Assessing Biodiversity Conditions in Cocoa Agroforests with a Rapid Assessment Method: Outcomes from a Large-Scale Application in Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Rapid Biodiversity Assessment Method
2.4. Data Analysis
2.4.1. Indicators and Thresholds of Biodiversity and Other Environmental Conditions
2.4.2. Association between Different Conditions of Cocoa Farms
2.4.3. Statistical and Spatial Analysis Tools
3. Results
3.1. Indicators of Biodiversity and Other Environmental Conditions
- (a)
- Tree density:
- (b)
- Species richness:
- (c)
- Shade cover:
- (d)
- Vegetation structure:
- (e)
- Above-ground carbon stock:
- (f)
- Tree succession potential:
3.2. Association between Farms’ Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anglaaere, L.C.N.; Cobbina, J.; Sinclair, F.L.; McDonald, M.A. The effect of land use systems on tree diversity: Farmer preference and species composition of cocoa-based agroecosystems in Ghana. Agrofor. Syst. 2011, 81, 249–265. [Google Scholar] [CrossRef]
- Asare, R.; Afari-Sefa, V.; Osei-Owusu, Y.; Pabi, O. Cocoa agroforestry for increasing forest connectivity in a fragmented landscape in Ghana. Agrofor. Syst. 2014, 88, 1143–1156. [Google Scholar] [CrossRef]
- Ruf, F.O. The Myth of Complex Cocoa Agroforests: The Case of Ghana. Hum. Ecol. 2011, 39, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Cerda, R.; Deheuvels, O.; Calvache, D.; Niehaus, L.; Saenz, Y.; Kent, J.; Vilchez, S.; Villota, A.; Martinez, C.; Somarriba, E. Contribution of cocoa agroforestry systems to family income and domestic consumption: Looking toward intensification. Agrofor. Syst. 2014, 88, 957–981. [Google Scholar] [CrossRef]
- Smith Dumont, E.; Gnahoua, G.M.; Ohouo, L.; Sinclair, F.L.; Vaast, P. Farmers in Côte d’Ivoire value integrating tree diversity in cocoa for the provision of ecosystem services. Agrofor. Syst. 2014, 88, 1047–1066. [Google Scholar] [CrossRef] [Green Version]
- Rosa-Schleich, J.; Loos, J.; Mußhoff, O.; Tscharntke, T. Ecological-economic trade-offs of Diversified Farming Systems—A review. Ecol. Econ. 2019, 160, 251–263. [Google Scholar] [CrossRef]
- Sonwa, D.J.; Weise, S.F.; Schroth, G.; Janssens, M.J.J.; Shapiro, H.Y. Structure of cocoa farming systems in West and Central Africa: A review. Agrofor. Syst. 2019, 93, 2009–2025. [Google Scholar] [CrossRef]
- Niether, W.; Jacobi, J.; Blaser, W.J.; Andres, C.; Armengot, L. Cocoa agroforestry systems versus monocultures: A multi-dimensional meta-analysis. Environ. Res. Lett. 2020, 15, 104085. [Google Scholar] [CrossRef]
- Wainaina, P.; Minang, P.A.; Duguma, L.; Muthee, K. A review of the trade-offs across different cocoa production systems in Ghana. Sustainability 2021, 13, 10945. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Olivier, A.; Paquette, A.; Dupras, J.; Revéret, J.-P.; Messier, C. A general framework for the quantification and valuation of ecosystem services of tree-based intercropping systems. Agrofor. Syst. 2014, 88, 679–691. [Google Scholar] [CrossRef]
- Kuyah, S.; Whitney, C.W.; Jonsson, M.; Sileshi, G.W.; Öborn, I.; Muthuri, C.W.; Luedeling, E. Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis. Agron. Sustain. Dev. 2019, 39, 47. [Google Scholar] [CrossRef] [Green Version]
- Tschora, H.; Cherubini, F. Co-benefits and trade-offs of agroforestry for climate change mitigation and other sustainability goals in West Africa. Glob. Ecol. Conserv. 2020, 22, e00919. [Google Scholar] [CrossRef]
- Acheampong, E.O.; Macgregor, C.J.; Sloan, S.; Sayer, J. Deforestation is driven by agricultural expansion in Ghana’s forest reserves. Sci. Afr. 2019, 5, e00146. [Google Scholar] [CrossRef]
- Ashiagbor, G.; Asante, W.A.; Forkuo, E.K.; Acheampong, E.; Foli, E. Monitoring cocoa-driven deforestation: The contexts of encroachment and land use policy implications for deforestation free cocoa supply chains in Ghana. Appl. Geogr. 2022, 147, 102788. [Google Scholar] [CrossRef]
- Kaba, J.S.; Otu-Nyanteh, A.; Abunyewa, A.A. The role of shade trees in influencing farmers’ adoption of cocoa agroforestry systems: Insight from semi-deciduous rain forest agroecological zone of Ghana. NJAS—Wagening. J. Life Sci. 2020, 92, 100332. [Google Scholar] [CrossRef]
- Tondoh, J.E.; Kouamé, F.N.; Guéi, A.M.; Sey, B.; Koné, A.W.; Gnessougou, N.; Ebagnerin, J.; François, N. Ecological changes induced by full-sun cocoa farming in Côte d’Ivoire. Glob. Ecol. Conserv. 2015, 3, 575–595. [Google Scholar] [CrossRef] [Green Version]
- Somarriba, E.; Lopez-Sampson, A. Coffee and Cocoa Agroforestry Systems: Pathways to Deforestation, Reforestation, and Tree Cover Change; International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2018; Available online: https://repositorio.catie.ac.cr/handle/11554/9035 (accessed on 10 January 2023).
- Boeckx, P.; Bauters, M.; Dewettinck, K. Poverty and climate change challenges for sustainable intensification of cocoa systems. Curr. Opin. Environ. Sustain. 2020, 47, 106–111. [Google Scholar] [CrossRef]
- Mattalia, G.; Wezel, A.; Costet, P.; Jagoret, P.; Deheuvels, O.; Migliorini, P.; David, C. Contribution of cacao agroforestry versus mono-cropping systems for enhanced sustainability. A review with a focus on yield. Agrofor. Syst. 2022, 96, 1077–1089. [Google Scholar] [CrossRef]
- Mertz, O.; Ravnborg, H.M.; Lövei, G.L.; Nielsen, I.; Konijnendijk, C.C. Ecosystem services and biodiversity in developing countries. Biodivers. Conserv. 2007, 16, 2729–2737. [Google Scholar] [CrossRef]
- Feld, C.K.; Sousa, J.P.; Silva, P.M.; Dawson, T.P. Indicators for biodiversity and ecosystem services: Towards an improved framework for ecosystems assessment. Biodivers. Conserv. 2010, 19, 2895–2919. [Google Scholar] [CrossRef]
- Feld, C.K.; Da Silva, P.M.; Sousa, J.P.; De Bello, F.; Bugter, R.; Grandin, U.; Hering, D.; Lavorel, S.; Mountford, O.; Pardo, I.; et al. Indicators of biodiversity and ecosystem services: A synthesis across ecosystems and spatial scales. Oikos 2009, 118, 1862–1871. [Google Scholar] [CrossRef]
- Ahoa, E.; Kassahun, A.; Tekinerdogan, B.; Verdouw, C. Analyzing and designing business processes in the Ghana cocoa supply chain for supporting inclusiveness. Sustainability 2021, 13, 12440. [Google Scholar] [CrossRef]
- Kolavalli, S.; Vigneri, M. Cocoa in Ghana: Shaping the success of an economy. In Yes, Africa Can: Success Stories from a Dynamic Continent; World Bank: Washington, DC, USA, 2011; pp. 201–218. [Google Scholar]
- ESA CCI, Climate Change Initiative. LandCover Project 2017 LC 20m Map of Africa 2016 2017. Available online: https://2016africalandcover20m.esrin.esa.int/ (accessed on 6 December 2022).
- Asante-Poku, A.; Angelucci, F. Analysis of Incentives and Disincentives for Cocoa in Ghana. Technical Notes Series. Rome, Italy, 2013. Available online: https://www.fao.org/in-action/mafap/resources/detail/ru/c/394343/ (accessed on 15 December 2022).
- Raneri, J.E.; Oliveira, S.; Demers, N.R.; Asare, R.; Nuamah, S.; Dalaa, M.A.; Weise, S. A rapid tree diversity assessment method for cocoa agroforestry systems. Ecol. Indic. 2021, 130, 107993. [Google Scholar] [CrossRef]
- SAN. Sustainable Agriculture Network, General Interpretation Guide—Sustainable Agriculture Standard; SAN: San José, Puerto Rico, 2014. [Google Scholar]
- Wade, A.S.I.; Asase, A.; Hadley, P.; Mason, J.; Ofori-Frimpong, K.; Preece, D.; Spring, N.; Norris, K. Management strategies for maximizing carbon storage and tree species diversity in cocoa-growing landscapes. Agric. Ecosyst. Environ. 2010, 138, 324–334. [Google Scholar] [CrossRef]
- Sonwa, D. Biomass Management and Diversification within Cocoa Agroforests in the Humid Forest Zone of Southern Cameroon; Cuvillier Verlag: Göttingen, Germany, 2004. [Google Scholar]
- Melo, A.S.; Pereira, R.A.S.; Santos, A.J.; Shepherd, G.J.; Machado, G.; Medeiros, H.F.; Sawaya, R.J. Comparing species richness among assemblages using sample units: Why not use extrapolation methods to standardize different sample sizes? Oikos 2003, 101, 398–410. [Google Scholar] [CrossRef] [Green Version]
- Vashum, K.T.; Jayakumar, S.; Vashum, K.T. Methods to Estimate Above-Ground Biomass and Carbon Stock in Natural Forests—A Review. J. Ecosyst. Ecography 2012, 2, 1000116. [Google Scholar] [CrossRef]
- Geldenhuys, C.J. Managing forest complexity through application of disturbance–recovery knowledge in development of silvicultural systems and ecological rehabilitation in natural forest systems in Africa. J. For. Res. 2010, 15, 3–13. [Google Scholar] [CrossRef]
- Schroth, G.; da Fonseca, G.A.B.; Harvey, C.A.; Gascon, C.; Vasconcelos, H.L.; Izac, A.-M.N. (Eds.) Agroforestry and Biodiversity Conservation in Tropical Landscapes; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Machín, L.; Aschemann-Witzel, J.; Curutchet, M.R.; Giménez, A.; Ares, G. Traffic Light System Can Increase Healthfulness Perception: Implications for Policy Making. J. Nutr. Educ. Behav. 2018, 50, 668–674. [Google Scholar] [CrossRef]
- Oliveira, S.; Rocha, J.; Sousa, C.A.; Capinha, C. Wide and increasing suitability for Aedes albopictus in Europe is congruent across distribution models. Sci. Rep. 2021, 11, 9916. [Google Scholar] [CrossRef]
- Dodge, Y. Spearman Rank Correlation Coefficient. In The Concise Encyclopedia of Statistics; Springer Science & Business Media: Berlin, Germany, 2008; pp. 502–505. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: http://www.R-project.org/ (accessed on 6 December 2022).
- Oke, D.; Olatiilu, A. Carbon storage in agroecosystems: A case study of the cocoa based Agroforestry in Ogbese Forest Reserve, Ekiti State, Nigeria. J. Environ. Prot. 2011, 2, 1069–1075. [Google Scholar] [CrossRef] [Green Version]
- Jagoret, P.; Michel-Dounias, I.; Malézieux, E. Long-term dynamics of cocoa agroforests: A case study in central Cameroon. Agrofor. Syst. 2011, 81, 267–278. [Google Scholar] [CrossRef]
- Bisseleua, H.B.D.; Fotio, D.; Yede; Missoup, A.D.; Vidal, S. Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers’ net returns in West Africa. PLoS ONE 2013, 8, e56115. [Google Scholar] [CrossRef]
- Ruf, F.; Schroth, G. Chocolate forests and monocultures: A historical review of cocoa growing and its conflicting role in tropical deforestation and forest conservation. In Agroforestry and Biodiversity Conservation in Tropical Landscapes; Island Press: Washington, DC, USA, 2004; pp. 107–134. [Google Scholar]
- Laird, S.A.; Awung, G.L.; Lysinge, R.J. Cocoa farms in the Mount Cameroon region: Biological and cultural diversity in local livelihoods. Biodivers. Conserv. 2007, 16, 2401–2427. [Google Scholar] [CrossRef]
- Steffan-Dewenter, I.; Kessler, M.; Barkmann, J.; Bos, M.M.; Buchori, D.; Erasmi, S.; Faust, H.; Gerold, G.; Glenk, K.; Gradstein, S.R.; et al. Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proc. Natl. Acad. Sci. USA 2007, 104, 4973–4978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonwa, D.; Nkongmeneck, B.A.; Weise, S.F.; Tchatat, M.; Janssens, M.J.J. Tree diversity of the cocoa agroforest around Yaoundé (southern Cameroon). In Systematics and Conservation of African Plants. Proceedings of the 18th AETFAT Congress, Yaoundé, Cameroun, 26 February to 2 March 2007; van der Burgt, X., van der Maesen, J., Onana, J.M., Eds.; Royal Botanic Gardens: Richmond, UK, 2010; pp. 691–699. [Google Scholar]
- Saj, S.; Jagoret, P.; Ngogue, H.T. Carbon storage and density dynamics of associated trees in three contrasting Theobroma cacao agroforests of Central Cameroon. Agrofor. Syst. 2013, 87, 1309–1320. [Google Scholar] [CrossRef]
- Kessler, M.; Hertel, D.; Jungkunst, H.F.; Kluge, J.; Abrahamczyk, S.; Bos, M.; Buchori, D.; Gerold, G.; Gradstein, S.R.; Köhler, S.; et al. Can joint carbon and biodiversity management in tropical agroforestry landscapes be optimized? PLoS ONE 2012, 7, e47192. [Google Scholar] [CrossRef] [Green Version]
- Bisseleua, D.H.B.; Missoup, A.D.; Vidal, S. Biodiversity conservation, ecosystem functioning, and economic incentives under cocoa agroforestry intensification. Conserv. Biol. 2009, 23, 1176–1184. [Google Scholar] [CrossRef]
- De Beenhouwer, M.; Aerts, R.; Honnay, O. A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agric. Ecosyst. Environ. 2013, 175, 1–7. [Google Scholar] [CrossRef]
- Sonwa, D.; Nkongmeneck, B.A.; Weise, S.F.; Tchatat, M.; Janssens, J.J. Chocolate Forest and the Peri-Urban Landscape: Tree Diversity of the Cocoa Agroforests around Yaoundé (Southern Cameroon); STCP Working Paper; International Institute of Tropical Agriculture: Ibadan, Nigeria, 2006. [Google Scholar]
- Oke, D.O.; Odebiyi, K.A. Traditional cocoa-based agroforestry and forest species conservation in Ondo State, Nigeria. Agric. Ecosyst. Environ. 2007, 122, 305–311. [Google Scholar] [CrossRef]
- Cassano, C.R.; Schroth, G.; Faria, D.; Delabie, J.H.C.; Bede, L. Landscape and farm scale management to enhance biodiversity conservation in the cocoa producing region of southern Bahia, Brazil. Biodivers. Conserv. 2009, 18, 577–603. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Colwell, R.K. Estimating species richness. In Biological Diversity: Frontiers in Measurement and Assessment; Oxford University Press: Oxford, UK, 2010; pp. 39–54. [Google Scholar]
- Archaux, F.; Camaret, S.; Dupouey, J.L.; Ulrich, E.; Corcket, E.; Bourjot, L.; Brêthes, A.; Chevalier, R.; Dobremez, J.-F.; Dumas, Y.; et al. Can we reliably estimate species richness with large plots? An assessment through calibration training. Plant Ecol. 2009, 203, 303–315. [Google Scholar] [CrossRef]
- Graefe, S.; Meyer-Sand, L.F.; Chauvette, K.; Abdulai, I.; Jassogne, L.; Vaast, P.; Asare, R. Evaluating Farmers’ Knowledge of Shade Trees in Different Cocoa Agro-Ecological Zones in Ghana. Hum. Ecol. 2017, 45, 321–332. [Google Scholar] [CrossRef]
- Clough, Y.; Barkmann, J.; Juhrbandt, J.; Kessler, M.; Wanger, T.C.; Anshary, A.; Buchori, D.; Cicuzza, D.; Darras, K.; Putra, D.D.; et al. Combining high biodiversity with high yields in tropical agroforests. Proc. Natl. Acad. Sci. USA 2011, 108, 8311–8316. [Google Scholar] [CrossRef] [Green Version]
- Jose, S.; Bardhan, S. Agroforestry for biomass production and carbon sequestration: An overview. Agrofor. Syst. 2012, 86, 105–111. [Google Scholar] [CrossRef]
- Norgrove, L.; Hauser, S. Carbon stocks in shaded Theobroma cacao farms and adjacent secondary forests of similar age in Cameroon. Trop. Ecol. 2013, 54, 15–22. [Google Scholar]
- Luedeling, E.; Sileshi, G.; Beedy, T.; Dietz, J. Carbon sequestration potential of agroforestry systems in Africa. In Carbon Sequestration Potential of Agroforestry Systems; Kumar, B.M., Nair, P.R., Eds.; Springer Science & Business Media: Cham, Switzerland, 2011; pp. 61–83. [Google Scholar]
- Sonwa, D.; Weise, S.F.; Janssen, M.J.J.; Schroth, G.; Shapiro, H. Diversifying and Intensifying the Cocoa Agroforest Landscape: Review and Strategic Approaches for Managing the Shade Matrix in West and Central Africa; International Institute of Tropical Agriculture: Ibadan, Nigeria, 2008. [Google Scholar]
Indicator | Data Analysis | Recommended | Thresholds | Classification | Color |
---|---|---|---|---|---|
(a) Tree density | Trees above 10 cm dbh, extrapolated to ha (number of trees in plots/plots area). Including fruit trees, excluding palms. Plot area = 0.08 ha. | 18 trees/ha | ≥18 trees/ha | High | G |
6–17 trees/ha | Low to Moderate | Y | |||
<5 trees/ha | Very low | R | |||
(b) Species richness | Evans estimator [32] S = s log(N + 1)/log(n + 1) | 12 species/ha | ≥12 species/ha | High | G |
9–11 species/ha | Moderate | Y | |||
5–9 species/ha | Low | R | |||
>5 species/ha | Very low | DR | |||
(c) Shade cover | Trees above 30 cm dbh, extrapolated to ha (number of trees in plots/plots area). Plot area = 0.08 ha. | 14–25 trees/ha | >25 trees/ha | Heavy shade | Y |
14–25 trees/ha | Moderate shade | G | |||
1–13 trees/ha | Light shade | Y | |||
0 trees/ha | No shade/Full sun | R | |||
(d) Vegetation structure | Trees above 10 cm dbh correspond to strata above the cocoa canopy. 2 classes: 10–30 cm—stratum 1; above 30 cm dbh—stratum 2. Banana/plantain same stratum as cocoa. If only 1 class exists, 1 stratum defined. | 2 canopy levels (strata) above cocoa trees | 2 or more strata above cocoa | Multistrata | G |
1 stratum above cocoa | Single strata | Y | |||
Only cocoa stratum | Cocoa stratum | R | |||
(e) Above-ground carbon stock | Biomass from measured dbh of trees, using the allometric formula [31]: Y = 42.69 − 12.800(D) + 1.242(D2). Carbon stock = 0.45 biomass [33] | 36 Mg/ha | >36 Mg/ha | High | G |
26–36 Mg/ha | Moderate | Y | |||
10–25 Mg/ha | Low | R | |||
<10 Mg/ha | Very low | DR | |||
(f) Tree succession potential | 3 classes were defined based on the proportion of younger trees (taking dbh 10–30 cm as a proxy) in relation to older trees (above 30 cm dbh). | Trees in dbh class 10–30 cm ≥ 50% of all trees measured | dbh 10–30 ≥ 50% | Adequate | G |
dbh 10–30 = 35–50% | Moderate | Y | |||
dbh 10–30 < 35% | Low | R | |||
<2 trees measured | Undetermined | Gr |
Trees (nr/ha) | Shade Trees (>30 cm dbh) (nr/ha) | Species (nr/ha) | ||||
---|---|---|---|---|---|---|
Region | Mean | SD | Mean | SD | Mean | SD |
Ahafo | 58.8 | 46.8 | 33.7 | 46.8 | 9.4 | 6.7 |
Ashanti | 51.0 | 46.2 | 27.7 | 46.2 | 7.3 | 5.5 |
Central | 51.9 | 36.9 | 26.1 | 36.9 | 8.6 | 5.7 |
Eastern | 52.0 | 42.6 | 30.1 | 42.6 | 8.1 | 5.7 |
Western | 46.3 | 38.1 | 23.8 | 38.1 | 7.6 | 6.0 |
Western North | 40.1 | 36.2 | 25.7 | 36.2 | 6.2 | 5.1 |
Total | 45.4 | 40.3 | 26.7 | 29.3 | 7.0 | 5.5 |
REGIONS | |||||||
---|---|---|---|---|---|---|---|
Indicators | Classes | Ahafo | Ashanti | Central | Eastern | Western | Western North |
(a) Tree density | Recommended | 80.1 | 73.8 | 83.7 | 79.6 | 74.3 | 66.8 |
Low to Moderate | 13.8 | 12.3 | 9.9 | 8.4 | 13.9 | 16.4 | |
No trees | 6.1 | 13.9 | 6.3 | 12.0 | 11.8 | 16.9 | |
(b) Species Richness | Recommended | 33.7 | 22.9 | 26.6 | 28.5 | 21.8 | 15.6 |
Moderate | 14.3 | 14.3 | 18.3 | 15.3 | 15.2 | 11.9 | |
Low | 15.7 | 16.9 | 17.9 | 16.1 | 15.1 | 16.7 | |
Very low | 36.4 | 45.9 | 37.3 | 40.1 | 47.8 | 55.9 | |
(c) Shade cover | Moderate shade | 20.9 | 15.4 | 21.8 | 19.4 | 20.9 | 17.0 |
Heavy shade | 43.0 | 34.1 | 34.5 | 39.2 | 29.9 | 31.7 | |
Light shade | 21.6 | 19.8 | 23.0 | 17.8 | 20.0 | 22.2 | |
No shade | 14.5 | 30.7 | 20.6 | 23.6 | 29.3 | 29.0 | |
(d) Vegetation Structure | Multistrata | 61.2 | 45.4 | 61.9 | 53.0 | 49.2 | 41.8 |
Single Strata | 32.7 | 40.7 | 31.7 | 34.9 | 39.0 | 41.3 | |
Cocoa strata | 6.1 | 13.9 | 6.3 | 12.0 | 11.8 | 16.9 | |
(e) Carbon stock | Recommended | 53.6 | 42.0 | 54.8 | 53.3 | 45.5 | 43.1 |
Moderate | 7.6 | 6.0 | 4.8 | 4.4 | 4.5 | 5.4 | |
Low | 20.1 | 18.5 | 18.3 | 14.0 | 16.9 | 16.3 | |
Very low | 18.7 | 33.5 | 22.2 | 28.3 | 33.2 | 35.2 | |
(f) Tree succession potential | Adequate | 36.6 | 37.8 | 45.6 | 33.5 | 38.1 | 26.4 |
Moderate | 2.9 | 2.3 | 0.8 | 3.1 | 1.4 | 1.1 | |
Low | 40.5 | 33.7 | 37.3 | 42.9 | 34.7 | 39.3 | |
Undetermined | 19.9 | 26.2 | 16.3 | 20.4 | 25.7 | 33.2 |
Species (nr/ha) | Trees (nr/ha) | Shade Trees (nr/ha) | |
---|---|---|---|
Trees (nr/ha) | 0.953 | ||
Shade trees (nr/ha) | 0.753 | 0.781 | |
Farm age (nr years) | 0.028 | 0.020 | 0.081 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, S.; Raneri, J.E.; Weise, S.F. Assessing Biodiversity Conditions in Cocoa Agroforests with a Rapid Assessment Method: Outcomes from a Large-Scale Application in Ghana. Diversity 2023, 15, 503. https://doi.org/10.3390/d15040503
Oliveira S, Raneri JE, Weise SF. Assessing Biodiversity Conditions in Cocoa Agroforests with a Rapid Assessment Method: Outcomes from a Large-Scale Application in Ghana. Diversity. 2023; 15(4):503. https://doi.org/10.3390/d15040503
Chicago/Turabian StyleOliveira, Sandra, Jessica E. Raneri, and Stephan F. Weise. 2023. "Assessing Biodiversity Conditions in Cocoa Agroforests with a Rapid Assessment Method: Outcomes from a Large-Scale Application in Ghana" Diversity 15, no. 4: 503. https://doi.org/10.3390/d15040503