Description of Pseudocalidococcus azoricus gen. sp. nov. (Thermosynechococcaceae, Cyanobacteria), a Rare but Widely Distributed Coccoid Cyanobacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Morphological Characterization
2.2. DNA Extraction, Gene Amplification, and Sequencing
2.3. Genome Sequencing and Assembly
2.4. 16S rRNA Phylogenetic Analysis
2.5. Genome Analysis
2.6. Analyses of the 16S–23S rRNA ITS Region
3. Results
3.1. Morphological Analysis
3.2. 16S rRNA Phylogeny and 16S–23S ITS Secondary Structures
3.3. Genomic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mareš, J.; Hrouzek, P.; Kaňa, R.; Ventura, S.; Strunecký, O.; Komárek, J. The Primitive Thylakoid-Less Cyanobacterium Gloeobacter Is a Common Rock-Dwelling Organism. PLoS ONE 2013, 8, e66323. [Google Scholar] [CrossRef]
- Schirrmeister, B.E.; Gugger, M.; Donoghue, P.C.J. Cyanobacteria and the Great Oxidation Event: Evidence from genes and fossils. Palaeontology 2015, 58, 769–785. [Google Scholar] [CrossRef]
- Whitton, B.A.; Potts, M. Introduction to the Cyanobacteria. In Ecology of Cyanobacteria II: Their Diversity in Space and Time; Springer: Dordrecht, The Netherlands, 2012; pp. 1–13. ISBN 9789400738553. [Google Scholar]
- Scott, J.T.; Marcarelli, A.M. Cyanobacteria in Freshwater Benthic Environments. In Ecology of Cyanobacteria II; Springer: Dordrecht, The Netherlands, 2012; pp. 271–289. [Google Scholar]
- Komárek, J.; Johansen, J.R. Coccoid Cyanobacteria. In Freshwater Algae of North America; Elsevier: Amsterdam, The Netherlands, 2015; pp. 75–133. [Google Scholar]
- Luz, R.; Cordeiro, R.; Fonseca, A.; Raposeiro, P.M.; Gonçalves, V. Distribution and diversity of cyanobacteria in the Azores Archipelago: An annotated checklist. Biodivers. Data J. 2022, 10, e87638. [Google Scholar] [CrossRef]
- Cordeiro, R.; Luz, R.; Vasconcelos, V.; Fonseca, A.; Gonçalves, V. A Critical Review of Cyanobacteria Distribution and Cyanotoxins Occurrence in Atlantic Ocean Islands. Cryptogam. Algol. 2020, 41, 73. [Google Scholar] [CrossRef]
- Luz, R.; Cordeiro, R.; Vilaverde, J.; Raposeiro, P.; Fonseca, A.; Gonçalves, V. Cyanobacteria from freshwater lakes in the Azores archipelago, Portugal: Data from long term phytoplankton monitoring. Biodivers. Data J. 2020, 8, e51928. [Google Scholar] [CrossRef]
- Luz, R.; Cordeiro, R.; Kaštovský, J.; Johansen, J.R.; Dias, E.; Fonseca, A.; Urbatzka, R.; Vasconcelos, V.; Gonçalves, V. New terrestrial cyanobacteria from the Azores Islands: Description of Venetifunis gen. nov. and new species of Albertania, Kovacikia and Pegethrix. Phycologia 2023, 62, 483–498. [Google Scholar] [CrossRef]
- Luz, R.; Cordeiro, R.; Kaštovský, J.; Johansen, J.R.; Dias, E.; Fonseca, A.; Urbatzka, R.; Vasconcelos, V.; Gonçalves, V. Description of Four New Filamentous Cyanobacterial Taxa from Freshwater Habitats in the Azores Archipelago. J. Phycol. 2023. [Google Scholar] [CrossRef]
- Komárek, J.; Johansen, J.R.; Šmarda, J.; Strunecký, O. Phylogeny and taxonomy of Synechococcus-like cyanobacteria. Fottea 2020, 20, 171–191. [Google Scholar] [CrossRef]
- Mareš, J.; Johansen, J.R.; Hauer, T.; Zima, J.; Ventura, S.; Cuzman, O.; Tiribilli, B.; Kaštovský, J. Taxonomic resolution of the genus Cyanothece (Chroococcales, Cyanobacteria), with a treatment on Gloeothece and three new genera, Crocosphaera, Rippkaea, and Zehria. J. Phycol. 2019, 55, 578–610. [Google Scholar] [CrossRef]
- Jung, P.; Azua-Bustos, A.; Gonzalez-Silva, C.; Mikhailyuk, T.; Zabicki, D.; Holzinger, A.; Lakatos, M.; Büdel, B. Emendation of the coccoid cyanobacterial genus Gloeocapsopsis and description of the new species Gloeocapsopsis diffluens sp. nov. and Gloeocapsopsis dulcis sp. nov. isolated from the coastal range of the Atacama Desert (Chile). Front. Microbiol. 2021, 12, 671742. [Google Scholar] [CrossRef]
- Pokorný, J.; Štenclová, L.; Kaštovský, J. Unsuspected findings about phylogeny and ultrastructure of the enigmatic cyanobacterium Microcrocis geminata resulted in its epitypification and novel placement in Geminocystaceae. Fottea 2023, 23, 110–121. [Google Scholar] [CrossRef]
- Pessi, I.S.; Popin, R.V.; Durieu, B.; Lara, Y.; Tytgat, B.; Savaglia, V.; Roncero-Ramos, B.; Hultman, J.; Verleyen, E.; Vyverman, W.; et al. Novel diversity of polar Cyanobacteria revealed by genome-resolved metagenomics. Microb. Genom. 2023, 9, 001056. [Google Scholar] [CrossRef] [PubMed]
- Dvořák, P.; Casamatta, D.A.; Poulíčková, A.; Hašler, P.; Ondřej, V.; Sanges, R. Synechococcus: 3 billion years of global dominance. Mol. Ecol. 2014, 23, 5538–5551. [Google Scholar] [CrossRef] [PubMed]
- Komárek, J.; Kaštovský, J.; Mareš, J.; Johansen, J.R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 2014, 86, 295–335. [Google Scholar]
- Nägeli, C. Gattungen Einzelliger Algen: Physiologisch und Systematisch Bearbeitet; Friedrich Schulthess: Zurich, Switzerland, 1849; Volume 10. [Google Scholar]
- Callieri, C. Synechococcus plasticity under environmental changes. FEMS Microbiol. Lett. 2017, 364, fnx229. [Google Scholar]
- Katoh, H.; Itoh, S.; Shen, J.-R.; Ikeuchi, M. Functional Analysis of psbV and a Novel c-type Cytochrome Gene psbV2 of the Thermophilic Cyanobacterium Thermosynechococcus elongatus Strain BP-1. Plant Cell Physiol. 2001, 42, 599–607. [Google Scholar]
- Mai, T.; Johansen, J.R.; Pietrasiak, N.; Bohunická, M.; Martin, M.P. Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa 2018, 365, 1–59. [Google Scholar] [CrossRef]
- Kaštovský, J.; Johansen, J.R.; Hauerová, R.; Akagha, M.U. Hot Is Rich—An Enormous Diversity of Simple Trichal Cyanobacteria from Yellowstone Hot Springs. Diversity 2023, 15, 975. [Google Scholar] [CrossRef]
- Strunecký, O.; Ivanova, A.P.; Mareš, J. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J. Phycol. 2022, 59, 12–51. [Google Scholar] [CrossRef]
- Stanojković, A.; Skoupý, S.; Škaloud, P.; Dvořák, P. High genomic differentiation and limited gene flow indicate recent cryptic speciation within the genus Laspinema (cyanobacteria). Front. Microbiol. 2022, 13, 977454. [Google Scholar] [CrossRef]
- Cai, H.; Mclimans, C.J.; Beyer, J.E.; Krumholz, L.R.; David Hambright, K. Microcystis pangenome reveals cryptic diversity within and across morphospecies. Sci. Adv. 2023, 9, eadd3783. [Google Scholar] [CrossRef] [PubMed]
- Dvořák, P.; Jahodářová, E.; Stanojković, A.; Skoupý, S.; Casamatta, D.A. Population genomics meets the taxonomy of cyanobacteria. Algal Res. 2023, 72, 103128. [Google Scholar]
- Willis, A.; Woodhouse, J.N. Defining Cyanobacterial Species: Diversity and Description Through Genomics. CRC Crit. Rev. Plant Sci. 2020, 39, 101–124. [Google Scholar] [CrossRef]
- Dick, G.J.; Duhaime, M.B.; Evans, J.T.; Errera, R.M.; Godwin, C.M.; Kharbush, J.J.; Nitschky, H.S.; Powers, M.A.; Vanderploeg, H.A.; Schmidt, K.C.; et al. The genetic and ecophysiological diversity of Microcystis. Environ. Microbiol. 2021, 23, 7278–7313. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.Y.; Teng, W.K.; Zhao, L.; Hu, C.X.; Zhou, Y.K.; Han, B.P.; Song, L.R.; Shu, W.S. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. ISME J. 2021, 15, 211–227. [Google Scholar] [CrossRef]
- Turland, N.; Wiersema, J.; Barrie, F.; Greuter, W.; Hawksworth, D.; Herendeen, P.; Knapp, S.; Kusber, W.-H.; Li, D.-Z.; Marhold, K.; et al. International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code): Adopted by the Nineteenth International Botanical Congress, Shenzhen, China; Koeltz Botanical Books: Oberreifenberg, Germany, 2017; ISBN 9783946583165. [Google Scholar]
- Spurr, A.R. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 1969, 26, 31–43. [Google Scholar] [CrossRef]
- Neilan, B.A.; Jacobs, D.; Del Dot, T.; Blackall, L.L.; Hawkins, P.R.; Cox, P.T.; Goodman, A.E. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int. J. Syst. Bacteriol. 1997, 47, 693–697. [Google Scholar] [CrossRef]
- Lepère, C.; Wilmotte, A.; Meyer, B. Molecular diversity of Microcystis strains (Cyanophyceae, Chroococcales) based on 16S rDNA sequences. Syst. Geogr. Plants 2000, 70, 275–283. [Google Scholar] [CrossRef]
- Taton, A.; Grubisic, S.; Brambilla, E.; De Wit, R.; Wilmotte, A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): A morphological and molecular approach. Appl. Environ. Microbiol. 2003, 69, 5157–5169. [Google Scholar] [CrossRef]
- Nübel, U.; Garcia-Pichel, F.; Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 1997, 63, 3327–3332. [Google Scholar] [CrossRef]
- Cordeiro, R.; Azevedo, J.; Luz, R.; Vasconcelos, V.; Gonçalves, V.; Fonseca, A. Cyanotoxin Screening in BACA Culture Collection: Identification of New Cylindrospermopsin Producing Cyanobacteria. Toxins 2021, 13, 258. [Google Scholar] [CrossRef] [PubMed]
- Janse, I.; Kardinaal, W.E.A.; Meima, M.; Fastner, J.; Visser, P.M.; Zwart, G. Toxic and nontoxic Microcystis colonies in natural populations can be differentiated on the basis of rRNA gene internal transcribed spacer diversity. Appl. Environ. Microbiol. 2004, 70, 3979–3987. [Google Scholar] [CrossRef] [PubMed]
- Cornet, L.; Durieu, B.; Baert, F.; D’hooge, E.; Colignon, D.; Meunier, L.; Lupo, V.; Cleenwerck, I.; Daniel, H.M.; Rigouts, L.; et al. The GEN-ERA toolbox: Unified and reproducible workflows for research in microbial genomics. Gigascience 2023, 12, giad022. [Google Scholar] [CrossRef]
- Nurk, S.; Meleshko, D.; Korobeynikov, A.; Pevzner, P.A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 2017, 27, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Alneberg, J.; Bjarnason, B.S.; de Bruijn, I.; Schirmer, M.; Quick, J.; Ijaz, U.Z.; Lahti, L.; Loman, N.J.; Andersson, A.F.; Quince, C. Binning metagenomic contigs by coverage and composition. Nat. Methods 2014, 11, 1144–1146. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Chklovski, A.; Parks, D.H.; Woodcroft, B.J.; Tyson, G.W. CheckM2: A rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 2023, 20, 1203–1212. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. Mrbayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Trifinopoulos, J.; Nguyen, L.T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Sy Vinh, L.; Rosenberg, M.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2017, 35, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A. FigTree v1.4. Molecular Evolution, Phylogenetics and Epidemiology 2012. Available online: https://github.com/rambaut/figtree (accessed on 30 August 2023).
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R.; Teeling, E. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Lee, I.; Kim, Y.O.; Park, S.C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef]
- Kim, D.; Park, S.; Chun, J. Introducing EzAAI: A pipeline for high throughput calculations of prokaryotic average amino acid identity. J. Microbiol. 2021, 59, 476–480. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Göker, M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022, 50, D801–D807. [Google Scholar] [CrossRef]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Cumsille, A.; Durán, R.E.; Rodríguez-Delherbe, A.; Saona-Urmeneta, V.; Cámara, B.; Seeger, M.; Araya, M.; Jara, N.; Buil-Aranda, C. GenoVi, an open-source automated circular genome visualizer for bacteria and archaea. PLoS Comput. Biol. 2023, 19, e1010998. [Google Scholar] [CrossRef]
- Yarza, P.; Yilmaz, P.; Pruesse, E.; Glöckner, F.O.; Ludwig, W.; Schleifer, K.H.; Whitman, W.B.; Euzéby, J.; Amann, R.; Rosselló-Móra, R. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 2014, 12, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Komárek, J. Generic identity of the “Anacystis nidulans” strain KRATZ-ALLEN/Bloom. 625 with Synechococcus NÄG. 1849. Arch Protistenkd. 1970, 112, 343–364. [Google Scholar]
- Komárek, J.; Anagnostidis, K. Süßwasserflora von Mitteleuropa: Cyanoprokaryota 1; Teil: Chroococcales; Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., Eds.; Spektrum Akademischer Verlag: Heidelberg, Germany, 2000. [Google Scholar]
- Bourrelly, P. Les Algues d’Eau Douce, Initiation à La Systématique, Tome III: Les Algues Bleues et Rouges, Les Eugléniens, Peridiniens et Cryptomonadines; Boubée N. et Cie: Paris, France, 1970. [Google Scholar]
- Pringsheim, E.G. Kleine Mitteilungen über Flagellaten und Algen. XVI. Lauterbornia (Anacystis) nidulans (Richter) nov. gen. comb. Cyanophyceae. Arch. Mikrobiol. 1968, 63, 1–6. [Google Scholar] [CrossRef]
- Rippka, R.; Cohen-Bazire, G. The cyanobacteriales: A legitimate order based on the type strain Cyanobacterium stanieri? Ann. Microbiol. 1983, 134, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Rippka, R.; Deruelles, J.; Waterbury, J.B.; Herdman, M.; Stanier, R.Y. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. J. Gen. Microbiol. 1979, 111, 1–61. [Google Scholar] [CrossRef]
- Stanier, R.Y.; Kunisawa, R.; Mandel, M.; Cohen-Bazire, G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 1971, 35, 171–205. [Google Scholar] [CrossRef]
- Lopez-Igual, R.; Mazel, D.; Gugger, M.; Golden, S.S.; Adomako, M.; Ernst, D.; Simkovsky, R.; Chao, Y.Y.; Wang, J.; Fang, M.; et al. Comparative Genomics of Synechococcus elongatus Explains the Phenotypic Diversity of the Strains. mBio 2022, 13, e00862-22. [Google Scholar] [CrossRef]
- Komárek, J.; Anagnostidis, K. Süßwasserflora von Mitteleuropa, Bd. 19/2: Cyanoprokaryota: Bd. 2/Part 2: Oscillatoriales, 1st ed.; Spektrum Akademischer Verlag: Heidelberg, Germany, 2005. [Google Scholar]
- Stackebrandt, E.; Ebers, J. Taxonomic parameters revisited: Tarnished gold standards. Microbiol. Today 2006, 33, 152–155. [Google Scholar]
- Kim, M.; Oh, H.S.; Park, S.C.; Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 2014, 64, 346–351. [Google Scholar] [CrossRef]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- Varghese, N.J.; Mukherjee, S.; Ivanova, N.; Konstantinidis, K.T.; Mavrommatis, K.; Kyrpides, N.C.; Pati, A. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 2015, 43, 6761–6771. [Google Scholar] [CrossRef] [PubMed]
- Tindall, B.J.; Rosselló-Móra, R.; Busse, H.J.; Ludwig, W.; Kämpfer, P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst. Evol. Microbiol. 2010, 60, 249–266. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.-P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Kabirnataj, S.; Nematzadeh, G.A.; Talebi, A.F.; Saraf, A.; Suradkar, A.; Tabatabaei, M.; Singh, P. Description of novel species of Aliinostoc, Desikacharya and Desmonostoc using a polyphasic approach. Int. J. Syst. Evol. Microbiol. 2020, 70, 3413–3426. [Google Scholar] [CrossRef] [PubMed]
Strain | Taxonomy | Local | Sampling Date | Habitat | Coordinates | GenBank |
---|---|---|---|---|---|---|
BACA0433 | P. azoricus | Furnas, São Miguel Island | 1 August 2017 | Aquatic | 37°46′18.3″ N 25°18′42.7″ W | OM732237 |
BACA0444 | P. azoricus | Lagoa Comprida, Flores Island | 27 September 2017 | Aquatic | 39°26′26.1″ N 31°13′19.0″ W | OM732240 |
BACA0446 | P. azoricus | Lagoa das Empadadas Norte, São Miguel Island | 12 July 2017 | Aquatic | 37°49′32.5″ N 25°44′54.9″ W | OM732241 |
BACA0781 | P. azoricus | Ribeira Grande, São Miguel Island | 6 September 2022 | Atmophytic | 37°47′35.9″ N 25°29′05.7″ W | OR725120 |
Length | Width | Ratio (Length/Width) | |||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | |
BACA0433 | 1.8 | 6.5 | 3.0 | 0.8 | 1.4 | 1.1 | 1.7 | 6.3 | 2.6 |
BACA0444 | 1.6 | 4.0 | 2.6 | 1.0 | 1.6 | 1.3 | 1.1 | 3.4 | 2.0 |
BACA0446 | 1.8 | 5.1 | 3.0 | 1.0 | 1.9 | 1.4 | 1.2 | 4.0 | 2.2 |
BACA0781 | 2.0 | 4.6 | 3.0 | 1.1 | 2.0 | 1.5 | 1.3 | 3.4 | 2.0 |
P. azoricus | 1.6 | 6.5 | 2.9 | 0.8 | 2.0 | 1.4 | 1.1 | 6.3 | 2.2 |
Species | P. azoricus | Pseudocalidococcus sp. | T. vestitus | T. vestitus | Thermosynechococcus sp. | A. marina | S. elongatus |
---|---|---|---|---|---|---|---|
Strain | BACA0444 | PCC 6312 | E542 | BP-1 | HN-54 | MBIC11017 | PCC 7942 |
Origin | Azores, Portugal | California, USA | Ganzi, China | Beppu, Japan | Hunan, China | Republic of Palau | California, USA |
Habitat | Freshwater | Freshwater | Thermal | Thermal | Thermal | Marine | Freshwater |
GenBank accession | GCA_031729055 | GCA_000316685 | GCA_003555505 | GCA_000011345 | GCA_023650955 | GCA_000018105 | GCA_000012525 |
Number of contigs | 34 | 2 | 1 | 1 | 1 | 10 | 2 |
Completeness | 99.53 | 99.29 | 100.0 | 99.76 | 100.0 | 99.53 | 100.0 |
Contamination | 0.12 | 0.0 | 0.12 | 0.12 | 0.12 | 5.07 | 0.0 |
N50 | 125,609 | 3,697,276 | 2,650,294 | 2,593,857 | 2,705,963 | 6,503,724 | 2,695,903 |
Genome size (bp) | 3,463,985 | 3,720,499 | 2,650,294 | 2,593,857 | 2,705,963 | 8,361,599 | 2,742,269 |
G + C content (%) | 48.7 | 48.5 | 53.3 | 53.9 | 53.1 | 47.0 | 55.4 |
Coding density (%) | 86.7 | 87.4 | 92.7 | 90.3 | 91.8 | 84.3 | 89.5 |
No. of rRNA genes | 3 | 3 | 3 | 3 | 3 | 6 | 6 |
No. of tRNA genes | 40 | 41 | 42 | 42 | 43 | 76 | 45 |
No. of protein-coding genes | 3386 | 3699 | 2541 | 2514 | 2610 | 7760 | 2720 |
No. of pseudogenes | 15 | 4 | 1 | 0 | 2 | 14 | 0 |
No. of hypotheticals genes | 356 | 132 | 41 | 81 | 102 | 424 | 63 |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1. Pseudocalidococcus azoricus BACA0444 | ||||||
2. Pseudocalidococcus sp. PCC 6312 | 99.8|93.4|90.0|92.0|39.5 | |||||
3. Thermosynechococcus vestitus E542 | 94.8|77.5|69.4|66.4|22.9 | 94.6|76.9|69.4|66.3|22.8 | ||||
4. Thermosynechococcus elongatus BP-1 | 94.8|80.6|69.5|66.4|19.5 | 94.8|80.5|69.5|60.9|21.9 | 99.7|96.5|87.6|91.6|33.3 | |||
5. Thermosynechococcus sp. HN-54 | 94.9|79.6|69.5|66.3|21.6 | 94.8|78.9|69.4|66.3|23.0 | 99.4|91.5|88.2|93.1|34.5 | 99.3|95.1|86.5|90.9|30.9 | ||
6. Acaryochloris marina MBIC11017 | 90.0|70.5|67.1|61.8|24.1 | 90.1|71.2|67.2|61.7|25.8 | 90.7|72.3|67.1|61.9|25.8 | 90.6|74.6|67.1|61.7|29.3 | 90.7|72.3|67.2|61.8|30.1 | |
7. Synechococcus elongatus PCC 7942 | 90.6|67.3|66.5|60.7|34.4 | 90.5|65.3|66.5|60.7|39.4 | 90.4|66.2|67.2|61.3|20.3 | 90.5|68.8|67.3|61.3|28.8 | 90.5|64.9|67.2|61.3|20.3 | 90.2|64.9|66.1|60.2|24.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luz, R.; Cordeiro, R.; Kaštovský, J.; Fonseca, A.; Urbatzka, R.; Vasconcelos, V.; Gonçalves, V. Description of Pseudocalidococcus azoricus gen. sp. nov. (Thermosynechococcaceae, Cyanobacteria), a Rare but Widely Distributed Coccoid Cyanobacteria. Diversity 2023, 15, 1157. https://doi.org/10.3390/d15121157
Luz R, Cordeiro R, Kaštovský J, Fonseca A, Urbatzka R, Vasconcelos V, Gonçalves V. Description of Pseudocalidococcus azoricus gen. sp. nov. (Thermosynechococcaceae, Cyanobacteria), a Rare but Widely Distributed Coccoid Cyanobacteria. Diversity. 2023; 15(12):1157. https://doi.org/10.3390/d15121157
Chicago/Turabian StyleLuz, Rúben, Rita Cordeiro, Jan Kaštovský, Amélia Fonseca, Ralph Urbatzka, Vitor Vasconcelos, and Vítor Gonçalves. 2023. "Description of Pseudocalidococcus azoricus gen. sp. nov. (Thermosynechococcaceae, Cyanobacteria), a Rare but Widely Distributed Coccoid Cyanobacteria" Diversity 15, no. 12: 1157. https://doi.org/10.3390/d15121157
APA StyleLuz, R., Cordeiro, R., Kaštovský, J., Fonseca, A., Urbatzka, R., Vasconcelos, V., & Gonçalves, V. (2023). Description of Pseudocalidococcus azoricus gen. sp. nov. (Thermosynechococcaceae, Cyanobacteria), a Rare but Widely Distributed Coccoid Cyanobacteria. Diversity, 15(12), 1157. https://doi.org/10.3390/d15121157