Signals of Pig Ancestry in Wild Boar, Sus scrofa, from Eastern Austria: Current Hybridisation or Incomplete Gene Pool Differentiation and Historical Introgressions?
Abstract
:1. Introduction
- Signals of historical introgression of pigs or of incomplete gene pool differentiation between wild boar and pigs are prevailing rather than ones of current hybridisation among “introgressed wild boar”, and current hybridisation does not strongly affect or increase the genetic diversity, i.e., allelic richness, of wild boar;
- Introgression occurs more frequently and individually to a greater extent in habitats of peri-urban Vienna than in rural habitats, as a high proportion of pig-typical gene pool characteristics may be associated with reduced shyness of an individual and introgressed wild boar may generally be more resistant to anthropogenic stress;
- Introgression occurs more often and at higher individual levels at locations of relatively high ambient temperature and low precipitation, as favourable climate increases the chance specifically of piglets and young wild boar harbouring many pig-typical gene variants.
2. Material and Methods
2.1. Samples, Molecular Markers, and Laboratory Analyses
2.2. Population Genetic Statistics
2.3. Genetic Admixture Analyses and Rationale of Quantification of Introgression
2.4. Climate Data and Statistical Modeling of Introgression Level in Wild Boar
3. Results
3.1. Allelic Diversity and Genetic Differentiation between wild Boars and Pigs
3.2. Genetic Admixture and Introgression of Wild Boar
3.3. PCA of local Climate Data
3.4. Models of Introgression Levels (Qtr values) in Wild Boars
4. Discussion
4.1. Introgression in Wild Boar
4.2. Historical Gene Flow and Current Pig Rearing
4.3. Possible Recent Hybrids and Genetic Diversity
4.4. Genetic Differentiation and Admixture
4.5. Spatial and Climate Patterns of Introgression
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scandura, M.; Iacolina, L.; Apollonio, M. Genetic diversity in the European wild boar Sus scrofa: Phylogeography, population structure and wild x domestic hybridization. Mamm. Rev. 2011, 41, 125–137. [Google Scholar] [CrossRef]
- Stillfried, M.; Fickel, J.; Borner, K.; Wittstatt, U.; Heddergott, M.; Ortmann, S.; Kramer-Schadt, S.; Frantz, A.C. Do cities represent sources, sinks or isolated islands for urban wild boar population structure? J. Appl. Ecol. 2017, 54, 272–281. [Google Scholar] [CrossRef]
- Hagemann, J.; Conejero, C.; Stillfried, M.; Mentaberre, G.; Castillo-Contreras, R.; Fickel, J.; López-Olvera, J.R. Genetic population structure defines wild boar as an urban exploiter species in Barcelona, Spain. Sci. Total Environm. 2022, 833, 155126. [Google Scholar] [CrossRef] [PubMed]
- Zsolnai, A.; Csókas, A.; Szabó, L.; Patkó, L.; Csány, S.; Márton, M.; Lakatos, E.A.; Anton, I.; Deutsch, F.; Heltai, M. Genetic adaptation to urban living: Molecular DNA analyses of wild boar populations in Budapest and surrounding area. Mamm. Biol. 2022, 102, 221–234. [Google Scholar] [CrossRef]
- Nikolov, I.S.; Stoeckle, B.C.; Markov, G.; Kuehn, R. Substantial hybridisation between wild boars (Sus scrofa scrofa) and East Balkan Pigs (Sus scrofa f. domestica) in natural environment as a result of semi-wild rearing in Bulgaria. Czech J. Anim. Sci. 2017, 62, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Iacolina, L.; Pertoldi, C.; Amills, M.; Kusza, S.; Megens, H.-J.; Bâlteanu, V.L.; Bakan, J.; Cubric-Curik, V.; Oja, R.; Saarma, U.; et al. Hotspots of recent hybridization between pigs and wild boars in Europe. Sci. Rep. 2018, 8, 17372. [Google Scholar] [CrossRef] [Green Version]
- Vetter, S.G.; Ruf, T.; Bieber, C.; Arnold, W. What Is a Mild Winter? Regional Differences in Within-Species Responses to Climate Change. PLoS ONE 2015, 10, e0132178. [Google Scholar] [CrossRef]
- Fulgione, D.; Rippa, D.; Buglione, M.; Trapanese, M.; Petrelli, S.; Maselli, V. Unexpected but welcome. Artificially selected traits may increase fitness in wild boar. Evol. Appl. 2016, 9, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Vetter, S.; Brandstätter, C.; Macheiner, M.; Suchentrunk, F.; Gerritsmann, H.; Bieber, C. Shy is sometimes better: Personality and juvenile body mass affect adult reproductive success in wild boars, Sus scrofa. Behaviour 2016, 115, 193–205. [Google Scholar] [CrossRef]
- Frantz, L.A.F.; Schraiber, J.G.; Madsen, O.; Megens, H.-J.; Cagan, A.; Bosse, M.; Paudel, Y.; Crooijmans, R.P.M.A.; Larson, G.; Groenen, M.A.M. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig geomes. Nat. Genet. 2015, 47, 1141–1148. [Google Scholar] [CrossRef]
- Gourdine, J.-L.; Rauw, W.M.; Gilbert, H.; Poullet, N. The Genetics of Thermoregulation in Pigs: A Review. Front. Vet. Sci. 2021, 8, 1–14. [Google Scholar] [CrossRef]
- Rotschild, M.F.; Ruvinsky, A. The Genetics of the Pig, 2nd ed.; CAB International: Wallingford, UK; Cambridge, MA, USA, 2011; 507p. [Google Scholar]
- Scandura, M.; Iacolina, L.; Crestanello, B.; Pecchioli, E.; Di Benedetto, M.F.; Russo, V.; Davoli, R.; Apollonio, M.; Bertorelle, G. Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: Are the effects of the last glaciation still detectable? Mol. Ecol. 2008, 17, 1745–1762. [Google Scholar] [CrossRef]
- Costa, V.; Pérez-González, P.; Santos, P.; Fernández-Llario, P.; Carranza, J.; Zsolnai, A.; Anton, I.; Buzgó, J.; Varga, G.; Monteiro, N.; et al. Microsatellite markers for identification and parentage analysis in the European wild boar (Sus scrofa). BMC Res. Notes 2012, 5, 479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frantz, A.C.; Zachos, F.E.; Kirschning, J.; Cillina, S.; Bertouille, S.; Mamuris, Z.; Koutsogiannouli, E.A.; Burke, T. Genetic evidence for introgression between domestic pigs and wild boars (Sus scrofa) in Belgium and Luxembourg: A comparative approach with multiple marker systems. Biol. J. Linn Soc. 2013, 110, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.; Negishi, Y.; Tomaa, R.; Nagatab, J.; Tamatec, H.; Kaneko, S. Robust microsatellite markers for hybrid analysis between domesticated pigs and wild boar. Markers for pig and wild boar hybridization. Genet. Resour. 2020, 1, 29–41. [Google Scholar] [CrossRef]
- Vetter, S.G.; Bieber, C.; Suchentrunk, F. Evaluating commonly used microsatellites for parenthood analysis and population assignment in wild boar (Sus scrofa). In Proceedings of the 10th Int. Symp. on Wild Boar and other Suids, Velenje, Slovenia, 6–9 September 2014; book of abstracts. p. 118. [Google Scholar]
- Belkhir, K.; Castric, V.; Bonhomme, F. IDENTIX, a software to test for relatedness in a population using permutation methods. Mol. Ecol. Notes 2002, 2, 611–614. [Google Scholar] [CrossRef] [Green Version]
- Belkhir, K. GENETIX V. 4.0, Logiciel sous WindowsTM pour la Génétique des Populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5000; Université de Montpellier II: Montpellier, France, 2004. [Google Scholar]
- Queller, D.C.; Goodnight, K.F. Estimating relatedness using genetic markers. Evolution 1989, 43, 258–275. [Google Scholar] [CrossRef] [PubMed]
- Goudet, J. FSTAT (version 1.2): A computer program to calculate F-statistics. J. Hered. 1995, 86, 485–486. [Google Scholar] [CrossRef]
- Piry, S.; Alapetite, A.; Cornuet, J.-M.; Paetkau, D.; Baudouin, L.; Estoup, A. GeneClass2: A software for genetic assignment and first generation migrant detection. J. Hered. 2004, 95, 536–539. [Google Scholar] [CrossRef]
- Cornuet, J.M.; Piry, S.; Luikart, G.; Estoup, A.; Solignac, M. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 1999, 153, 1989–2000. [Google Scholar] [CrossRef]
- Rannala, B.; Mountain, J.L. Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. USA 1997, 94, 9197–9201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paetkau, D.; Slade, R.; Burden, M.; Estoup, A. Direct real-time estimation of migration rate using assignment methods: A simulation-based exploration of accuracy and power. Mol. Ecol. 2004, 13, 55–65. [Google Scholar] [CrossRef]
- Schneider, S.; Roessli, D.; Excoffier, L. Arlequin: A software for Population Genetics Data Analysis, 2000. Vers. 2.000. Available online: http://cmpg.unibe.ch/software/arlequin3/.
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population structure: Extensions to linked loci and correlated allele frequencies. Genetics 2003, 164, 1567–1587. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Wen, W.; Falush, D. Available from 2010. Documentation for Structure Software: Version 2.3. Available online: http://pritch.bsd.uchicago.edu.
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Gen. Res. 2012, 4, 35. [Google Scholar] [CrossRef]
- Ruf, T.; Vetter, S.G.; Painer, J.; Stalder, G.; Bieber, C. Thermogregulation in the wild boar (Sus scrofa). Subm. Ms.
- Barton, K. Multi-Model Inference. R Package Version 1.9.13. 2013. Available online: http://CRAN.R-project.org/package=MuMIn.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: https://www.R-project.org/.
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 22nd ed.; Springer: New York, NY, USA, 2002; 488p. [Google Scholar]
- ENETWILD-Consortium; Illanas, S.; Fernández-López, J.; Acevedo, P.; Apollonio, M.; Blanco-Aguiar, J.A.; Brivio, F.; Croft, S.; Ferroglio, E.; Keuling, O.; et al. Analysis of wild boar-domestic pig interface in Europe: Spatial overlapping and fine resolution approach in several countries. EFSA Support. Publ. 2021, 18, 23. [Google Scholar] [CrossRef]
- Györffy, I. Alföldi Népélet; Gondolat: Budapest, Hungary, 1983; 510p, ISBN 9632812794. (In Hungarian) [Google Scholar]
- Manunza, A.; Amills, M.; Noce, A.; Cabrera, B.; Zidi, A.; Eghbalsaied, S.; Carillo de Albornoz, E.; Portell, M.; Mercadé, A.; Sánchez, A.; et al. Romanian wild boars and Mangalitza pigs have a European ancestry and harbour genetic signatures compatible with past population bottlenecks. Scient. Rep. 2016, 6, 29913. [Google Scholar] [CrossRef]
- von Matlekovits, A. Das Königreich Ungarn. Volkswirtschaftlich und Statistisch Dargestellt; Duncker & Humblot: Berlin, Germany, 1900; Volume 1, 616p, Reprint ISBN 978-3-428-16611-4. [Google Scholar]
- Falkenberg, H.; Hammer, H. Zur Geschichte und Kultur der Schweinezucht und -haltung. 3. Mitt.: Schweinezucht und -haltung in Deutschland von 1650 bis 1900. Züchtungsk 2007, 79, 92–110. [Google Scholar]
- Miorini Edler von Sebtenberg, A. Der Schlachtviehmarkt St. Marx. In Zweiund-Zwanzigster Jahres-Bericht der Landwirtschaftlichen Lehranstalt “Francisco-Josephinum“ in Mödling; Verlag der Landwirtschaftlichen Lehranstalt: Vienna, Austria, 1891. [Google Scholar]
- VÖS—Verband Österreichischer Schweinebauern, Vienna. Available online: https://voes-online.at/ (accessed on 17 January 2023).
- Suchentrunk, F.; Himmler, E.; Habe, M.; Zink, R.; Bieber, C.; Vetter, S.G. Spatial genetics for the managment of wild boar (Sus scrofa) in peri-urban Vienna. In Proceedings of the 10th International Symposium on Wild Boar and other Suids, Velenje, Slovenia, 1–5 September 2014; SEP 1-4; book of abstracts. p. 117. [Google Scholar]
Locus/Index | WB | PI | Locus | WB | PI | Locus | WB | PI |
---|---|---|---|---|---|---|---|---|
S0002 | S0097 | S0101 | ||||||
AL | 10 | 7 | 14 | 8 | 14 | 7 | ||
Arange | 200–218 | 200–214 | 218–254 | 224–242 | 203–221 | 209–221 | ||
Amofr | 204 | 204 | 238 | 242 | 211 | 213 | ||
FrAmofr | 0.378 | 0.277 | 0.257 | 0.422 | 0.242 | 0.518 | ||
Apriv | 3 | 0 | 5 | 0 | 2 | 0 | ||
Ho | 0.686 | 0.434 | 0.743 | 0.455 | 0.713 | 0.423 | ||
He | 0.801 | 0.815 | 0.846 | 0.750 | 0.820 | 0.596 | ||
fis | 0.145 * | 0.469 * | 0.121 * | 0.395 * | 0.131 * | 0.294 | ||
S0155 | S0215 | SW24 | ||||||
AL | 5 | 4 | 4 | 3 | 8 | 8 | ||
Arange | 146–160 | 146–156 | 152–170 | 152–170 | 94–114 | 94–114 | ||
Amofr | 146 | 156 | 154 | 154 | 108 | 108 | ||
FrAmofr | 0.807 | 0.357 | 0.562 | 0.953 | 0.402 | 0.390 | ||
Apriv | 1 | 0 | 1 | 0 | 2 | 2 | ||
Ho | 0.297 | 0.369 | 0.330 | 0.071 | 0.740 | 0.390 | ||
He | 0.329 | 0.691 | 0.606 | 0.091 | 0.755 | 0.735 | ||
fis | 0.098 | 0.468 * | 0.455 * | 0.228 | 0.020 | 0.471 * | ||
SW72 | SW122 | SW240 | ||||||
AL | 5 | 5 | 8 | 8 | 11 | 7 | ||
Arange | 100–112 | 100–110 | 115–129 | 115–129 | 93–123 | 93–113 | ||
Amofr | 100 | 100 | 125 | 125 | 109 | 109 | ||
FrAmofr | 0.441 | 0.529 | 0.237 | 0.337 | 0.495 | 0.290 | ||
Apriv | 1 | 1 | 0 | 0 | 4 | 0 | ||
Ho | 0.578 | 0.384 | 0.714 | 0.602 | 0.469 | 0.355 | ||
He | 0.674 | 0.623 | 0.802 | 0.756 | 0.624 | 0.794 | ||
fis | 0.143 * | 0.386 * | 0.110 * | 0.205 * | 0.249 * | 0.554 * | ||
SW461 | SW857 | SW936 | ||||||
AL | 11 | 10 | 6 | 4 | 8 | 5 | ||
Arange | 137–157 | 135–153 | 146–158 | 146–152 | 98–118 | 100–114 | ||
Amofr | 141 | 139 | 152 | 150 | 100 | 114 | ||
FrAmofr | 0.169 | 0.288 | 0.390 | 0.544 | 0.520 | 0.625 | ||
Apriv | 2 | 1 | 2 | 0 | 3 | 0 | ||
Ho | 0.832 | 0.729 | 0.410 | 0.450 | 0.519 | 0.270 | ||
He | 0.876 | 0.831 | 0.691 | 0.611 | 0.675 | 0.541 | ||
fis | 0.051 | 0.123 | 0.407 * | 0.265 * | 0.231 * | 0.496 * | ||
SW1492 | SW2021 | SW2496 | ||||||
AL | 6 | 4 | 12 | 12 | 16 | 11 | ||
Arange | 112–122 | 114–120 | 109–137 | 109–137 | 186–226 | 186–222 | ||
Amofr | 116 | 120 | 113 | 121 | 204 | 200 | ||
FrAmofr | 0.591 | 0.347 | 0.294 | 0.285 | 0.320 | 0.325 | ||
Apriv | 2 | 0 | 1 | 1 | 5 | 0 | ||
Ho | 0.484 | 0.659 | 0.733 | 0.814 | 0.688 | 0.807 | ||
He | 0.569 | 0.728 | 0.799 | 0.822 | 0.834 | 0.803 | ||
fis | 0.150 * | 0.096 | 0.083 * | 0.010 | 0.176 * | −0.006 | ||
SW2532 | ||||||||
AL | 10 | 7 | ||||||
Arange | 173–193 | 173–191 | ||||||
Amofr | 175 | 189 | ||||||
FrAmofr | 0.201 | 0.452 | ||||||
Apriv | 3 | 0 | ||||||
Ho | 0.762 | 0.798 | ||||||
He | 0.844 | 0.705 | ||||||
fis | 0.097 * | −0.133 |
Mean | Tempfac | Mean | Precipfac1 | Precipfac2 | ||
---|---|---|---|---|---|---|
bio1 | 9.28 °C | 0.993 | bio12 | 661.62 mm | 0.964 | −0.245 |
bio5 | 25.34 °C | 0.983 | bio13 | 81.88 mm | 0.952 | −0.300 |
bio6 | −4.46 °C | 0.937 | bio14 | 35.61 mm | 0.876 | 0.447 |
bio8 | 18.52 °C | 0.980 | bio16 | 236.56 mm | 0.931 | −0.362 |
bio9 | 1.13 °C | 0.977 | bio17 | 115.50 mm | 0.860 | 0.464 |
bio10 | 18.52 °C | 0.980 | bio18 | 236.56 mm | 0.931 | −0.362 |
bio11 | −0.20 °C | 0.984 | bio19 | 119.09 mm | 0.880 | 0.458 |
Group | Mean | Median | Minimum | Maximum | Stand. Dev. |
---|---|---|---|---|---|
Comm. slaughter pigs (52) | 10.10 | 5.72 | 2.32 | 47.13 | 11.0 |
10.37 | 8.02 | 3.27 | 34.83 | 5.74 | |
Mangaliza (Hungary) (4) | 15.16 | 5.68 | 1.95 | 47.33 | 21.73 |
13.00 | 7.43 | 4.43 | 32.73 | 32.73 | |
Mangaliza (Serbia) (21) | 5.77 | 3.13 | 1.80 | 27.01 | 6.23 |
4.07 | 1.87 | 1.12 | 21.68 | 5.16 | |
Turopolje (Austria) (4) | 5.74 | 6.39 | 3.33 | 6.85 | 1.65 |
8.64 | 9.42 | 1.76 | 9.07 | 6.02 |
s(long*lat) | Precipfac2 | Precipfac1 | Tempfac | |
---|---|---|---|---|
RVI-NP | 1.00 | 0.70 | 0.40 | 0.39 |
RVI-PP | 1.00 | 0.87 | 0.61 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böheim, D.; Knauer, F.; Stefanović, M.; Zink, R.; Kübber-Heiss, A.; Posautz, A.; Beiglböck, C.; Dressler, A.; Strauss, V.; Dier, H.; et al. Signals of Pig Ancestry in Wild Boar, Sus scrofa, from Eastern Austria: Current Hybridisation or Incomplete Gene Pool Differentiation and Historical Introgressions? Diversity 2023, 15, 790. https://doi.org/10.3390/d15060790
Böheim D, Knauer F, Stefanović M, Zink R, Kübber-Heiss A, Posautz A, Beiglböck C, Dressler A, Strauss V, Dier H, et al. Signals of Pig Ancestry in Wild Boar, Sus scrofa, from Eastern Austria: Current Hybridisation or Incomplete Gene Pool Differentiation and Historical Introgressions? Diversity. 2023; 15(6):790. https://doi.org/10.3390/d15060790
Chicago/Turabian StyleBöheim, Denise, Felix Knauer, Milomir Stefanović, Richard Zink, Anna Kübber-Heiss, Annika Posautz, Christoph Beiglböck, Andrea Dressler, Verena Strauss, Helmut Dier, and et al. 2023. "Signals of Pig Ancestry in Wild Boar, Sus scrofa, from Eastern Austria: Current Hybridisation or Incomplete Gene Pool Differentiation and Historical Introgressions?" Diversity 15, no. 6: 790. https://doi.org/10.3390/d15060790
APA StyleBöheim, D., Knauer, F., Stefanović, M., Zink, R., Kübber-Heiss, A., Posautz, A., Beiglböck, C., Dressler, A., Strauss, V., Dier, H., Djan, M., Veličković, N., Zhelev, C. D., Smith, S., & Suchentrunk, F. (2023). Signals of Pig Ancestry in Wild Boar, Sus scrofa, from Eastern Austria: Current Hybridisation or Incomplete Gene Pool Differentiation and Historical Introgressions? Diversity, 15(6), 790. https://doi.org/10.3390/d15060790