The Necessity of Maintaining the Resilience of Peri-Urban Forests to Secure Environmental and Ecological Balance: A Case Study of Forest Stands Located on the Romanian Sector of the Pannonian Plain
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Descriptive Statistics
3.2. Fitting of Experimental Diameter Distribution
3.3. Stand Stability Height-to-Diameter Ratio (h/d Ratio) in Relation to Diameter and Species
3.4. Stand Stability Height-to-Diameter Ratio (h/d Ratio) in Relation to Wood Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Khurshid, A.; Qayyum, S.; Calin, A.C. The Role of Green Innovations, Environmental Policies and Carbon Taxes in Achieving the Sustainable Development Goals of Carbon Neutrality. Environ. Sci. Pollut. Res. 2022, 29, 8393–8407. [Google Scholar] [CrossRef]
- Whyte, K. Indigenous Climate Change Studies: Indigenizing Futures, Decolonizing the Anthropocene. Engl. Lang. Notes 2017, 55, 153–162. [Google Scholar] [CrossRef]
- Mora, C.; Spirandelli, D.; Franklin, E.C.; Lynham, J.; Kantar, M.B.; Miles, W.; Smith, C.Z.; Freel, K.; Moy, J.; Louis, L.V.; et al. Broad Threat to Humanity from Cumulative Climate Hazards Intensified by Greenhouse Gas Emissions. Nat. Clim. Chang. 2018, 8, 1062–1071. [Google Scholar] [CrossRef]
- Forzieri, G.; Bianchi, A.; Silva, F.B.E.; Marin Herrera, M.A.; Leblois, A.; Lavalle, C.; Aerts, J.C.J.H.; Feyen, L. Escalating Impacts of Climate Extremes on Critical Infrastructures in Europe. Glob. Environ. Chang. 2018, 48, 97–107. [Google Scholar] [CrossRef]
- Ouyang, Z.; Sciusco, P.; Jiao, T.; Feron, S.; Lei, C.; Li, F.; John, R.; Fan, P.; Li, X.; Williams, C.A.; et al. Albedo Changes Caused by Future Urbanization Contribute to Global Warming. Nat. Commun. 2022, 13, 3800. [Google Scholar] [CrossRef]
- Muntean, M.; Guizzardi, D.; Schaaf, E.; Crippa, M.; Solazzo, E.; Olivier, J.; Vignati, E. Fossil CO2 Emissions of All World Countries; Publications Office of the European Union: Luxembourg, 2018; Volume 2. [Google Scholar]
- Gurmesa, G.A.; Wang, A.; Li, S.; Peng, S.; de Vries, W.; Gundersen, P.; Ciais, P.; Phillips, O.L.; Hobbie, E.A.; Zhu, W.; et al. Retention of Deposited Ammonium and Nitrate and Its Impact on the Global Forest Carbon Sink. Nat. Commun. 2022, 13, 880. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.J. Sustainable Development Goals and the Forest Sector-A Complex Relationship. Forests 2019, 10, 152. [Google Scholar] [CrossRef] [Green Version]
- Börner, J.; Schulz, D.; Wunder, S.; Pfaff, A. The Effectiveness of Forest Conservation Policies and Programs. Annu. Rev. Resour. Econ. 2020, 12, 45–64. [Google Scholar] [CrossRef]
- Mansoor, S.; Farooq, I.; Kachroo, M.M.; Mahmoud, A.E.D.; Fawzy, M.; Popescu, S.M.; Alyemeni, M.N.; Sonne, C.; Rinklebe, J.; Ahmad, P. Elevation in Wildfire Frequencies with Respect to the Climate Change. J. Environ. Manag. 2022, 301, 113769. [Google Scholar] [CrossRef]
- Moosmann, L.; Siemons, A.; Fallasch, F.; Schneider, L.; Urrutia, C.; Wissner, N.; Oppelt, D. The COP26 Climate Change Conference. In Proceedings of the Glasgow Climate Change Conference, Glasgow, Scotland, 31 October–12 November 2021. [Google Scholar]
- Krishnan, R.; Agarwal, R.; Bajada, C.; Arshinder, K. Redesigning a Food Supply Chain for Environmental Sustainability – An Analysis of Resource Use and Recovery. J. Clean. Prod. 2020, 242, 118374. [Google Scholar] [CrossRef]
- Wen, C.; Dong, W.; Zhang, Q.; He, N.; Li, T. A System Dynamics Model to Simulate the Water-Energy-Food Nexus of Resource-Based Regions: A Case Study in Daqing City, China. Sci. Total Environ. 2022, 806, 150497. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Gibbs, H.K.; Ferreira, L.; Grau, R.; Mayaux, P.; Meyfroidt, P.; Morton, D.C.; Rudel, T.K.; Gasparri, I.; Munger, J. Estimating the World’s Potentially Available Cropland Using a Bottom-up Approach. Glob. Environ. Chang. 2013, 23, 892–901. [Google Scholar] [CrossRef]
- Kurowska, K.; Kryszk, H.; Marks-Bielska, R.; Mika, M.; Leń, P. Conversion of Agricultural and Forest Land to Other Purposes in the Context of Land Protection: Evidence from Polish Experience. Land Use Policy 2020, 95, 104614. [Google Scholar] [CrossRef]
- Bastin, J.F.; Finegold, Y.; Garcia, C.; Gellie, N.; Lowe, A.; Mollicone, D.; Rezende, M.; Routh, D.; Sacande, M.; Sparrow, B.; et al. Response to Comments on “The Global Tree Restoration Potential”. Science 2019, 366, eaay8108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holl, K.D.; Brancalion, P.H.S. Tree Planting Is Not a Simple Solution. Science 2020, 368, 580–581. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Morcillo, M.; Torralba, M.; Baiges, T.; Bernasconi, A.; Bottaro, G.; Brogaard, S.; Bussola, F.; Díaz-Varela, E.; Geneletti, D.; Grossmann, C.M.; et al. Scanning the Solutions for the Sustainable Supply of Forest Ecosystem Services in Europe. Sustain. Sci. 2022, 17, 2013–2029. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.E.M.; Evans, T.; Venter, O.; Williams, B.; Tulloch, A.; Stewart, C.; Thompson, I.; Ray, J.C.; Murray, K.; Salazar, A.; et al. The Exceptional Value of Intact Forest Ecosystems. Nat. Ecol. Evol. 2018, 2, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Makovníková, J.; Kološta, S.; Flaška, F.; Pálka, B. Potential of Regulating Ecosystem Services in Relation to Natural Capital in Model Regions of Slovakia. Sustainability 2023, 15, 1076. [Google Scholar] [CrossRef]
- Frank, G.; Müller, F. Voluntary Approaches in Protection of Forests in Austria. Environ. Sci. Policy 2003, 6, 261–269. [Google Scholar] [CrossRef]
- Bončina, A.; Simončič, T.; Rosset, C. Assessment of the Concept of Forest Functions in Central European Forestry. Environ. Sci. Policy 2019, 99, 123–135. [Google Scholar] [CrossRef]
- Pilli, R.; Pase, A. Forest Functions and Space: A Geohistorical Perspective of European Forests. IForest 2018, 11, 79. [Google Scholar] [CrossRef] [Green Version]
- Tiemann, A.; Ring, I. Towards Ecosystem Service Assessment: Developing Biophysical Indicators for Forest Ecosystem Services. Ecol. Indic. 2022, 137, 108704. [Google Scholar] [CrossRef]
- Nicolescu, V.-N. 1.1 Romanian Forests and Forestry: An Overview. In Plan B for Romania’s Forests and Society; Universitatea “Transilvania”: Braşov, Romania, 2022; pp. 39–48. [Google Scholar]
- Nowak, D.J.; Walton, J.T.; Dwyer, J.F.; Kaya, L.G.; Myeong, S. The Increasing Influence of Urban Environments on US Forest Management. J. For. 2005, 103, 377–382. [Google Scholar]
- Henwood, K.; Pidgeon, N. Talk about Woods and Trees: Threat of Urbanization, Stability, and Biodiversity. J. Environ. Psychol. 2001, 21, 125–147. [Google Scholar] [CrossRef]
- Funk, J.M.; Aguilar-Amuchastegui, N.; Baldwin-Cantello, W.; Busch, J.; Chuvasov, E.; Evans, T.; Griffin, B.; Harris, N.; Ferreira, M.N.; Petersen, K.; et al. Securing the Climate Benefits of Stable Forests. Clim. Policy 2019, 19, 845–860. [Google Scholar] [CrossRef] [Green Version]
- Berger, F.; Rey, F. Mountain Protection Forests against Natural Hazards and Risks: New French Developments by Integrating Forests in Risk Zoning. Nat. Hazards 2004, 33, 395–404. [Google Scholar] [CrossRef]
- Wonn, H.T.; O’Hara, K.L. Height:Diameter Ratios and Stability Relationships for Four Northern Rocky Mountain Tree Species. West. J. Appl. For. 2001, 16, 87–94. [Google Scholar] [CrossRef] [Green Version]
- O’Hara Kevin, L. What Is Close-to-Nature Silviculture in a Changing World? Forestry 2016, 89, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; He, X.; Lei, X.; Feng, L.; Zhou, Z.; Lu, J. Tree Size Inequality and Competition Effects on Nonlinear Mixed Effects Crown Width Model for Natural Spruce-Fir-Broadleaf Mixed Forest in Northeast China. For. Ecol. Manag. 2022, 518, 120291. [Google Scholar] [CrossRef]
- Bosela, M.; Lukac, M.; Castagneri, D.; Sedmák, R.; Biber, P.; Carrer, M.; Konôpka, B.; Nola, P.; Nagel, T.A.; Popa, I.; et al. Contrasting Effects of Environmental Change on the Radial Growth of Co-Occurring Beech and Fir Trees across Europe. Sci. Total Environ. 2018, 615, 1460–1469. [Google Scholar] [CrossRef]
- Cukor, J.; Vacek, Z.; Vacek, S.; Linda, R.; Podrázský, V. Biomass Productivity, Forest Stability, Carbon Balance, and Soil Transformation of Agricultural Land Afforestation: A Case Study of Suitability of Native Tree Species in the Submontane Zone in Czechia. Catena 2022, 210, 105893. [Google Scholar] [CrossRef]
- Zhang, L.; Bi, H.; Cheng, P.; Davis, C.J. Modeling Spatial Variation in Tree Diameter-Height Relationships. For. Ecol. Manag. 2004, 189, 317–329. [Google Scholar] [CrossRef]
- Raptis, D.I.; Kazana, V.; Kazaklis, A.; Stamatiou, C. Mixed-Effects Height–Diameter Models for Black Pine (Pinus Nigra Arn.) Forest Management. Trees -Struct. Funct. 2021, 35, 1167–1183. [Google Scholar] [CrossRef]
- Crecente-Campo, F.; Tomé, M.; Soares, P.; Diéguez-Aranda, U. A Generalized Nonlinear Mixed-Effects Height–Diameter Model for Eucalyptus Globulus L. in Northwestern Spain. For. Ecol. Manag. 2010, 259, 943–952. [Google Scholar] [CrossRef] [Green Version]
- Ozcelik, R. Tree Species Diversity of Natural Mixed Stands in Eastern Black Sea and Western Mediterranean Region of Turkey. J. Environ. Biol. 2009, 30, 6. [Google Scholar]
- Kang, H.; Seely, B.; Wang, G.; Cai, Y.; Innes, J.; Zheng, D.; Chen, P.; Wang, T. Simulating the Impact of Climate Change on the Growth of Chinese Fir Plantations in Fujian Province, China. N. Z. J. For. Sci. 2017, 47, 1–14. [Google Scholar] [CrossRef]
- Huang, S.; Wiens, D.P.; Yang, Y.; Meng, S.X.; Vanderschaaf, C.L. Assessing the Impacts of Species Composition, Top Height and Density on Individual Tree Height Prediction of Quaking Aspen in Boreal Mixedwoods. For. Ecol. Manag. 2009, 258, 1235–1247. [Google Scholar] [CrossRef]
- Vanclay, J.K. Tree Diameter, Height and Stocking in Even-Aged Forests. Ann. For. Sci. 2009, 66, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Giurgiu, V.; Decei, I.; Drăghiciu, D. Metode şi Tabele Metode şi Tabele Dendrometrice [Methods and Yield Tables]; Editura Ceres: Bucharest, Romania, 2004; pp. 27–575. [Google Scholar]
- Budeanu, M.; Apostol, E.N.; Popescu, F.; Postolache, D.; Ioniţă, L. Testing of the Narrow Crowned Norway Spruce Ideotype (Picea Abies f. Pendula) and the Hybrids with Normal Crown Form (Pyramidalis) in Multisite Comparative Trials. Sci. Total Environ. 2019, 689, 980–990. [Google Scholar] [CrossRef]
- Pascu, I.-S.; Dobre, A.-C.; Badea, O.; Andrei Tanase, M. Estimating Forest Stand Structure Attributes from Terrestrial Laser Scans. Sci. Total Environ. 2019, 691, 205–215. [Google Scholar] [CrossRef]
- Chivulescu, S.; Ciceu, A.; Leca, S.; Apostol, B.; Popescu, O.; Badea, O. Development Phases and Structural Characteristics of the Penteleu-Viforata Virgin Forest in the Curvature Carpathians. Iforest 2020, 13, 389–395. [Google Scholar] [CrossRef]
- Grosjean, P.; Ibanez, F. Package for Analysis of Space-Time Ecological Series. PASTECS, R Package, Version 1.2-0 for R v. 2.0. 0 & Version 1.0-1 for S+ 2000 rel. 2004. Available online: https://cran.r-project.org/web/packages/pastecs/pastecs.pdf (accessed on 17 January 2023).
- Hogg, R.V.; Craig, A.T. Some Special Distributions. Introd. Math. Stat. 1978, 1, 156–168. [Google Scholar]
- Sharif, M.N.; Islam, M.N. The Weibull Distribution as a General Model for Forecasting Technological Change. Technol. Forecast. Soc. Chang. 1980, 18, 247–256. [Google Scholar] [CrossRef]
- Chivulescu, Ș.; Pitar, D.; Apostol, B.; Leca, Ș.; Badea, O. Importance of Dead Wood in Virgin Forest Ecosystem Functioning in Southern Carpathians. Forests 2022, 13, 409. [Google Scholar] [CrossRef]
- Stephens, M.A. Tests of Fit for the Logistic Distribution Based on the Empirical Distribution Function. Biometrika 1979, 66, 591–595. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2009; Available online: https://cir.nii.ac.jp/crid/1570854175843385600 (accessed on 17 January 2023).
- Giurgiu, V. Metode ale Statisticii Matematice Aplicate în Silvicultură [Mathematical Statistical Methods Applied in Forestry]; Ceres: Bucharest, Romania, 1972. [Google Scholar]
- Monserud, R.A.; Sterba, H. A Basal Area Increment Model for Individual Trees Growing in Even- and Uneven-Aged Forest Stands in Austria. For. Ecol. Manag. 1996, 80, 57–80. [Google Scholar] [CrossRef]
- Roessiger, J.; Ficko, A.; Clasen, C.; Griess, V.C.; Knoke, T. Variability in Growth of Trees in Uneven-Aged Stands Displays the Need for Optimizing Diversified Harvest Diameters. Eur. J. For. Res. 2016, 135, 283–295. [Google Scholar] [CrossRef]
- Bayat, M.; Bettinger, P.; Heidari, S.; Khalyani, A.H.; Jourgholami, M.; Hamidi, S.K. Estimation of Tree Heights in an Uneven-Aged, Mixed Forest in Northern Iran Using Artificial Intelligence and Empirical Models. Forests 2020, 11, 324. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H. The Course of Tree Growth. Theory and Reality. For. Ecol. Manag. 2020, 478, 118508. [Google Scholar] [CrossRef]
- Zhang, L.; Gove, J.H.; Liu, C.; Leak, W.B. A Finite Mixture of Two Weibull Distributions for Modeling the Diameter Distributions of Rotated-Sigmoid, Uneven-Aged Stands. Can. J. For. Res. 2001, 31, 1654–1659. [Google Scholar] [CrossRef]
- Bergeron, Y.; Leduc, A.; Harvey, B.D.; Gauthier, S. Natural Fire Regime: A Guide for Sustainable Management of the Canadian Boreal Forest. Silva Fenn. 2002, 36, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Bebbington, M.; Lai, C.D.; Zitikis, R. A Flexible Weibull Extension. Reliab. Eng. Syst. Saf. 2007, 92, 719–726. [Google Scholar] [CrossRef]
- Mitchell, B. A Comparison of Chi-Square and Kolmogorov-Smirnov Tests. Area 1971, 3, 237–241. [Google Scholar]
- Blood, A.; Starr, G.; Escobedo, F.; Chappelka, A.; Staudhammer, C. How Do Urban Forests Compare? Tree Diversity in Urban and Periurban Forests of the Southeastern US. Forests 2016, 7, 120. [Google Scholar] [CrossRef] [Green Version]
- Grimm, V.; Wissel, C. Babel, or the Ecological Stability Discussions: An Inventory and Analysis of Terminology and a Guide for Avoiding Confusion. Oecologia 1997, 109, 323–334. [Google Scholar] [CrossRef]
- Motta, R.; Haudemand, J.-C. Protective Forests and Silvicultural Stability. Mt. Res. Dev. 2000, 20, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.S.; Oliver, C.D. Stability and Density Management in Douglas-Fir Plantations. Can. J. For. Res. 2000, 30, 910–920. [Google Scholar] [CrossRef]
- Harrington, T.B.; Harrington, C.A.; DeBell, D.S. Effects of Planting Spacing and Site Quality on 25-Year Growth and Mortality Relationships of Douglas-Fir (Pseudotsuga Menziesii Var. Menziesii). For. Ecol. Manag. 2009, 258, 18–25. [Google Scholar] [CrossRef]
- Valenzuela, C.E.; Ballesta, P.; Maldonado, C.; Baettig, R.; Arriagada, O.; Mafra, G.S.; Mora, F. Bayesian Mapping Reveals Large-Effect Pleiotropic QTLs for Wood Density and Slenderness Index in 17-Year-Old Trees of Eucalyptus Cladocalyx. Forests 2019, 10, 241. [Google Scholar] [CrossRef] [Green Version]
- 67. Chivulescu, S.; Leca, S.; Ciceu, A.; Pitar, D.; Apostol, B. Predictors of wood quality of trees in primary forests in the Southern Carpathians. Poljoprivreda i Sumarstvo 2019, 65, 13. [Google Scholar] [CrossRef]
- Brazier, J.D. The Effect of Forest Practices on Quality of the Harvested Crop. Forestry 1977, 50, 49–66. [Google Scholar] [CrossRef]
- Bodin, P.; Wiman, B.L.B. The Usefulness of Stability Concepts in Forest Management When Coping with Increasing Climate Uncertainties. For. Ecol. Manag. 2007, 242, 541–552. [Google Scholar] [CrossRef]
- Pretzsch, H.; Rais, A. Wood Quality in Complex Forests versus Even-Aged Monocultures: Review and Perspectives. Wood Sci Technol 2016, 50, 845–880. [Google Scholar] [CrossRef]
- Drew, D.M.; Downes, G.M.; Seifert, T.; Eckes-Shepard, A.; Achim, A. A Review of Progress and Applications in Wood Quality Modelling. Curr. For. Rep. 2022, 8, 317–332. [Google Scholar] [CrossRef]
- Boncina, A.; Cavlovic, J.; Curovic, M.; Govedar, Z.; Klopcic, M.; Medarevic, M. A Comparative Analysis of Recent Changes in Dinaric Uneven-Aged Forests of the NW Balkans. Forestry 2014, 87, 71–84. [Google Scholar] [CrossRef]
- Tu, G.; Abildtrup, J.; Garcia, S. Preferences for Urban Green Spaces and Peri-Urban Forests: An Analysis of Stated Residential Choices. Landsc. Urban Plan. 2016, 148, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, A.; Deuffic, P.; Hujala, T.; Nichiforel, L.; Feliciano, D.; Jodlowski, K.; Lind, T.; Marchal, D.; Talkkari, A.; Teder, M.; et al. Extension, Advice and Knowledge Systems for Private Forestry: Understanding Diversity and Change across Europe. Land Use Policy 2020, 94, 104522. [Google Scholar] [CrossRef]
- Nichiforel, L.; Schanz, H. Property Rights Distribution and Entrepreneurial Rent-Seeking in Romanian Forestry: A Perspective of Private Forest Owners. Eur. J. For. Res. 2011, 130, 369–381. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- INSSE Oficial Website of Romanian National Institute of Statistics. Available online: https://insse.ro/cms/en (accessed on 15 January 2023).
- Timis County Council, Romania Timis County Council Information Report. Available online: https://www.cjtimis.ro/infocjt/admin/upload/9wv26dmxrpb3.pdf (accessed on 7 December 2022).
- Elands, B.H.M.; O’Leary, T.N.; Boerwinkel, H.W.J.; Wiersum, K.F. Forests as a Mirror of Rural Conditions; Local Views on the Role of Forests across Europe. Proc. For. Policy Econ. 2004, 6, 469–482. [Google Scholar] [CrossRef]
Research Plot | Coordinates | Number of Trees per Hectare | Minimum dbh (cm) | Maximum dbh (cm) | Average dbh (cm) | Standard Deviation of dbh (s) | Variance of dbh (s2) | Coefficient of Variance (s %) |
---|---|---|---|---|---|---|---|---|
Bazos | 46°08′07″ N 21°00′32″ E | 203 | 11.50 | 108.00 | 47.07 | 22.69 | 514.97 | 48 |
Bezdin | 46°09′39.2″ N 21°07′39.8″ E | 722 | 2.67 | 87.5 | 18.65 | 18.34 | 336.59 | 98 |
Ceala | 46°10′04.9″ N 21°16′33.1″ E | 664 | 2.35 | 68.25 | 18.20 | 15.52 | 240.93 | 85 |
Popin | 45°45′18.9″ N 21°25′47.3″ E | 607 | 4.00 | 55.00 | 20.87 | 11.49 | 132.08 | 55 |
Research Plot | Distribution | Testing the Null Hypothesis with the Test | |||||
---|---|---|---|---|---|---|---|
Chi-Square Criterion | Kolmogorov–Smirnov | ||||||
Experimental Value | Theoretical Value (α = 0.05) | Differences | Experimental Value | Theoretical Value (α = 0.05) | Differences | ||
Bazos | Normal | 81.87 | 237.24 | insignificant | 0.16 | 0.09 | significant |
Weibull | 56.52 | insignificant | 0.13 | significant | |||
Gamma | 48.51 | insignificant | 0.11 | significant | |||
Bezdin | Normal | 1200.83 | 785.62 | significant | 0.22 | 0.05 | significant |
Weibull | 357.49 | insignificant | 0.12 | significant | |||
Gamma | 350.50 | insignificant | 0.13 | significant | |||
Ceala | Normal | 1606.92 | 724.01 | significant | 0.25 | 0.05 | significant |
Weibull | 738.48 | insignificant | 0.18 | significant | |||
Gamma | 689.18 | insignificant | 0.19 | significant | |||
Popin | Normal | 127.75 | 662.28 | insignificant | 0.10 | 0.05 | significant |
Weibull | 75.86 | insignificant | 0.08 | significant | |||
Gamma | 91.87 | insignificant | 0.09 | significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chivulescu, S.; Cadar, N.; Hapa, M.; Capalb, F.; Radu, R.G.; Badea, O. The Necessity of Maintaining the Resilience of Peri-Urban Forests to Secure Environmental and Ecological Balance: A Case Study of Forest Stands Located on the Romanian Sector of the Pannonian Plain. Diversity 2023, 15, 380. https://doi.org/10.3390/d15030380
Chivulescu S, Cadar N, Hapa M, Capalb F, Radu RG, Badea O. The Necessity of Maintaining the Resilience of Peri-Urban Forests to Secure Environmental and Ecological Balance: A Case Study of Forest Stands Located on the Romanian Sector of the Pannonian Plain. Diversity. 2023; 15(3):380. https://doi.org/10.3390/d15030380
Chicago/Turabian StyleChivulescu, Serban, Nicolae Cadar, Mihai Hapa, Florin Capalb, Raul Gheorghe Radu, and Ovidiu Badea. 2023. "The Necessity of Maintaining the Resilience of Peri-Urban Forests to Secure Environmental and Ecological Balance: A Case Study of Forest Stands Located on the Romanian Sector of the Pannonian Plain" Diversity 15, no. 3: 380. https://doi.org/10.3390/d15030380
APA StyleChivulescu, S., Cadar, N., Hapa, M., Capalb, F., Radu, R. G., & Badea, O. (2023). The Necessity of Maintaining the Resilience of Peri-Urban Forests to Secure Environmental and Ecological Balance: A Case Study of Forest Stands Located on the Romanian Sector of the Pannonian Plain. Diversity, 15(3), 380. https://doi.org/10.3390/d15030380