y.; Guo, Y.; Wang, R.; Hu, Q.; Xiong, X. Chemical characterization and antitumor activities of polysaccharide extracted from Ganoderma lucidum. Int. J. Mol. Sci. 2014, 15, 9103–9116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiater, A.; Paduch, R.; Choma, A.; Pleszczyńska, M.; Siwulski, M.; Dominik, J.; Janusz, G.; Tomczyk, M.; Szczodrak, J. Biological study on carboxymethylated (1→3)–α–d–glucans from fruiting bodies of Ganoderma lucidum. Int. J. Biol. Macromol. 2012, 51, 1014–1023. [Google Scholar] [CrossRef]
- Jin, X.; Ruiz Beguerie, J.; Sze, D.; Chan, G. Ganoderma lucidum (Reishi mushroom) for cancer treatment (Review). Cochrane Database Syst. Rev. 2016, 4, CD007731. [Google Scholar]
- Zhao, S.; Ye, G.; Fu, G.; Cheng, J.X.; Yang, B.B.; Peng, C. Ganoderma lucidum exerts anti–tumor effects on ovarian cancer cells and enhances their sensitivity to cisplatin. Int. J. Oncol. 2011, 38, 1319–1327. [Google Scholar]
- Sułkowska-Ziaja, K.; Zengin, G.; Gunia-Krzyżak, A.; Popiół, J.; Szewczyk, A.; Jaszek, M.; Rogalski, J.; Muszyńska, B. Bioactivity and mycochemical profile of extracts from mycelial cultures of Ganoderma spp. Molecules 2022, 27, 275. [Google Scholar] [CrossRef]
- Ma, J.; Liu, C.; Chen, Y.; Jiang, J.; Qin, Z. Cellular and molecular mechanisms of the Ganoderma applanatum extracts induces apoptosis on SGC–7901 gastric cancer cells. Cell Biochem. Funct. 2011, 29, 175–182. [Google Scholar] [CrossRef]
- Cao, L.; Jin, H.; Liang, Q.; Yang, H.; Li, S.; Liu, Z.; Yuan, Z. A new anti-tumor cytotoxic triterpene from Ganoderma lucidum. Nat. Prod. Res. 2022, 36, 4125–4131. [Google Scholar] [CrossRef]
- Li, D.; Leng, Y.; Liao, Z.; Hu, J.; Sun, Y.; Deng, S.; Wang, C.; Tian, X.; Zhou, J.; Wang, R. Nor-triterpenoids from the fruiting bodies of Ganoderma lucidum and their inhibitory activity against FAAH. Nat. Prod. Res. 2022, 24, 105161. [Google Scholar] [CrossRef]
- Zhong, M.; Huang, J.; Mao, P.; He, C.; Yuan, D.; Chen, C.; Zhang, H.; Hu, J.; Zhang, J. Ganoderma lucidum polysaccharide inhibits the proliferation of leukemic cells through apoptosis. Acta Biochim. Pol. 2022, 69, 639–645. [Google Scholar] [CrossRef]
- Khalilova, G.A.; Turaev, A.S.; Mulkhitdinov, B.I.; Khaitmetova, S.B.; Normakhamatov, N.S. Cytotoxic effects and antitumor activity of polysaccharides isolated from the fruiting body of Ganoderma lucidum basidial mushroom. Pharm. Chem. J. 2022, 56, 1045–1048. [Google Scholar] [CrossRef]
- Peng, K.T.; Chen, J.L.; Kuo, L.T.; Yu, P.A.; Hsu, W.H.; Lee, C.W.; Chang, P.J.; Huang, T.Y. GMI, an immunomodulatory peptide from Ganoderma microsporum, restrains periprosthetic joint infections via modulating the functions of myeloid-derived suppressor cells and effector T cells. Int. J. Mol. Sci. 2021, 22, 6854. [Google Scholar] [CrossRef]
- Sun, J.; He, H.; Bi, J.X. Novel antioxidant peptides from fermented mushroom Ganoderma lucidum. J. Agric. Food Chem. 2004, 52, 6646–6652. [Google Scholar] [CrossRef] [PubMed]
- Rašeta, M.; Popović, M.; Beara, I.; Šibul, F.; Zengin, G.; Krstić, S.; Karaman, M. Anti–inflammatory, antioxidant and enzyme inhibition activities in correlation with mycochemical profile of selected indigenous Ganoderma spp. from Balkan region (Serbia). Chem. Biodivers. 2021, 18, e2000828. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; Nikšić, M.; Vrvić, M.M.; Todorović, N.; Jakovljević, D.; Van Griensven, L.J.L.D. Antioxidative activities and chemical characterization of polysaccharide extracts from the widely used mushrooms Ganoderma applanatum, Ganoderma lucidum, Lentinus edodes and Trametes versicolor. J. Food Compos. Anal. 2012, 26, 144–153. [Google Scholar] [CrossRef]
- Cilerdzic, J.; Stajic, M.; Vukojevic, J. Potential of submergedly cultivated mycelia of Ganoderma spp. as antioxidant and antimicrobial agents. Curr. Pharm. Biotechnol. 2015, 17, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Jülich, W.; Lindequist, U.; Jansen, R.; Mothana, R. Biologically active compounds from Ganoderma pfeifferi DSM 13239. U.S. Patent 6,726,911, 27 April 2004. [Google Scholar]
- Tel–Çayan, G.; Öztürk, M.; Duru, M.E.; Rehman, M.U.; Adhikari, A.; Türkoğlu, A.; Choudhary, M.I. Phytochemical investigation, antioxidant and anticholinesterase activities of Ganoderma adspersum. Ind. Crops Prod. 2015, 76, 749–754. [Google Scholar] [CrossRef]
- Chen, J.H.; Ho, C.T. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food Chem. 1997, 45, 2374–2378. [Google Scholar] [CrossRef]
- Kao, P.F.; Wang, S.H.; Hung, W.T.; Liao, Y.H.; Lin, C.M.; Yang, W.B. Structural characterization and antioxidative activity of low-molecular-weights beta-1,3-glucan from the residue of extracted Ganoderma lucidum fruiting bodies. J. Biomed. Biotechnol. 2012, 2012, 673764. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, X.; Lian, C.; Ke, J.; Liu, J. Triterpenes and aromatic meroterpenoids with antioxidant activity and neuroprotective effects from Ganoderma lucidum. Molecules 2019, 24, 4353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sargowo, D.; Ovianti, N.; Susilowati, E.; Ubaidillah, N.; Nugraha, A.W.; Vitriyaturrida; Proboretno, K.S.; Failasufi, M.; Ramadhan, F.; Wulandari, H.; et al. The role of polysaccharide peptide of Ganoderma lucidum as a potent antioxidant against atherosclerosis in high risk and stable angina patients. Indian Heart J. 2018, 70, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Katyal, P.; Sharma, A.K. Suppression of inflammatory and allergic responses by pharmacologically potent fungus Ganoderma lucidum. Recent Pat. Inflamm. Allergy Drug Discov. 2015, 8, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Sabulal, B.; George, V.; Smina, T.P.; Janardhanan, K.K. Antioxidative and antiinflammatory activities of the chloroform extract of Ganoderma lucidum found in South India. Sci. Pharm. 2009, 77, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Dudhgaonkar, S.; Thyagarajan, A.; Sliva, D. Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum. Int. Immunopharmacol. 2009, 9, 1272–1280. [Google Scholar] [CrossRef]
- Lu, S.Y.; Peng, X.R.; Dong, J.R.; Yan, H.; Kong, Q.H.; Shi, Q.Q.; Li, D.S.; Zhou, L.; Li, Z.R.; Qiu, M.H. Aromatic constituents from Ganoderma lucidum and their neuroprotective and anti–inflammatory activities. Fitoterapia 2019, 134, 58–64. [Google Scholar] [CrossRef]
- Merdivan, S.; Lindequist, U. Medicinal mushrooms with antiallergic activities. In Medicinal Plants and Fungi: Recent Advances in Research and Development; Agrawal, D., Tsay, H.S., Shyur, L.F., Wu, Y.C., Wang, S.Y., Eds.; Medicinal and Aromatic Plants of the World; Springer: Singapore, 2017. [Google Scholar]
- Kohda, H.; Tokumoto, W.; Sakamoto, K.; Fujii, M.; Hirai, Y.; Yamasaki, K.; Komoda, Y.; Nakamura, H.; Ishihara, S.; Uchida, M. The biologically active constituents of Ganoderma lucidum (Fr.) Karst. Histamine release—inhibitory triterpenes. Chem. Pharm. Bull. 1985, 33, 1367–1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasaka, K.; Mio, M.; Izushi, K.; Akagi, M.; Makino, T. Anti–allergic constituents in the culture medium of Ganoderma lucidum. (II) The inhibitory effect of cyclooctasulfur on histamine release. Agents Actions 1988, 23, 157–160. [Google Scholar] [CrossRef]
- Tasaka, K.; Akagi, M.; Miyoshi, K.; Mio, M.; Makino, T. Anti–allergic constituents in the culture medium of Ganoderma lucidum. (I) Inhibitory effect of oleic acid on histamine release. Agents Actions 1988, 23, 153–156. [Google Scholar] [CrossRef]
- Andoh, T.; Zhang, Q.; Yamamoto, T.; Tayama, M.; Hattori, M.; Tanaka, K.; Kuraishi, Y. Inhibitory effects of the methanol extract of Ganoderma lucidum on mosquito allergy–induced itch–associated responses in mice. J. Pharmacol. Sci. 2010, 114, 292–297. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Andoh, T.; Konno, M.; Lee, J.B.; Hattori, M.; Kuraishi, Y. Inhibitory effect of methanol extract of Ganoderma lucidum on acute itch–associated responses in mice. Biol. Pharm. Bull. 2010, 33, 909–911. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.; Ma, A.; Yang, B. Preventive and therapeutic effect of Ganoderma (lingzhi) on brain injury. Adv. Exp. Med. Biol. 2019, 1182, 159–180. [Google Scholar]
- Zhao, C.; Zhang, C.; Xing, Z.; Ahmad, Z.; Li, J.S.; Chang, M.W. Pharmacological effects of natural Ganoderma and its extracts on neurological diseases: A comprehensive review. Int. J. Biol. Macromol. 2019, 121, 1160–1178. [Google Scholar] [CrossRef]
- Yu, N.; Huang, Y.; Jiang, Y.; Zou, L.; Liu, X.; Liu, S.; Chen, F.; Luo, J.; Zhu, Y. Ganoderma lucidum triterpenoids (GLTs) reduce neuronal apoptosis via inhibition of ROCK signal pathway in APP/PS1 transgenic Alzheimer’s disease mice. Oxid. Med. Cell. Longev. 2020, 2020, 9894037. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.B.; Wang, S.Z.; He, Q.H.; Yuan, L.; Chen, A.F.; Lin, Z.B. Ganoderma total sterol (GS) and GS 1 protect rat cerebral cortical neurons from hypoxia/reoxygenation injury. Life Sci. 2005, 76, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.H.; Wang, L.H.; Wang, C.; Qin, L.H. Spore powder of Ganoderma lucidum for the treatment of Alzheimer disease: A pilot study. Medicine 2018, 97, e0636. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhong, D.; Yang, B. Preventive and therapeutic effect of Ganoderma (lingzhi) on liver injury. Adv. Exp. Med. Biol. 2019, 1182, 217–242. [Google Scholar] [PubMed]
- Hirotani, M.; Ino, C.; Furuya, T.; Shiro, M. Ganoderic acids T, S and R, new triterpenoids from the cultured mycelia of Ganoderma lucidum. Chem. Pharm. Bull. 1986, 34, 2282–2285. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.L.; Wang, Y.H.; Ni, W.; Teng, H.L.; Lin, Z.B. Hepatoprotective role of Ganoderma lucidum polysaccharide against BCG-induced immune liver injury in mice. World J. Gastroenterol. 2002, 8, 728–733. [Google Scholar] [CrossRef]
- Jang, S.H.; Cho, S.; Yoon, H.M.; Jang, K.J.; Song, C.H.; Kim, C.H. Hepatoprotective evaluation of Ganoderma lucidum pharmacopuncture: In vivo studies of ethanol–induced acute liver injury. J. Pharmacopunct. 2014, 17, 16–24. [Google Scholar] [CrossRef]
- Ma, J.Q.; Liu, C.M.; Qin, Z.H.; Jiang, J.H.; Sun, Y.Z. Ganoderma applanatum terpenes protect mouse liver against benzo(α)pyren–induced oxidative stress and inflammation. Environ. Toxicol. Pharmacol. 2011, 31, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.R.; Liu, J.Q.; Han, Z.H.; Yuan, X.X.; Luo, H.R.; Qiu, M.H. Protective effects of triterpenoids from Ganoderma resinaceum on H2O2—Induced toxicity in HepG2 cells. Food Chem. 2013, 141, 920–926. [Google Scholar] [CrossRef]
- Chiu, H.F.; Fu, H.Y.; Lu, Y.Y.; Han, Y.C.; Shen, Y.C.; Venkatakrishnan, K.; Golovinskaia, O.; Wang, C.K. Triterpenoids and polysaccharide peptides-enriched Ganoderma lucidum: A randomized, double-blind placebo-controlled crossover study of its antioxidation and hepatoprotective efficacy in healthy volunteers. Pharm. Biol. 2017, 55, 1041–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.T.; Hsieh, J.F.; Chen, S.T. Anti–diabetic effects of Ganoderma lucidum. Phytochemistry 2015, 114, 109–113. [Google Scholar] [CrossRef]
- Li, F.; Zhang, Y.; Zhong, Z. Antihyperglycemic effect of Ganoderma lucidum polysaccharides on streptozotocin-induced diabetic mice. Int. J. Mol. Sci. 2011, 12, 6135–6145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, C.; Wu, Q.; Zhang, J.; Xie, Y.; Cai, W.; Tan, J. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down–regulated hepatic glucose regulatory enzymes in diabetic mice. J. Ethnopharmacol. 2017, 196, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Hikino, H.; Konno, C.; Mirin, Y.; Hayashi, T. Isolation and hypoglycemic activity of ganoderans A and B, glycans of Ganoderma lucidum fruit bodies. Planta Med. 1985, 4, 339–340. [Google Scholar] [CrossRef]
- Teng, B.S.; Wang, C.D.; Zhang, D.; Wu, J.S.; Pan, D.; Pan, L.F.; Yang, H.J.; Zhou, P. Hypoglycemic effect and mechanism of a proteoglycan from Ganoderma lucidum on streptozotocin–induced type 2 diabetic rats. Eur. Rev. Med. Pharmacol. 2012, 16, 166–175. [Google Scholar]
- Wang, C.D.; Teng, B.S.; He, Y.M.; Wu, J.S.; Pan, D.; Pan, L.F.; Zhang, D.; Fan, Z.H.; Yang, H.J.; Zhou, P. Effect of a novel proteoglycan PTP1B inhibitor from Ganoderma lucidum on the amelioration of hyperglycaemia and dyslipidaemia in db/db mice. Br. J. Nutr. 2012, 108, 2014–2025. [Google Scholar] [CrossRef] [Green Version]
- Fatmawati, S.; Shimizu, K.; Kondo, R. Structure–activity relationships of Ganoderma acids from Ganoderma lucidum as aldose reductase inhibitors. Bioorganic Med. Chem. Lett. 2011, 21, 7295–7297. [Google Scholar] [CrossRef]
- Fatmawati, S.; Shimizu, K.; Kondo, R. Ganoderol B: A potent α–glucosidase inhibitor isolated from the fruiting body of Ganoderma lucidum. Phytomedicine 2011, 18, 1053–1055. [Google Scholar] [CrossRef]
- Yang, B.K.; Jung, Y.S.; Song, C.H. Hypoglycemic effects of Ganoderma applanatum and Collybia confluens exo–polymers in streptozotocin–induced diabetic rats. Phytother. Res. 2007, 21, 1066–1069. [Google Scholar] [CrossRef]
- Lee, S.H.; Shim, S.H.; Kim, J.S.; Kang, S.S. Constituents from the fruiting bodies of Ganoderma applanatum and their aldose reductase inhibitory activity. Arch. Pharm. Res. 2006, 29, 479–483. [Google Scholar] [CrossRef]
- Rašeta, M.; Popović, M.; Čapo, I.; Stilinović, N.; Vukmirović, S.; Milošević, B.; Karaman, M. Antidiabetic effect of two different: Ganoderma species tested in alloxan diabetic rats. RSC Adv. 2020, 10, 10382–10393. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Q.; Zhao, J.; Chen, L.X.; Wang, S.F.; Wang, Y.; Li, S.P. Lanostane triterpenes from the mushroom Ganoderma resinaceum and their inhibitory activities against α–glucosidase. Phytochemistry 2018, 149, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Pazzi, F.; Adsuar, J.C.; Domínguez-Muñoz, F.J.; García-Gordillo, M.Á.; Gusi, N.; Collado-Mateo, D. Effects of Ganoderma lucidum and Ceratonia siliqua on blood glucose, lipid profile, and body composition in women with fibromyalgia. Nutr. Hosp. 2021, 38, 139–145. [Google Scholar] [PubMed]
- Klupp, N.L.; Kiat, H.; Bensoussan, A.; Steiner, G.Z.; Chang, D.H. A double-blind, randomised, placebo-controlled trial of Ganoderma lucidum for the treatment of cardiovascular risk factors of metabolic syndrome. Sci Rep. 2016, 11, 29540. [Google Scholar] [CrossRef] [Green Version]
- Mohamed Yahaya, N.F.; Rahman, M.A.; Abdullah, N. Therapeutic potential of mushrooms in preventing and ameliorating hypertension. Trends Food Sci. Technol. 2014, 39, 104–115. [Google Scholar] [CrossRef]
- Morigiwa, A.; Kitabatake, K.; Fujimoto, Y.; Ikekawa, N. Angiotensin converting enzyme–inhibitory triterpenes from Ganoderma lucidum. Chem. Pharm. Bull. 1986, 34, 3025–3028. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, N.; Ismail, S.M.; Aminudin, N.; Shuib, A.S.; Lau, B.F. Evaluation of selected culinary–medicinal mushrooms for antioxidant and ACE inhibitory activities. Evid. Based Complement. Altern. Med. 2012, 2012, 464238. [Google Scholar] [CrossRef] [Green Version]
- Shevelev, O.B.; Seryapina, A.A.; Zavjalov, E.L.; Gerlinskaya, L.A.; Goryachkovskaya, T.N.; Slynko, N.M.; Kuibida, L.V.; Peltek, S.E.; Markel, A.L.; Moshkin, M.P. Hypotensive and neurometabolic effects of intragastric Reishi (Ganoderma lucidum) administration in hypertensive ISIAH rat strain. Phytomedicine 2018, 41, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.B.; Yamamoto, A.; Matsumoto, S.; Ito, H.; Igami, K.; Miyazaki, T.; Kondo, R.; Schimizu, K. Hypotensive effects and angiotensin–converting enzyme inhibitory peptides of reishi (Ganoderma lingzhi) auto–digested extract. Molecules 2014, 19, 13473–13485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamad Ansor, N.; Abdullah, N.; Aminudin, N. Anti–angiotensin converting enzyme (ACE) proteins from mycelia of Ganoderma lucidum (Curtis) P. Karst. BMC Complement. Altern. Med. 2013, 13, 256. [Google Scholar] [CrossRef] [Green Version]
- Mothana, R.A.A.; Jansen, R.; Jülich, W.D.; Lindequist, U. Ganomycins A and B, new antimicrobial farnesyl hydroquinones from the basidiomycete Ganoderma pfeifferi. J. Nat. Prod. 2000, 63, 416–418. [Google Scholar] [CrossRef] [PubMed]
- Vazirian, M.; Faramarzi, M.; Ebrahimi, S.; Esfahani, H.; Samadi, N.; Hosseini, S.A.; Asghari, A.; Manayi, A.; Mousazadeh, A.; Asef, M.R.; et al. Antimicrobial effect of the Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (higher Basidiomycetes) and its main compounds. Int. J. Med. Mushrooms 2014, 16, 77–84. [Google Scholar] [CrossRef]
- Wang, H.; Ng, T.B. Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum. Peptides 2006, 27, 27–30. [Google Scholar] [CrossRef]
- Lakornwong, W.; Kanokmedhakul, K.; Kanokmedhakul, S.; Kongsaeree, P.; Prabpai, S.; Sibounnavong, P.; Soytong, K. Triterpene lactones from cultures of Ganoderma sp. KM01. J. Nat. Prod. 2014, 77, 1545–1553. [Google Scholar] [CrossRef]
- Adams, M.; Christen, M.; Plitzko, I.; Zimmermann, S.; Brun, R.; Kaiser, M.; Hamburger, M. Antiplasmodial lanostanes from the Ganoderma lucidum mushroom. J. Nat. Prod. 2010, 73, 897–900. [Google Scholar] [CrossRef]
- Niedermeyer, T.H.J.; Lindequist, U.; Mentel, R.; Gördes, D.; Schmidt, E.; Thurow, K.; Lalk, M. Antiviral terpenoid constituents of Ganoderma pfeifferi. J. Nat. Prod. 2005, 68, 1728–1731. [Google Scholar] [CrossRef]
- Mothana, R.A.A.; Awadh Ali, N.A.; Jansen, R.; Wegner, U.; Mentel, R.; Lindequist, U. Antiviral lanostanoid triterpenes from the fungus Ganoderma pfeifferi. Fitoterapia 2003, 74, 177–180. [Google Scholar] [CrossRef]
- El–Mekkawy, S.; Meselhy, M.R.; Nakamura, N.; Tezuka, Y.; Hattori, M.; Kakiuchi, N.; Shimotohno, K.; Kawahata, T.; Otake, T. Anti–HIV–1 and anti–HIV–1–protease substances from Ganoderma lucidum. Phytochemistry 1998, 49, 1651–1657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Tao, J.; Yang, X.; Yang, Z.; Zhang, L.; Liu, H.; Wu, K.; Wu, J. Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection. Biochem. Biophys. Res. Commun. 2014, 449, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Wang, S.F. Anti–hepatitis B activities of ganoderic acid from Ganoderma lucidum. Biotechnol. Lett. 2006, 28, 837–841. [Google Scholar] [CrossRef]
- Gao, Y.; Chan, E.; Zhou, S. Immunomodulating activities of Ganoderma, a mushroom with medicinal properties. Food Rev. Int. 2004, 20, 123–161. [Google Scholar] [CrossRef]
- Tang, W.; Gao, Y.; Chen, G.; Gao, H.; Dai, X.; Ye, J.; Chan, E.; Huang, M.; Zhou, S. A randomized, double-blind and placebo-controlled study of a Ganoderma lucidum polysaccharide extract in neurasthenia. J. Med. Food. 2005, 8, 53–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rašeta, M.; Mišković, J.; Čapelja, E.; Zapora, E.; Petrović Fabijan, A.; Knežević, P.; Karaman, M. Do Ganoderma species Represent novel sources of phenolic based antimicrobial agents? Molecules 2023, 6, 3264. [Google Scholar] [CrossRef]
- Patel, D.K.; Dutta, S.D.; Ganguly, K.; Cho, S.J.; Lim, K.T. Mushroom-derived bioactive molecules as immunotherapeutic agents: A review. Molecules 2021, 26, 1359. [Google Scholar] [CrossRef]
- Noguchi, M.; Kakuma, T.; Tomiyasu, K.; Yamada, A.; Itoh, K.; Konishi, F.; Kumamoto, S.; Shimizu, K.; Kondo, R.; Matsuoka, K. Randomized clinical trial of an ethanol extract of Ganoderma lucidum in men with lower urinary tract symptoms. Asian J. Androl. 2008, 10, 777–785. [Google Scholar] [CrossRef]
- Wicks, S.M.; Tong, R.; Wang, C.Z.; O’Connor, M.; Karrison, T.; Li, S.; Moss, J.; Yuan, C.S. Safety and tolerability of Ganoderma lucidum in healthy subjects: A double-blind randomized placebo-controlled trial. Am. J. Chin. Med. 2007, 35, 407–414. [Google Scholar] [CrossRef]
- Gill, S.K.; Rieder, M.J. Toxicity of a traditional Chinese medicine, Ganoderma lucidum, in children with cancer. Can. J. Clin. Pharmacol. 2008, 15, e275–e285. [Google Scholar]
- Wanmuang, H.; Leopairut, J.; Kositchaiwat, C.; Wananukul, W.; Bunyaratvej, S. Fatal fulminant hepatitis associated with Ganoderma lucidum (Lingzhi) mushroom powder. J. Med. Assoc. Thai. 2007, 90, 179–181. [Google Scholar] [PubMed]
- Suprasert, P.; Apichartpiyakul, C.; Sakonwasun, C.; Nitisuwanraksa, P.; Phuackchantuck, R. Clinical characteristics of gynecologic cancer patients who respond to salvage treatment with Lingzhi. Asian Pac. J. Cancer Prev. 2014, 15, 4193–4196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hapuarachchi, K.K.; Elkhateeb, W.A.; Karunarathna, S.C.; Cheng, C.R.; Bandara, A.R.; Kakumyan, P.; Hyde, K.D.; Daba, G.M.; Wen, T.C. Current status of global Ganoderma cultivation, products, industry and market. Mycosphere 2008, 9, 1025–1052. [Google Scholar] [CrossRef]
- Zhou, X.W.; Su, K.Q.; Zhang, Y.M. Applied modern biotechnology for cultivation of Ganoderma and development of their products. Appl. Microbiol. Biotechnol. 2012, 93, 941–963. [Google Scholar] [CrossRef] [PubMed]
Species | Biological Activity | Compounds/Type of Extract Responsible for the Action | References |
---|---|---|---|
Ganoderma adspersum | Antioxidant | ∆22-Stigmastenol Phenolic acids (fumaric, caffeic) Triterpenes: applanoxidic acids A and E Ethyl acetate extract | [71,72] |
Ganoderma applanatum | Immunomodulating | Exobiopolymer (carbohydrate/protein) Proteins: FIP-gap1, FIP-gap2 | [43,44] |
Anticancer | Triterpenes: ganoderinic acid A, ganoderic acid A C15-tetraol | [60] | |
Antioxidant | Phenolic compounds Ethanolic extracts Aqueous extract Polysaccharides | [64,65,66,67,68,69] | |
Hepatoprotective | Triterpenes | [95] | |
Hypoglycemic | Exobiopolymers | [106] | |
Antibacterial | Ethanolic extracts Methanolic extract | [16,17] | |
Antifungal | Ethanolic extracts Methanolic extract | [16,17,69] | |
Antiviral | Polysaccharides | [128] | |
Ganoderma carnosum | Antioxidant | Phenolic compounds Ethanolic extracts | [69] |
Antibacterial | Ethanolic extracts | [16] | |
Antifungal | Ethanolic extracts | [16,69] | |
Ganoderma lucidum | Immunomodulating | Triterpenes: ganoderiol F, ganodermanondiol, ganodermanontriol, ganoderic acids Protein: Ling-Zhi-8 Polysaccharides: ganoderan, heteroglikany, mannoglukany, glikopeptydy, GLP-I, GLP-II, GLP-III, GLP-IV, fukogalaktan LZ-D-1 | [34,36,37,38,39,40,41] |
Anticancer | Triterpenes: ganoderic acids D, DM, F, K, T, V, W, X, Y, Z; lucialdehyde A, B, C; ganoderiol F Polysaccharides: α-D-glucan, β-D-glucans, heteropolysaccharides, glycoproteins Aqueous extract Ethanolic extract | [19,45,46,47,48,49,50,51,52,53,54,55] | |
Antioxidant | Phenolic compounds Polysaccharides: β-1,3-glucan Peptide: GLP Triterpenes: G1, lingzihina E, lingzihina F, ganoderic acids A, B, C, D, lucidenic acid B, ganodermanontriol Ethanolic extract Aqueous extract | [17,69,70,71,72,73] | |
Anti-inflammatory | Triterpenes: ganoderic acids Meroterpenoids: lucidumin A, B, C, D Alkaloids: lucidomin E, ganokochlearin A Chloroformic extract | [35,76,77,78,79] | |
Antiallergic | Triterpenes: ganoderic acids C, D Oleic acid Cyclooctasulfur Methanolic extract | [35,80,81,82,83,84,85] | |
Neuroprotective | Polysaccharides Triterpenes Sterols Aqueous extract | [86,87,88,89] | |
Hepatoprotective | Triterpenes: ganoderic acids R and S, ganosporic acid A Polysaccharides Ethanolic extract | [35,93,94,95] | |
Hypoglycemic | Polysaccharides: β-heteropolysaccharide F31, ganoderan A and B Proteoglucan FYGL Triterpenes: ganoderic acids Df, C2, A; ganoderol B Protein Ling-Zhi-8 | [38,105] | |
Hypotensive | Triterpenes: ganoderal A, ganoderole A and B, ganoderic acid B, D, F, H, K, S, Y Peptides Methanolic extract Aqueous extract ADR extract | [112,113,114,115,116,117] | |
Antibacterial | Steroids: ganodermadiol, ergosta-7,22-dien-3β-ol Ethanolic extract, Methanolic extract | [16,17,119] | |
Antifungal | Protein: ganodermin Ethanolic extract Methanolic extract | [16,120] | |
Antimalarial | Triterpenes: ganoderic acid DM, TR1, S, ganoderic aldehyde TR, ganodermanondiol, ganofuran B | [121,122] | |
Antiviral | Triterpenes: ganoderiol, ganodermanontriol, ganoderic acids B, C1, H; ganoderiol A, B; 3β-5α-dihydroksy-6β-metoksy-ergosta-7,22-dien, lanosta-7,9(11),24-trien-3-on;15;26-dihydroxy (GLTA), ganoderic acid Y (GLTB) | [16,122,123,124,125,126,127] | |
Ganoderma pfeifferi | Antioxidant | Ethanolic extract Aqueous extract | [67,69] |
Hypoglycemic | Ethanolic extract | [108] | |
Antibacterial | Ganomycin A, B | [16,118] | |
Antiviral | Triterpenes: ganodermadiol, lucidadiol, ganoderol A, ganoderal A, applanoxidic acid G, ganoderon A and C, lucialdehyde B, ergosta-7,22-dien-3β-ol | [16,123,124] | |
Ganoderma resinaceum | Antioxidant | Ethanolic extract Aqueous extract | [67] |
Anti-inflammatory | Chloroformic extract | [67] | |
Hepatoprotective | Triterpenes: ganoderiol B, lucidon A | [65] | |
Hypoglycemic | Triterpenes: resinacein C, ganoderic acid Y, lucialdehyde C, 7-Oxo-ganoderic Z3 acid, 7-oxo-ganoderic Z acid, lucidadiol Ethanolic extract Aqueous extract | [108,109] | |
Antibacterial | Methanolic extract Aqueous extract | [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sułkowska-Ziaja, K.; Balik, M.; Szczepkowski, A.; Trepa, M.; Zengin, G.; Kała, K.; Muszyńska, B. A Review of Chemical Composition and Bioactivity Studies of the Most Promising Species of Ganoderma spp. Diversity 2023, 15, 882. https://doi.org/10.3390/d15080882
Sułkowska-Ziaja K, Balik M, Szczepkowski A, Trepa M, Zengin G, Kała K, Muszyńska B. A Review of Chemical Composition and Bioactivity Studies of the Most Promising Species of Ganoderma spp. Diversity. 2023; 15(8):882. https://doi.org/10.3390/d15080882
Chicago/Turabian StyleSułkowska-Ziaja, Katarzyna, Monika Balik, Andrzej Szczepkowski, Monika Trepa, Gokhan Zengin, Katarzyna Kała, and Bożena Muszyńska. 2023. "A Review of Chemical Composition and Bioactivity Studies of the Most Promising Species of Ganoderma spp." Diversity 15, no. 8: 882. https://doi.org/10.3390/d15080882
APA StyleSułkowska-Ziaja, K., Balik, M., Szczepkowski, A., Trepa, M., Zengin, G., Kała, K., & Muszyńska, B. (2023). A Review of Chemical Composition and Bioactivity Studies of the Most Promising Species of Ganoderma spp. Diversity, 15(8), 882. https://doi.org/10.3390/d15080882