Seasonal and Spatial Variability in the Bacterial Diversity in Haizhou Bay in the Southern Yellow China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Sample Collection
2.2. DNA Extraction and Illumina DNA Sequencing
2.3. Statistical Analysis
3. Results
3.1. Environmental Conditions and Occurrence of Algal Blooms
3.2. Sequencing Quality and Diversity Patterns of Communities
3.3. Taxonomic Analysis and Community Structure
3.4. Responses to Environmental Parameters
3.5. Significant Biomarkers
3.6. Network Interactions of Different Taxa with Keystone Species
4. Discussion
4.1. Correlations of Environmental Factors with Communities
4.2. Keystone Prokaryotic Taxa during HABs
4.3. Correlations of Different Prokaryotes with Species Responsible for HABs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.W.; Wu, J.Y. Occurrence and potential risks of harmful algal blooms in the East China Sea. Sci. Total Environ. 2009, 407, 4012–4021. [Google Scholar] [CrossRef]
- Marampouti, C.; Buma, A.G.J.; Boer, M.K. Mediterranean alien harmful algal blooms: Origins and impacts. Environ. Sci. Pollut. Res. Int. 2021, 28, 3837–3851. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, C.; Wang, Y.; Chen, G. A review of the current and emerging detection methods of marine harmful microalgae. Sci. Total Environ. 2022, 815, 152913. [Google Scholar] [CrossRef]
- Huang, I.S.; Pinnell, L.J.; Turner, J.W.; Abdulla, H.; Boyd, L.; Linton, E.W.; Zimba, P.V. Preliminary Assessment of Microbial Community Structure of Wind-Tidal Flats in the Laguna Madre, Texas, USA. Biology 2020, 9, 183. [Google Scholar] [CrossRef]
- Via, C.W.; Glukhov, E.; Costa, S.; Zimba, P.V.; Moeller, P.D.R.; Gerwick, W.H.; Bertin, M.J. The Metabolome of a Cyanobacterial Bloom Visualized by MS/MS-Based Molecular Networking Reveals New Neurotoxic Smenamide Analogs (C, D, and E). Front. Chem. 2018, 6, 00316. [Google Scholar] [CrossRef]
- Rooney-Varga, J.N.; Giewat, M.W.; Savin, M.C.; Sood, S.; LeGresley, M.; Martin, J.L. Links between Phytoplankton and bacterial community dynamics in a coastal marine environment. Microb. Ecol. 2005, 49, 163–175. [Google Scholar] [CrossRef]
- Buchan, A.; LeCleir, G.R.; Gulvik, C.A.; Gonzalez, J.M. Master recyclers: Features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 2014, 12, 686–698. [Google Scholar] [CrossRef]
- Patin, N.V.; Brown, E.; Chebli, G.; Garfield, C.; Kubanek, J.; Stewart, F.J. Microbial and chemical dynamics of a toxic dinoflagellate bloom. PeerJ 2020, 8, e9493. [Google Scholar] [CrossRef]
- González, J.M.; Simó, R.; Massana, R.; Covert, J.S.; Casamayor, E.O.; Pedrós-Alió, C.; Moran, M.A. Bacterial Community Structure Associated with a Dimethylsulfoniopropionate-Producing North Atlantic Algal Bloom. Appl. Environ. Microbiol. 2000, 66, 4237–4246. [Google Scholar] [CrossRef]
- Chorazyczewski, A.M.; Huang, I.S.; Abdulla, H.; Mayali, X.; Zimba, P.V. The Influence of Bacteria on the Growth, Lipid Production, and Extracellular Metabolite Accumulation by Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol. 2021, 57, 931–940. [Google Scholar] [CrossRef]
- Lefler, F.W.; Barbosa, M.; Zimba, P.V.; Smyth, A.R.; Berthold, D.E.; Laughinghouse, H.D. Spatiotemporal diversity and community structure of cyanobacteria and associated bacteria in the large shallow subtropical Lake Okeechobee (Florida, United States). Front. Microbiol. 2023, 14, 1219261. [Google Scholar] [CrossRef]
- Sison-Mangus, M.P.; Jiang, S.; Kudela, R.M.; Mehic, S. Phytoplankton-Associated Bacterial Community Composition and Succession during Toxic Diatom Bloom and Non-Bloom Events. Front. Microbiol. 2016, 7, 01433. [Google Scholar] [CrossRef]
- Lajnef, R.; Quemeneur, M.; Abdennadher, M.; Walha, L.D.; Hamza, A.; Belhassen, M.; Zouari, A.B. Prokaryotic Diversity and Dynamics during Dinoflagellate Bloom Decays in Coastal Tunisian Waters. Diversity 2023, 15, 273. [Google Scholar] [CrossRef]
- Li, X.Y.; Yu, R.C.; Geng, H.X.; Li, Y.F. Increasing dominance of dinoflagellate red tides in the coastal waters of Yellow Sea, China. Mar. Pollut. Bull. 2021, 168, 112439. [Google Scholar] [CrossRef]
- Guillard, R.R.L.; Hargraves, P.E. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 1993, 32, 234–236. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Bioinformatics 2011, 17, 84784389. [Google Scholar] [CrossRef]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Winnepenninckx, B.; Backeljau, T.; De Wachter, R. Extraction of high molecular weight DNA from molluscs. Trends Genet. 1993, 9, 407. [Google Scholar]
- Wang, J.X.; Kong, F.Z.; Wang, Y.F.; Ji, N.J.; Song, M.J.; Hu, Z.X.; Niu, Z.; Liu, C.; Wang, X.; Sun, Y.; et al. Newly recorded bloom-forming dinoflagellate Gymnodinium impudicum in Haizhou Bay, Yellow Sea, China. J. Oceanol. 2022, 40, 2430–2445. [Google Scholar] [CrossRef]
- Schloss, P.D. Reintroducing mothur: 10 Years Later. Appl. Environ. Microbiol. 2020, 86, e02343-19. [Google Scholar] [CrossRef]
- Ginestet, C. ggplot2: Elegant Graphics for Data Analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 2011, 174, 245–246. [Google Scholar] [CrossRef]
- Huson, D.H.; Auch, A.F.; Qi, J.; Schuster, S.C. MEGAN analysis of metagenomic data. Genome Res. 2007, 17, 377–386. [Google Scholar] [CrossRef]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef]
- Huang, H.Y.; Zhou, L.; Chen, J.; Wei, T.Y. ggcor: Extended Tools for Correlation Analysis and Visualization. R Package Version 0.9.8 2020. Available online: https://github.com/hannet91/ggcor (accessed on 22 April 2023).
- Braak, C.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software of Ordination (Version 5.0); Microcomputer Power: Ithaca, NY, USA, 2012; 496p. [Google Scholar]
- Sloggett, C.; Goonasekera, N.; Afgan, E. BioBlend: Automating pipeline analyses within Galaxy and CloudMan. Bioinformatics 2013, 29, 1685–1686. [Google Scholar] [CrossRef]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In Proceedings of the International AAAI Conference on Web and Social Media, San Jose, CA, USA, 17–20 May 2009; Volume 3, pp. 361–362. [Google Scholar]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Maidak, B.L.; Olsen, G.J.; Larsen, N.; Overbeek, R.; McCaughey, M.J.; Woese, C.R. The RDP (Ribosomal Database Project). Nucleic Acids Res. 1997, 25, 109–110. [Google Scholar] [CrossRef]
- Han, Y.; Jiao, N.Z.; Zhang, Y.; Zhang, F.; He, C.; Liang, X.J.; Cai, R.H.; Shi, Q.; Tang, K. Opportunistic bacteria with reduced genomes are effective competitors for organic nitrogen compounds in coastal dinoflagellate blooms. Microbiome 2021, 9, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Arahal, D.R.; Garcıa, M.T.; Vargas, C.; Canovas, D.; Nieto, J.J.; Ventosa, A. Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int. J. Syst. Evol. Micr. 2001, 51, 1457–1462. [Google Scholar] [CrossRef] [PubMed]
- Vandecandelaere, I.; Nercessian, O.; Segaert, E.; Achouak, W.; Mollica, A.; Faimali, M.; Vandamme, P. Nautella italica gen. nov., sp. nov., isolated from a marine electroactive biofilm. Int. J. Syst. Evol. Microbiol. 2009, 59, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; He, R.X.; Song, A.; Huang, Y.D.; Jin, Z.J.; Liang, Y.M.; Li, Q.; Wang, X.H.; Mueller, W.E.G.; Cao, J.H. Spatial and temporal dynamics of bacterioplankton community composition in a subtropical dammed karst river of southwestern China. Microbiologyopen 2019, 8, e00849. [Google Scholar] [CrossRef]
- Wu, L.W.; Zhang, Y.; Guo, X.; Ning, D.L.; Zhou, X.S.; Feng, J.J.; Yuan, M.M.; Liu, S.; Guo, J.J.; Gao, Z.P.; et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat. Microbiol. 2022, 7, 1054–1062. [Google Scholar] [CrossRef]
- McKindles, K.M.; Zimba, P.V.; Chiu, A.S.; Watson, S.B.; Gutierrez, D.B.; Westrick, J.; Kling, H.; Davis, T.W. A Multiplex Analysis of Potentially Toxic Cyanobacteria in Lake Winnipeg during the 2013 Bloom Season. Toxins 2019, 11, 587. [Google Scholar] [CrossRef]
- Banerjee, S.; Schlaeppi, K.; van der Heijden, M.G.A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 2018, 16, 567–576. [Google Scholar] [CrossRef]
- Wang, X.Q.; Lu, X.; Li, Z.Q.; Cheng, Q.; Zhou, Y.M.; Lei, M. Liming alters microbial community composition and its co-occurrence patterns in Cd- and Pb-contaminated agricultural soil. Appl. Soil. Ecol. 2021, 166, 104064. [Google Scholar] [CrossRef]
- Laas, P.; Ugarelli, K.; Absten, M.; Boyer, B.; Briceno, H.; Stingl, U. Composition of Prokaryotic and Eukaryotic Microbial Communities in Waters around the Florida Reef Tract. Microorganisms 2021, 9, 1120. [Google Scholar] [CrossRef]
- Kang, J.S.; Park, J.S.; Jung, S.W.; Kim, H.J.; Joo, H.M.; Kang, D.; Seo, H.; Kim, S.; Jang, M.C.; Lee, K.W.; et al. Zooming on dynamics of marine microbial communities in the phycosphere of Akashiwo sanguinea (Dinophyta) blooms. Mol. Ecol. 2021, 30, 207–221. [Google Scholar] [CrossRef]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Otten, T.G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef] [PubMed]
- Rohrlack, T.; Dittmann, E.; Henning, M.; Börner, T.; Kohl, J.G. Role of Microcystins in Poisoning and Food Ingestion Inhibition of Daphnia galeata Caused by the Cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol. 1999, 65, 737–739. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Saitou, A.; Wang, C.M.; Toyoda, A.; Minakuchi, Y.; Sekiguchi, Y.; Ueda, K.; Takano, H.; Sakai, Y.; Abe, K.; et al. Genome Features and Secondary Metabolites Biosynthetic Potential of the Class Ktedonobacteria. Front. Microbiol. 2019, 10, 893. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Maruoka, M.; Nanatani, K.; Hidaka, M.; Abe, N.; Kaneko, J.; Sakai, Y.; Abe, K.; Yokota, A.; Yabe, S. High cellulolytic potential of the Ktedonobacteria lineage revealed by genome-wide analysis of CAZymes. J. Biosci. Bioeng. 2021, 131, 622–630. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, H.; Xia, X. Community Dynamics of Free-Living and Particle-Attached Bacteria over Sequential Blooms of Heterotrophic Dinoflagellate Noctiluca scintillans and Mixotrophic Ciliate Mesodinium rubrum. Appl. Environ. Microbiol. 2022, 88, e0132322. [Google Scholar] [CrossRef]
- Wang, K.; Lin, H.; Peng, C.H.; Sun, L.; Gao, Y.H.; Chen, B.H. Long-term changes in Noctiluca scintillans blooms along the Chinese coast from 1933 to 2020. Glob. Chang Biol. 2023, 29, 5099–5113. [Google Scholar] [CrossRef]
- Seibold, A.; Wichels, A.; Schütt, C. Diversity of endocytic bacteria in the dinoflagellate Noctiluca scintillans. Glob. Chang. Biol. 2001, 25, 229–235. [Google Scholar] [CrossRef]
- Xia, X.X.; Ki Leung, S.; Cheung, S.Y.; Zhang, S.W.; Liu, H.B. Rare bacteria in seawater are dominant in the bacterial assemblage associated with the Bloom-forming dinoflagellate Noctiluca scintillans. Sci. Total Environ. 2020, 711, 135107. [Google Scholar] [CrossRef]
- Tarazona-Janampa, U.I.; Cembella, A.D.; Pelayo-Zárate, M.C.; Pajares, S.; Márquez-Valdelamar, L.M.; Okolodkov, Y.B.; Tebben, J.; Krock, B.; Durán-Riveroll, L.M. Associated Bacteria and Their Effects on Growth and Toxigenicity of the Dinoflagellate Prorocentrum lima Species Complex from Epibenthic Substrates Along Mexican Coasts. Front. Mar. Sci. 2020, 7, 00569. [Google Scholar] [CrossRef]
- Morris, R.M.; Vergin, K.L.; Cho, J.C.; Rappe, M.S.; Carlson, C.A.; Giovannoni, S.J. Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time-series Study site. Limnol. Oceanogr. 2005, 50, 1687–1696. [Google Scholar] [CrossRef]
- Treusch, A.H.; Vergin, K.L.; Finlay, L.A.; Donatz, M.G.; Burton, R.M.; Carlson, C.A.; Giovannoni, S.J. Seasonality and vertical structure of microbial communities in an ocean gyre. ISME J. 2009, 3, 1148–1163. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.Y.; Wang, K.; Hu, Z.X.; Hu, Q.; Tang, Y.Z. Identification and implications of a core bacterial microbiome in 19 clonal cultures laboratory-reared for months to years of the cosmopolitan dinoflagellate Karlodinium veneficum. Front. Microbiol. 2022, 13, 967610. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, X.R.; Sun, J. Bacterial Transformation and Processing of Diatom-Derived Organic Matter: A Case Study for Skeletonema dohrnii. Front. Microbiol. 2022, 13, 840564. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Li, D.; Tian, Y.; Zheng, T. Dynamics of bacterial community during the bloom caused by Skeletonema costatum and Akashiwo sanguinea in Xiamen sea area. Acta Microbiol. Sin. 2012, 52, 1268–1281. (In Chinese) [Google Scholar]
- Wang, Z.L.; Xiao, J.; Fan, S.L.; Li, Y.; Liu, X.Q.; Liu, D.Y. Who made the world’s largest green tide in China?—An integrated study on the initiation and early development of the green tide in Yellow Sea. Limnol. Oceanogr. 2015, 60, 1105–1117. [Google Scholar] [CrossRef]
- Zhou, M.-J.; Liu, D.-Y.; Anderson, D.M.; Valiela, I. Introduction to the Special Issue on green tides in the Yellow Sea. Estuar. Coast. Shelf Sci. 2015, 163, 3–8. [Google Scholar] [CrossRef]
- Bi, R.; Cao, Z.; Ismar-Rebitz, S.M.H.; Sommer, U.; Zhang, H.; Ding, Y.; Zhao, M. Responses of Marine Diatom-Dinoflagellate Competition to Multiple Environmental Drivers: Abundance, Elemental, and Biochemical Aspects. Front. Microbiol. 2021, 12, 731786. [Google Scholar] [CrossRef]
- Cottrell, M.T.; Wood, D.N.; Yu, L.; Kirchman, D.L. Selected Chitinase Genes in Cultured and Uncultured Marine Bacteria in the α- and γ-Subclasses of the Proteobacteria. Appl. Environ. Microbiol. 2000, 66, 1195–1201. [Google Scholar] [CrossRef]
- Vezzulli, L.; Grande, C.; Reid, P.C.; Hélaouët, P.; Edwards, M.; Höfle, M.G.; Brettar, I.; Colwell, R.R.; Pruzzo, C. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. USA 2016, 113, e5062-71. [Google Scholar] [CrossRef]
- Marques, M.; Borges, N.; Silva, S.G.; da Rocha, U.N.; Lago-Lestón, A.; Keller-Costa, T.; Costa, R.; Stewart, F.J. Metagenome-Assembled Genome Sequences of Three Uncultured Planktomarina sp. Strains from the Northeast Atlantic Ocean. Microbiol. Resour. Announc. 2020, 9, e00127-20. [Google Scholar] [CrossRef] [PubMed]
- Droop, M.R. Vitamins, phytoplankton and bacteria: Symbiosis or scavenging? J. Plankton Res. 2007, 29, 107–113. [Google Scholar] [CrossRef]
- Zhu, J.M.; Tang, S.; Cheng, K.K.; Cai, Z.H.; Chen, G.F.; Zhou, J. Microbial community composition and metabolic potential during a succession of algal blooms from Skeletonema sp. to Phaeocystis sp. Front. Microbiol. 2023, 14, 1147187. [Google Scholar] [CrossRef] [PubMed]
Global Properties | Value | ||||
---|---|---|---|---|---|
March | April | May | June | August | |
Total nodes | 252 | 99 | 506 | 243 | 446 |
Total links | 277 | 79 | 1126 | 210 | 441 |
R square of power law | 0.9960 | 0.9956 | 0.9523 | 0.9991 | 0.9863 |
avgK | 2.1984 | 1.5960 | 4.4506 | 1.7284 | 1.9776 |
avgCC | 0.1736 | 0.1458 | 0.2642 | 0.1320 | 0.1703 |
GD | 5.9143 | 2.2955 | 6.9885 | 2.8517 | 5.9063 |
CD | 0.1347 | 0.0450 | 0.0368 | 0.0300 | 0.0293 |
CCL | 0.0022 | 0.0163 | 0.0088 | 0.0071 | 0.0044 |
PPI (%) | 59.9 | 82.3 | 83.5 | 83.8 | 77.6 |
PNI (%) | 40.1 | 16.5 | 16.2 | 16.2 | 22.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Zhan, H.; Yan, T.; Zhang, D. Seasonal and Spatial Variability in the Bacterial Diversity in Haizhou Bay in the Southern Yellow China Sea. Diversity 2023, 15, 1051. https://doi.org/10.3390/d15101051
Zhao Z, Zhan H, Yan T, Zhang D. Seasonal and Spatial Variability in the Bacterial Diversity in Haizhou Bay in the Southern Yellow China Sea. Diversity. 2023; 15(10):1051. https://doi.org/10.3390/d15101051
Chicago/Turabian StyleZhao, Zhangqi, Haoyu Zhan, Tian Yan, and Dechao Zhang. 2023. "Seasonal and Spatial Variability in the Bacterial Diversity in Haizhou Bay in the Southern Yellow China Sea" Diversity 15, no. 10: 1051. https://doi.org/10.3390/d15101051
APA StyleZhao, Z., Zhan, H., Yan, T., & Zhang, D. (2023). Seasonal and Spatial Variability in the Bacterial Diversity in Haizhou Bay in the Southern Yellow China Sea. Diversity, 15(10), 1051. https://doi.org/10.3390/d15101051