Characterization of the Plastid Genome of the Vulnerable Endemic Indosasa lipoensis and Phylogenetic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, DNA Extraction and Genome Sequencing
2.2. Genome Assembly and Annotation
2.3. Repeated Sequence and Codon Usage Analysis
2.4. Comparative Analysis of the Entire Cp Genome
2.5. Phylogenetic Analysis
3. Results
3.1. Composition and Features of the Cp Genome
3.2. Chloroplast REPEATED SEQUENCES and SSRs
3.3. Codon Usage Analyses
3.4. Comparative Genomic Analyses
3.5. Phylogenetic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Specimen Collection Statement
References
- Guo, Z.H.; Li, D.Z. Advances in the Systematics and Biogeography of the Bambusoideae (Gramineae) with Re marks on Some Remaining Problems. Acta Bot. Yunnanica 2002, 24, 431–438. [Google Scholar]
- Fei, B.H. Bamboo Industry Promote Human Life Better. World Bamboo Ratt. 2019, 12, 1–4. [Google Scholar]
- Bi, Y.F.; Cai, H.J.; Wang, A.K.; Wang, Y.K. Progress in Genetic Engineering of Bamboo. Mol. Plant Breed. 2016, 14, 3390–3399. [Google Scholar]
- Reng, C.C.; Jia, Y.L.; Lou, Y.L.; Qiao, S.Y.; Xu, W.J. Analysis of nutritional and functional components of bamboo shoots in Chimonobambusa utilis, Guizhou. Food Ferment. Ind. 2017, 47, 214–221. [Google Scholar]
- Chen, G.; Li, X.; Yu, Y.F.; He, B.; Zhao, L.L. Research on constitutive relationship of flat-pressure laminated moso bamboo lumber for structural application. Build. Struct. 2021, 51, 135–139. [Google Scholar]
- Keng, B.J.; Wang, Z.P. Bambusoideae. In Flora Reipubliaris Sinica; Poaceae, Keng, B.J., Wang, Z.P., Eds.; Science Press: Beijing, China, 1996; Volume 9, pp. 204–205. [Google Scholar]
- Li, D.Z. Poaceae. In The Families and Genera of Chinese Vascular Plants; Science Press: Beijing, China, 2020; Volume I, pp. 616–617. [Google Scholar]
- Qin, L.J.; Ran, J.C.; Yao, Z.M.; Mo, J.W.; Tang, A.X.; Meng, H.L. Survey about Nectar Plant Resources in Maolan Nature Reserve. J. Anhui Agri. Sci. 2012, 40, 14425–14428. [Google Scholar]
- Deng, L.X.; Wang, Z.J. Study on the Resource of primary Bamboos and Their Ornamental Characteristics in Guizhou Province. Guizhou For. Sci. Technol. 2006, 1, 48–54. [Google Scholar]
- Wicke, S.; Schneeweiss, G.M.; DePamphilis, C.W.; Müller, K.F.; Quandt, D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol. Biol. 2011, 76, 273–297. [Google Scholar] [CrossRef]
- Fu, G.; Liu, Y.; Caraballo-Ortiz, M.A.; Zheng, C.; Liu, T.; Xu, Y.; Su, X. Characterization of the Complete Chloroplast Genome of the Dragonhead Herb, Dracocephalum heterophyllum (Lamiaceae), and Comparative Analyses with Related Species. Diversity 2022, 14, 110. [Google Scholar] [CrossRef]
- Zarei, A.; Ebrahimi, A.; Mathur, S.; Lawson, S. The First Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Pistachio (Pistacia vera). Diversity 2022, 14, 577. [Google Scholar] [CrossRef]
- Gu, L.; Hou, Y.; Wang, G.; Liu, Q.; Ding, W.; Weng, Q. Characterization of the chloroplast genome of Lonicera ruprechtiana Regel and comparison with other selected species of Caprifoliaceae. PLoS ONE 2022, 17, e0262813. [Google Scholar] [CrossRef]
- Choi, K.; Hang, Y.; Hong, J.-K. Comparative Chloroplast Genomics and Phylogenetic Analysis of Persicaria amphibia (Polygonaceae). Diversity 2022, 14, 641. [Google Scholar] [CrossRef]
- Wu, M.L.; Liu, Y.J.; Xu, X.; Zhu, X.; Gou, G.Q.; Dai, Z.X. The complete chloroplast genome sequence of Chimonobambusa luzhiensis, an endangered species endemic to Guizhou Province, China. Mitochondrial DNA Part B 2022, 7, 1360–1361. [Google Scholar] [CrossRef] [PubMed]
- Li, D.M.; Zhao, C.Y.; Liu, X.F. Complete chloroplast genome sequences of Kaempferia galanga and Kaempferia elegans: Molecular structures and comparative analysis. Molecules 2019, 24, 474. [Google Scholar] [CrossRef] [PubMed]
- Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lanfear, R. Long-Reads Reveal That the Chloroplast Genome Exists in Two Distinct Versions in Most Plants. Genome Biol. Evol. 2019, 11, 3372–3381. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.M.; Gou, G.S.; Liu, Y.J.; Zhu, X.; Dai, Z.X. Population Status and Protection Evaluation of Endemic Bamboo Species Ampelocalamus Scandens in Chishui River Wate. J. Mt. Agric. Biol. 2021, 40, 71–74. [Google Scholar]
- Hu, X.P.; Wei, T.L.; Zhu, X.; Dai, Z.X. Population Status and Protection Evaluation of Endemic Bamboo Species Indocalamus hirsutissimus in Wangmo County. J. Mt. Agric. Biol. 2022, 41, 67–70. [Google Scholar]
- Wu, M.L.; Wei, T.L.; Liu, Y.J.; Zhu, X.; Dai, Z.X. The Current Situation of the Wild Resources of the Endemic Species of Chimonobambusa lactistriata in Guizhou. J. Mt. Agric. Biol. 2022, 41, 64–68. [Google Scholar]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Jin, J.J.; Yu, W.B.; Yang, J.B.; Song, Y.; De Pamphilis, C.W.; Yi, T.S.; Li, D.Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.J.; Moore, M.J.; Li, D.Z.; Yi, T.S. PGA: A software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 2019, 15, 50. [Google Scholar] [CrossRef] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.; Drechsel, O.; Kahlau, S.; Bock, R. OrganellarGenomeDRAW—A suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013, 41, W575–W581. [Google Scholar] [CrossRef]
- Peden, J.F. Analysis of Codon Usage. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 1999. [Google Scholar]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef]
- Kurtz, S.; Phillippy, A.; Delcher, A.L.; Smoot, M.; Shumway, M.; Antonescu, C.; Salzberg, S.L. Versatile and open software for comparing large genomes. Genome Biol. 2004, 5, R12. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and efective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2019, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.X.; Hu, G.X.; Hu, G.W. Comparative genomics and phylogenetic relationships of two endemic and endangered species (Handeliodendron bodinieri and Eurycorymbus cavaleriei) of two monotypic genera within Sapindales. BMC Genom. 2022, 23, 27. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.P.; Bi, Y.; Yang, F.P.; Zhang, M.F.; Chen, X.Q.; Xue, J.; Zhang, X.H. Complete chloroplast genome sequences of Lilium: Insights into evolutionary dynamics and phylogenetic analyses. Sci. Rep. 2017, 7, 5751. [Google Scholar] [CrossRef]
- Jin, S.; Daniell, H. The Engineered Chloroplast Genome Just Got Smarter. Trends Plant Sci. 2015, 20, 622–640. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Guo, L.; Zhao, W.; Xu, J.; Li, Y.; Zhang, X.; Shen, X.; Wu, M.; Hou, X. Complete chloroplast genome sequence and phylogenetic analysis of Paeonia ostii. Molecules 2018, 23, 246. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, J.; Yang, Y.; Fan, C.; Chen, J. Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae. Front Plant Sci. 2017, 8, 1050. [Google Scholar] [CrossRef]
- Tu, D. The complete chloroplast genome of Indosasa hispida ‘Rainbow’ (Poaceae, Bambuseae): An ornamental bamboo species in horticulture. Mitochondrial DNA Part B 2022, 7, 619–621. [Google Scholar] [CrossRef]
- Huo, Y.; Gao, L.; Liu, B.; Yang, Y.; Kong, S.; Sun, Y.; Yang, Y.; Wu, X. Complete chloroplast genome sequences of four Allium species: Comparative and phylogenetic analyses. Sci. Rep. 2019, 9, 12250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, L.; Jiang, S.; Xie, D.; Yu, L.; Huang, Y.; Zhang, Z.; Liu, Y. Analysis of complete chloroplast genomes of Curcuma and the contribution to phylogeny and adaptive evolution. Gene 2020, 30, 144355. [Google Scholar] [CrossRef] [PubMed]
- Chumley, T.W.; Palmer, J.D.; Mower, J.P.; Fourcade, H.M.; Calie, P.J.; Boore, J.L.; Jansen, R.K. The complete chloroplast genome sequence of Pelargonium hortorum: Organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol. Biol. Evol. 2006, 23, 2175–2190. [Google Scholar] [CrossRef]
- Xia, H.; Liu, X.; Wang, Y.; Li, X.; Wang, J.; Jin, C. The complete chloroplast genome sequence of Bambusa stenoaurita (Bambusoideae). Mitochondrial DNA B 2021, 6, 2184–2185. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, M.; Ding, Y.L.; Lin, S.Y. The complete chloroplast genome sequence of Acidosasa gigantea (Bambusoideae: Arundinarieae): An ornamental bamboo species endemic to China. Mitochondrial DNA B 2020, 5, 1119–1121. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, Y.P.; Yu, Z.Y.; Li, J.J.; Xu, M.Y.; Guo, Q.R. The complete chloroplast genome of a solid type of Phyllostachys nidularia (Bambusoideae: Poaceae), a species endemic to China. Mitochondrial DNA B 2021, 6, 978–979. [Google Scholar]
- Gao, J.; Gao, L.Z. The complete chloroplast genome sequence of the Phyllostachys sulphurea (Poaceae: Bambusoideae). Mitochondrial DNA A 2016, 27, 983–985. [Google Scholar] [CrossRef]
- Luo, Y.; He, J.; Lyu, R.; Xiao, J.; Li, W.; Yao, M.; Pei, L.; Cheng, J.; Li, J.; Xie, L. Comparative Analysis of Complete Chloroplast Genomes of 13 Species in Epilobium, Circaea, and Chamaenerion and Insights Into Phylogenetic Relationships of Onagraceae. Front. Genet. 2021, 12, 730495. [Google Scholar] [CrossRef]
- Tang, C.; Chen, X.; Deng, Y.; Geng, L.; Ma, J.; Wei, X. Complete chloroplast genomes of Sorbus sensu stricto (Rosaceae): Comparative analyses and phylogenetic relationships. BMC Plant Biol. 2022, 22, 495. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, K.; Myszczyński, K.; Nobis, M.; Sawicki, J. Insights into adaptive evolution of plastomes in Stipa L. (Poaceae). BMC Plant Biol. 2022, 22, 525. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Wang, T.; Zhang, C.; Wang, R.; Zhang, D.; Xie, Y.; Zhou, N.; Wang, W.; Zhang, H.; et al. The complete chloroplast genome sequences of three lilies: Genome structure, comparative genomic and phylogenetic analyses. J. Plant Res. 2022, 135, 723–737. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Lv, S.; Zhang, W.; Zhang, J.; Wang, K.; Guo, H.; Hu, J.; Yang, Y.; Wang, J.; Xia, G.; et al. Comparative plastomes of Carya species provide new insights into the plastomes evolution and maternal phylogeny of the genus. Front. Plant Sci. 2022, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wen, F.; Hong, X.; Li, Z.; Mi, Y.; Zhao, B. Comparative chloroplast genome analyses of Paraboea (Gesneriaceae): Insights into adaptive evolution and phylogenetic analysis. Front. Plant Sci. 2022, 13, 1019831. [Google Scholar] [CrossRef]
- Tyrrell, C.D.; Santos-Gonçalves, A.P.; Londoño, X.; Clark, L.G. Molecular phylogeny of the arthrostylidioid bamboos (Poaceae: Bambusoideae: Bambuseae: Arthrostylidiinae) and new genus Didymogonyx. Mol. Phylogenet. Evol. 2012, 65, 136–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene Functions | Group of Genes | Name of Genes |
---|---|---|
Self-replication | rRNA Genes | rrn4.5(×2), rrn5(×2), rrn16(×2), rrn23(×2), |
tRNA Genes | trnA-UGC *(×2), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU(×2), trnG-UCC *, trnH-GUG(×2), trnI-CAU(×2), trnI-GAU *(×2), trnK-UUU, trnL-CAA(×2), trnL-UAA *, trnL-UAG, trnM-CAU, trnN-GUU(×2), trnP-UGG, trnQ-UUG, trnR-ACG(×2), trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC(×2), trnV-UAC *, trnW-CCA, trnY-GUA | |
Small subunit of ribosome | rps2, rps3, rps4, rps7(×2), rps8, rps11, rps12 *(×2), rps14, rps15(×2), rpsl16 *, rps18, rps19(×2) | |
Large subunit of ribosome | rpl2 *(×2), rpl14, rpl16 *, rpl20, rpl22, rpl23(×2), rpl32, rpl33, rpl36 | |
DNA dependent RNA polymerase | rpoA, rpoB, rpoC1, rpoC2 | |
Photosynthesis | Subunits of photosystem I | psaA, psaB, psaC, psaI, psaJ |
Subunits of photosystem II | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ | |
Subunits of cytochrome | petA, petB *, petD *, petG, petL, petN | |
Subunits of ATP synthase | atpA, atpB, atpE, atpF *, atpH, atpI | |
Subunits of NADH dehydrogenase | ndhA *, ndhB *(×2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK, | |
Subunit of rubisco | rbcL | |
Other genes | Maturase | matK |
Envelop membrane protein | cemA | |
c-type cytochrome synthesis gene | ccsA | |
Translational initiation | infA | |
Protease | clpP | |
Unknown function | Conserved open reading frames | ycf3 **, ycf4, ycf68 |
AA | Codon | No. | RSCU | AA | Codon | No. | RSCU |
---|---|---|---|---|---|---|---|
Phe | UUU | 713 | 1.29 | Tyr | UAU | 571 | 1.58 |
UUC | 395 | 0.71 | UAC | 151 | 0.42 | ||
Leu | UUA | 701 | 1.96 | TER | UAA | 46 | 1.53 |
UUG | 394 | 1.1 | UAG | 21 | 0.7 | ||
CUU | 454 | 1.27 | His | CAU | 341 | 1.49 | |
CUC | 152 | 0.43 | CAC | 118 | 0.51 | ||
CUA | 323 | 0.91 | Gln | CAA | 524 | 1.55 | |
CUG | 117 | 0.33 | CAG | 152 | 0.45 | ||
Ile | AUU | 820 | 1.5 | Asn | AAU | 591 | 1.48 |
AUC | 324 | 0.59 | AAC | 209 | 0.52 | ||
AUA | 499 | 0.91 | Lys | AAA | 737 | 1.42 | |
Met | AUG | 476 | 1 | AAG | 298 | 0.58 | |
Val | GUU | 434 | 1.46 | Asp | GAU | 558 | 1.54 |
GUC | 147 | 0.49 | GAC | 165 | 0.46 | ||
GUA | 447 | 1.51 | Glu | GAA | 784 | 1.49 | |
GUG | 160 | 0.54 | GAG | 271 | 0.51 | ||
Ser | UCU | 381 | 1.59 | Cys | UGU | 167 | 1.54 |
UCC | 280 | 1.17 | UGC | 50 | 0.46 | ||
UCA | 244 | 1.02 | TER | UGA | 23 | 0.77 | |
UCG | 134 | 0.56 | Trp | UGG | 351 | 1.0 | |
Pro | CCU | 333 | 1.53 | Arg | CGU | 291 | 1.4 |
CCC | 211 | 0.97 | CGC | 108 | 0.52 | ||
CCA | 230 | 1.06 | CGA | 269 | 1.29 | ||
CCG | 98 | 0.45 | CGG | 91 | 0.44 | ||
Thr | ACU | 450 | 1.67 | Ser | AGU | 297 | 1.24 |
ACC | 198 | 0.73 | AGC | 106 | 0.44 | ||
ACA | 302 | 1.12 | Arg | AGA | 364 | 1.75 | |
ACG | 129 | 0.48 | AGG | 128 | 0.61 | ||
Ala | GCU | 548 | 1.74 | Gly | GGU | 474 | 1.26 |
GCC | 191 | 0.61 | GGC | 154 | 0.41 | ||
GCA | 374 | 1.19 | GGA | 595 | 1.58 | ||
GCG | 148 | 0.47 | GGG | 285 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.-L.; Yan, R.-R.; Xu, X.; Gou, G.-Q.; Dai, Z.-X. Characterization of the Plastid Genome of the Vulnerable Endemic Indosasa lipoensis and Phylogenetic Analysis. Diversity 2023, 15, 197. https://doi.org/10.3390/d15020197
Wu M-L, Yan R-R, Xu X, Gou G-Q, Dai Z-X. Characterization of the Plastid Genome of the Vulnerable Endemic Indosasa lipoensis and Phylogenetic Analysis. Diversity. 2023; 15(2):197. https://doi.org/10.3390/d15020197
Chicago/Turabian StyleWu, Ming-Li, Rong-Rong Yan, Xue Xu, Guang-Qian Gou, and Zhao-Xia Dai. 2023. "Characterization of the Plastid Genome of the Vulnerable Endemic Indosasa lipoensis and Phylogenetic Analysis" Diversity 15, no. 2: 197. https://doi.org/10.3390/d15020197
APA StyleWu, M. -L., Yan, R. -R., Xu, X., Gou, G. -Q., & Dai, Z. -X. (2023). Characterization of the Plastid Genome of the Vulnerable Endemic Indosasa lipoensis and Phylogenetic Analysis. Diversity, 15(2), 197. https://doi.org/10.3390/d15020197