Genetic Diversity and Structure of Latvian Trifolium fragiferum Populations, a Crop Wild Relative Legume Species, in the Context of the Baltic Sea Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Plant Establishment
2.2. Genetic Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Mittal, N.; Leamy, L.J.; Barazani, O.; Song, B.-H. Back into the wild—Apply untapped genetic diversity of wild relatives for crop improvement. Evol. Appl. 2017, 10, 5–24. [Google Scholar] [CrossRef] [PubMed]
- Dempewolf, H.; Baute, G.; Anderson, J.; Kilian, B.; Smith, C.; Guarino, L. Past and future use of wild relatives in crop breeding. Crop Sci. 2017, 57, 1070–1082. [Google Scholar] [CrossRef] [Green Version]
- Maxted, N.; Kell, S.; Ford-Lloyd, B.; Dulloo, E.; Toledo, Á. Toward the systematic conservation of global crop wild relative diversity. Crop Sci. 2012, 52, 774–785. [Google Scholar] [CrossRef]
- Zhang, H.; Yasmin, F.; Song, B.-H. Neglected treasures in the wild—Legume wild relatives in food security and human health. Curr. Opin. Plant Biol. 2019, 49, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Huber, H.; Wiggerman, L. Shade avoidance in the clonal herb Trifolium fragiferum: A field study with experimentally manipulated vegetation height. Plant Ecol. 1997, 130, 53–62. [Google Scholar] [CrossRef]
- Legume Phylogeny Working Group (LPWG); Andrella, G.C.; Atahuachi Burgos, M.; Bagnatori Sartori, Â.L.; Balan, A.; Bandyopadhyay, S.; Barbosa Pinto, R.; Barrett, R.; Boatwright, J.S.; Broich, S.L.; et al. The World Checklist of Vascular Plants (WCVP): Fabaceae. In Catalogue of Life Checklist; Bánki, O., Roskov, Y., Döring, M., Ower, G., Vandepitte, L., Hobern, D., Remsen, D., Schalk, P., DeWalt, R.E., Keping, M., et al., Eds.; The Royal Botanic Gardens, Kew: Richmond, UK, 2022. [Google Scholar] [CrossRef]
- Townsend, C.E. Miscellaneous perennial clovers. In Clover Science and Technology; Taylor, J.L., Ed.; ASA/CSSA/SSSA: Madison, WI, USA, 1985; pp. 563–578. [Google Scholar]
- Andersone-Ozola, U.; Jēkabsone, A.; Karlsons, A.; Romanovs, M.; Ievinsh, G. Soil chemical properties and mineral nutrition of Latvian accessions of Trifolium fragiferum, a crop wild relative plant species. Environ. Exp. Biol. 2021, 19, 245–254. [Google Scholar]
- Jēkabsone, A.; Andersone-Ozola, U.; Karlsons, A.; Neiceniece, L.; Romanovs, M.; Ievinsh, G. Dependence on nitrogen availability and rhizobial symbiosis of different accessions of Trifolium fragiferum, a crop wild relative legume species, as related to physiological traits. Plants 2022, 11, 1141. [Google Scholar] [CrossRef]
- Dabkevičiene, G.; Dabkevičius, Z. Evaluation of wild red clover (Trifolium pratense L.) ecotypes and hybrid populations (Trifolium pratense L. × Trifolium diffusum Ehrh.) for clover rot resistance (Sclerotinia trifoliorum Erikss.). Biologija 2005, 3, 54–58. [Google Scholar]
- Rancane, S.; Jansone, B.; Sparnina, M. The evaluation of genetic resources of forage legumes collected from natural grassland. In Sustainable Grassland Productivity, Proceedings of the 21st General Meeting of the European Grassland Federation, Badajoz, Spain, 3–6 April 2006; Lloveras, J., Gonzalez-Rodriguez, A., Vazquez-Yanez, O., Pineiro, J., Santamaria, O., Olea, L., Poblaciones, M.J., Eds.; European Grassland Federation: Madrid, Spain, 2006; pp. 327–329. [Google Scholar]
- Bērziņa, I.; Zhuk, A.; Veinberga, I.; Rashal, I.; Ruņģis, D. Genetic fingerprinting of Latvian red clover (Trifolium pratense L.) varieties using simple sequence repeat (SSR) markers: Comparison over time and space. Latv. J. Agron. 2008, 11, 28–33. [Google Scholar]
- Paplauskienė, V.; Dabkevičienė, G. A study of genetic diversity in Trifolium hybridum varieties using morphological characters and ISSR markers. Zemdirb.–Agric. 2012, 99, 313–318. [Google Scholar]
- Lemežienė, N.; Stukonis, V.; Kemešytė, V.; Norkevičienė, E. Wild and semi natural ecotypes of perennial grasses and legumes–for breeding purposes. In Breeding Grasses and Protein Crops in the Era of Genomics; Brazauskas, G., Statkevičiūtė, G., Jonavičienė, K., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 88–95. [Google Scholar]
- Rūsiņa, S. 1630* Boreal Baltic coastal meadows. In European Union Protected Habitats in Latvia. Interpretation Manual; Auniņš, A., Ed.; Latvian Fund for Nature, Ministry of Environmental Protection and Regional Development: Riga, Latvia, 2013; pp. 55–57. [Google Scholar]
- Heywood, V.H.; Zohary, D. A catalogue of the wild relatives of cultivated plants native to Europe. Flora Mediterr. 1995, 5, 375–415. [Google Scholar]
- Fitzgerald, H.; Palmé, A.; Asdal, Å.; Endresen, D.; Kiviharju, E.; Lund, B.; Rasmussen, M.; Thorjömsson, H.; Weibull, J. A regional approach to Nordic crop wild relative in situ conservation planning. Plant Genet. Resour. Charact. Util. 2019, 17, 196–207. [Google Scholar] [CrossRef] [Green Version]
- Nichols, P.G.H.; Revell, C.K.; Humphries, A.W.; Howie, J.H.; Hall, E.J.; Sandral, G.A.; Ghamkhar, K.; Harris, C.A. Temperate pasture legumes in Australia—Their history, current use, and future prospects. Crop Pasture Sci. 2012, 63, 691–725. [Google Scholar] [CrossRef]
- Gerard, P.J.; Aalders, L.T.; Hardwick, S.; Wilson, D.J. Investigation into the contrasting production of eight perennial clover cultivars in the first two years at field sites in in Waikato and Canterbury. N. Z. J. Agric. Res. 2022, 65, 271–289. [Google Scholar] [CrossRef]
- Rumbaugh, M.D.; Pendery, B.M.; James, D.W. Variation in the salinity tolerance of strawberry clover (Trifolium fragiferum L.). Plant Soil 1993, 153, 265–271. [Google Scholar] [CrossRef]
- Andersone-Ozola, U.; Jēkabsone, A.; Purmale, L.; Romanovs, M.; Ievinsh, G. Abiotic stress tolerance of coastal accessions of a promising forage legume species, Trifolium fragiferum. Plants 2021, 10, 1552. [Google Scholar] [CrossRef] [PubMed]
- Ievinsh, G.; Karlsons, A.; Jēkabsone, A.; Andersone-Ozola, U. Heavy metal tolerance and accumulation potential of coastal accessions of Trifolium fragiferum, a promising forage species. In Proceedings of the 10th International Scientific Conference Rural Development 2021, Vytautas Magnus University Agriculture Academy, Kaunas, Lithuania, 26–28 September 2021; pp. 214–219. [Google Scholar] [CrossRef]
- Jēkabsone, A.; Andersone-Ozola, U.; Karlsons, A.; Romanovs, M.; Ievinsh, G. Effect of salinity on growth, ion accumulation and mineral nutrition of different accessions of a crop wild relative legume species, Trifolium fragiferum. Plants 2022, 11, 797. [Google Scholar] [CrossRef] [PubMed]
- Heywood, V.; Casas, A.; Ford-Lloyd, B.; Kell, S.; Maxted, N. Conservation and sustainable use of crop wild relatives. Agric. Ecosyst. Environ. 2007, 121, 245–255. [Google Scholar] [CrossRef]
- Brehm, J.M.; Ford-Lloyd, B.V.; Maxted, N.; Martins-Loução, M.A. Using neutral genetic diversity to prioritize crop wild relative populations: A Portuguese endemic case study for Dianthus cintranus Boiss. & Reut. subsp. barbatus R. Fern. & Franco. In Agrobiodiversity Conservation: Securing the Diversity of Crop Wild Relatives and Landraces; CABI: Wallingford, UK, 2012; pp. 193–210. [Google Scholar]
- Mondini, L.; Nooorani, A.; Pagnotta, M.A. Assessing plant genetic diversity by molecular tools. Diversity 2009, 1, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Gore, M.; Buckler, E.S.; Yu, J. Status and prospects of association mapping in plants. Plant Genome 2008, 1, 5–20. [Google Scholar] [CrossRef]
- Zalapa, J.E.; Cuevas, H.; Zhu, H.; Steffan, S.; Senalik, D.; Zeldin, E.; McCown, B.; Harbut, R.; Simon, P. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am. J. Bot. 2012, 99, 193–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalia, R.K.; Raj, M.K.; Kalia, S.; Singh, R.; Dhawan, A.K. Microsatellite markers: An overview of the recent progress in plants. Euphytica 2011, 177, 309–334. [Google Scholar] [CrossRef]
- Bulińska-Radomska, Z. Enzyme polymorphism and adaptation in strawberry clover (Trifolium fragiferum L.). Genet. Resour. Crop Evol. 2000, 47, 197–205. [Google Scholar] [CrossRef]
- Haerinasab, M.; Rahiminejad, M.R.; Ellison, N.W. Transferability of simple sequence repeat (SSR) markers developed in red clover (Trifolium pratense L.) to some Trifolium species. Iranian J. Sci. Technol. Transact. A Sci. 2016, 40, 59–62. [Google Scholar] [CrossRef]
- Haerinasab, M.; Ali-Farsangi, F.; Bordbar, F.; Farouji, A. Genetic diversity and infraspecific relationships of Trifolium fragiferum L. in Iran. Iranian J. Sci. Technol. Transact. A Sci. 2020, 44, 345–354. [Google Scholar] [CrossRef]
- Porebski, S.; Bailey, L.G.; Baum, B.R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Report. 1997, 15, 8–15. [Google Scholar] [CrossRef]
- Kölliker, R.; Enkerli, J.; Widmer, F. Characterization of novel microsatellite loci for red clover (Trifolium pratense L.) from enriched genomic libraries. Mol. Ecol. Notes 2006, 6, 50–53. [Google Scholar] [CrossRef]
- Sato, S.; Isobe, S.; Asamizu, E.; Ohmido, N.; Kataoka, R.; Nakamura, Y.; Kaneko, T.; Sakurai, N.; Okumura, K.; Klimenko, I.; et al. Comprehensive structural analysis of the genome of red clover (Trifolium pratense L.). DNA Res. 2005, 12, 301–364. [Google Scholar] [CrossRef] [Green Version]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Takezaki, N.; Nei, M.; Tamura, K. POPTREEW: Web version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Mol. Biol. Evol. 2014, 31, 1622–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mable, B.K. Conservation of adaptive potential and functional diversity: Integrating old and new approaches. Conserv. Genet. 2018, 20, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Abratowska, A.; Wasowicz, P.; Bednarek, P.T.; Telka, J.; Wierzbicka, M. Morphological and genetic distinctiveness of metallicolous and non-metallicolous populations of Armeria maritima s.l. (Plumbaginaceae) in Poland. Plant Biol. 2012, 14, 586–595. [Google Scholar] [CrossRef]
- Kirk, H.; Freeland, J.R. Applications and implications of neutral versus non-neutral markers in molecular ecology. Int. J. Mol. Sci. 2011, 12, 3966–3988. [Google Scholar] [CrossRef] [Green Version]
- Arnaud-Haond, S.; Alberto, F.; Teixeira, S.; Procaccini, G.; Serrao, E.A.; Duarte, C.M. Assessing genetic diversity in clonal organisms: Low diversity or low resolution? Combining power and cost efficiency in selecting markers. J. Hered. 2005, 96, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Magos-Brehm, J.; Kell, S.; Thormann, I.; Gaisberger, H.; Dulloo, M.E.; Maxted, N. Interactive Toolkit for Crop Wild Relative Conservation Planning Version 1.0; University of Birmingham: Birmingham, UK; Bioversity International: Rome, Italy, 2017; Available online: www.cropwildrelatives.org/conservation-toolkit/ (accessed on 1 June 2022).
- Watson-Jones, S.J.; Maxted, N.; Ford-Lloyd, B.V. Population baseline data for monitoring genetic diversity loss for 2010: A case study for Brassica species in the UK. Biol. Conserv. 2006, 132, 490–499. [Google Scholar] [CrossRef]
- Maggioni, L.; von Bothmer, R.; Poulsen, G.; Branca, F.; Bagger Jørgensen, R. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy. Hereditas 2014, 151, 145–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
TF1 | TF2 | TF2b | TF3 | TF4 | TF5 | TF6 | TF7 | TF8 | TF9 | TF10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
TF1 | 0 | 001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
TF2 | 0.247 | 0 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
TF2b | 0.318 | 0.491 | 0 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
TF3 | 0.133 | 0.279 | 0.112 | 0 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
TF4 | 0.357 | 0.406 | 0.514 | 0.314 | 0 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
TF5 | 0.278 | 0.304 | 0.410 | 0.235 | 0.317 | 0 | 0.066 | 0.259 | 0.001 | 0.001 | 0.001 |
TF6 | 0.249 | 0.208 | 0.400 | 0.204 | 0.295 | 0.038 | 0 | 0.001 | 0.001 | 0.001 | 0.001 |
TF7 | 0.300 | 0.321 | 0.417 | 0.248 | 0.343 | 0.017 | 0.066 | 0 | 0.001 | 0.001 | 0.001 |
TF8 | 0.238 | 0.284 | 0.291 | 0.228 | 0.297 | 0.244 | 0.241 | 0.245 | 0 | 0.001 | 0.001 |
TF9 | 0.281 | 0.069 | 0.429 | 0.212 | 0.374 | 0.265 | 0.152 | 0.288 | 0.286 | 0 | 0.001 |
TF10 | 0.214 | 0.227 | 0.256 | 0.111 | 0.217 | 0.177 | 0.153 | 0.199 | 0.239 | 0.160 | 0 |
TF1 | 0 | 001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruņģis, D.E.; Andersone-Ozola, U.; Jēkabsone, A.; Ievinsh, G. Genetic Diversity and Structure of Latvian Trifolium fragiferum Populations, a Crop Wild Relative Legume Species, in the Context of the Baltic Sea Region. Diversity 2023, 15, 473. https://doi.org/10.3390/d15040473
Ruņģis DE, Andersone-Ozola U, Jēkabsone A, Ievinsh G. Genetic Diversity and Structure of Latvian Trifolium fragiferum Populations, a Crop Wild Relative Legume Species, in the Context of the Baltic Sea Region. Diversity. 2023; 15(4):473. https://doi.org/10.3390/d15040473
Chicago/Turabian StyleRuņģis, Dainis E., Una Andersone-Ozola, Astra Jēkabsone, and Gederts Ievinsh. 2023. "Genetic Diversity and Structure of Latvian Trifolium fragiferum Populations, a Crop Wild Relative Legume Species, in the Context of the Baltic Sea Region" Diversity 15, no. 4: 473. https://doi.org/10.3390/d15040473
APA StyleRuņģis, D. E., Andersone-Ozola, U., Jēkabsone, A., & Ievinsh, G. (2023). Genetic Diversity and Structure of Latvian Trifolium fragiferum Populations, a Crop Wild Relative Legume Species, in the Context of the Baltic Sea Region. Diversity, 15(4), 473. https://doi.org/10.3390/d15040473