Effects of Wood Distillate on Seedling Emergence and First-Stage Growth in Five Threatened Arable Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Selection and Propagule Retrievement
2.2. Wood Distillate
2.3. Experimental Design
2.4. Community Attributes
2.5. Morphological Traits
2.6. Statistical Analyses
- Total number of individuals per pot (TNI) at W2, W4, and W6;
- Total dry weight per pot (TDW);
- Total fresh weight per pot (TFW);
- Mean dry weight (DW) of individuals per pot (TMDW = TDW/TNI);
- Mean fresh weight (FW) of individuals per pot (TMFW = TFW/TNI);
- TNI per species per pot;
- DW per species per pot;
- FW per species per pot;
- Mean DW of individuals per species per pot (MDW);
- Mean FW of individuals per species per pot (MFW);
- Community composition (species occurrence and abundance) using TNI as a measure of species abundance at W2, W4, and W6;
- Community composition using DW, FW, MDW, and MFW as measures of species abundance.
3. Results
3.1. Number of Individuals
3.2. DW and MDW
3.3. FW and MFW
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petit, S.; Boursault, A.; Le Guilloux, M.; Munier-Jolain, N.; Reboud, X. Weeds in agricultural landscapes. A review. Agron. Sustain. Dev. 2011, 31, 309–317. [Google Scholar] [CrossRef]
- Holzner, W. Weed species and weed communities. Vegetatio 1978, 38, 13–20. [Google Scholar] [CrossRef]
- Marshall, E.J.P.; Brown, V.K.; Boatman, N.D.; Lutman, P.J.W.; Squire, G.R.; Ward, L.K. The role of weeds in supporting biological diversity within crop fields. Weed Res. 2003, 43, 77–89. [Google Scholar] [CrossRef]
- Rosati, L.; Fascetti, S.; Romano, V.A.; Potenza, G.; Lapenna, M.R.; Capano, A.; Stinca, A. New chorological data for the Italian vascular flora. Diversity 2020, 12, 22. [Google Scholar] [CrossRef]
- Scholz, H. Questions about indigenous plants and anecophytes. Taxon 2007, 56, 1255–1260. [Google Scholar] [CrossRef]
- Stinca, A.; Musarella, C.M.; Rosati, L.; Laface, V.L.A.; Licht, W.; Fanfarillo, E.; Mei, G. Italian vascular flora: New findings, updates and exploration of floristic similarities between regions. Diversity 2021, 13, 600. [Google Scholar] [CrossRef]
- Storkey, J.; Meyer, S.; Still, K.S.; Leuschner, C. The impact of agricultural intensification and land-use change on the European arable flora. Proc. R. Soc. B 2012, 279, 1421–1429. [Google Scholar] [CrossRef]
- Richner, N.; Holderegger, R.; Linder, H.P.; Walter, T. Reviewing change in the arable flora of Europe: A meta-analysis. Weed Res. 2015, 55, 1–13. [Google Scholar] [CrossRef]
- Fanfarillo, E.; Kasperski, A.; Giuliani, A.; Abbate, G. Shifts of arable plant communities after agricultural intensification: A floristic and ecological diachronic analysis in maize fields of Latium (central Italy). Bot. Lett. 2019, 166, 356–365. [Google Scholar] [CrossRef]
- Janssen, J.A.M.; Rodwell, J.S.; Criado, M.G.; Gubbay, S.; Haynes, T.; Nieto, A.; Calix, M. European Red List of Habitats; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Orsenigo, S.; Fenu, G.; Gargano, D.; Montagnani, C.; Abeli, T.; Alessandrini, A.; Rossi, G. Red list of threatened vascular plants in Italy. Plant Biosyst. 2021, 155, 310–335. [Google Scholar] [CrossRef]
- Fanfarillo, E.; Latini, M.; Iberite, M.; Abbate, G. The segetal flora of Italy: An occurrence dataset from relevés in winter cereals and allied crop types. PhytoKeys 2020, 161, 107. [Google Scholar] [CrossRef]
- Küzmič, F.; Šilc, U.; Lososová, Z.; Chytrý, M.; Knollová, I.; Mucina, L.; Tereshenko, S. European Weed Vegetation Database–a gap-focused vegetation-plot database. Phytocoenologia 2020, 50, 93–100. [Google Scholar] [CrossRef]
- Lososová, Z.; Chytrý, M.; Cimalová, S.; Kropáč, Z.; Otýpková, Z.; Pyšek, P.; Tichý, L. Weed vegetation of arable land in Central Europe: Gradients of diversity and species composition. J. Veg. Sci. 2004, 15, 415–422. [Google Scholar] [CrossRef]
- Fanfarillo, E.; Zangari, G.; Küzmič, F.; Fiaschi, T.; Bonari, G.; Angiolini, C. Summer roadside vegetation dominated by Sorghum halepense in peninsular Italy: Survey and classification. Rend. Lincei Sci. Fis. Nat. 2022, 33, 93–104. [Google Scholar] [CrossRef]
- Fanfarillo, E.; Latini, M.; Iberite, M.; Bonari, G.; Nicolella, G.; Rosati, L.; Abbate, G. The segetal flora of winter cereals and allied crops in Italy: Species inventory with chorological, structural and ecological features. Plant Biosyst. 2020, 154, 935–946. [Google Scholar] [CrossRef]
- United Nations. Progress towards the Sustainable Development Goals. Report of the Secretary-General. 2022. Available online: https://sustainabledevelopment.un.org/content/documents/29858SG_SDG_Progress_Report_2022.pdf (accessed on 9 April 2022).
- Grewal, A.; Abbey, L.; Gunupuru, L.R. Production, prospects and potential application of pyroligneous acid in agriculture. J. Anal. Appl. Pyrol. 2018, 135, 152–159. [Google Scholar] [CrossRef]
- Zulkarami, B.; Ashrafuzzaman, M.; Husni, M.O.; Ismail, M.R. Effect of pyroligneous acid on growth, yield and quality improvement of rockmelon in soilless culture. Aust. J. Crop Sci. 2011, 5, 1508–1514. [Google Scholar]
- Mu, J.; Yu, Z.M.; Wu, W.Q.; Wu, Q.L. Preliminary study of application effect of bamboo vinegar on vegetable growth. For. Stud. China 2006, 8, 43–47. [Google Scholar] [CrossRef]
- Fedeli, R.; Vannini, A.; Guarnieri, M.; Monaci, F.; Loppi, S. Bio-Based Solutions for Agriculture: Foliar Application of WoodDistillate Alone and in Combination with Other Plant-Derived Corroborants Results in Different Effects on Lettuce (Lactuca Sativa L.). Biology 2022, 11, 404. [Google Scholar] [CrossRef]
- Fedeli, R.; Vannini, A.; Celletti, S.; Maresca, V.; Munzi, S.; Cruz, C.; Alexandrov, D.; Guarnieri, M.; Loppi, S. Foliar application of wood distillate boosts plant yield and nutritional parameters of chickpea. Ann. Appl. Biol. 2022, 1–9. [Google Scholar] [CrossRef]
- Berahim, Z.; Panhwar, Q.A.; Ismail, M.R.; Saud, H.M.; Mondal, A.; Naher, U.A.; Islam, R. Rice yield improvement by foliarapplication of phytohormone. J. Food Agric. Environ. 2018, 12, 399–404. [Google Scholar]
- Vannini, A.; Fedeli, R.; Guarnieri, M.; Loppi, S. Foliar Application of Wood Distillate Alleviates Ozone-Induced Damage in Lettuce (Lactuca sativa L.). Toxics 2022, 10, 178. [Google Scholar] [CrossRef]
- Italian Ministerial Decree 6793. 18 July 2018. Available online: https://www.gazzettaufficiale.it/eli/id/2018/09/05/18A05693/sg (accessed on 20 June 2022).
- Fackovcová, Z.; Vannini, A.; Monaci, F.; Grattacaso, M.; Paoli, L.; Loppi, S. Effects of wood distillate (pyroligneous acid) on sensitive bioindicators (lichen and moss). Ecotoxicol. Environ. Saf. 2020, 204, 111117. [Google Scholar] [CrossRef]
- Fackovcová, Z.; Vannini, A.; Monaci, F.; Grattacaso, M.; Paoli, L.; Loppi, S. Uptake of trace elements in the water fern Azolla filiculoides after short-term application of chestnut wood distillate (Pyroligneous Acid). Plants 2020, 9, 1179. [Google Scholar] [CrossRef]
- Hagner, M.; Pasanen, T.; Lindqvist, B. Effects of birch tar oils on soil organisms and plants. Agric. Food Sci. 2010, 19, 13–23. [Google Scholar] [CrossRef]
- Hagner, M.; Penttinen, O.P.; Pasanen, T.; Tiilikkala, K.; Setälä, H. Acute toxicity of birch tar oil on aquatic organisms. Agric. Food Sci. 2010, 19, 24–33. [Google Scholar] [CrossRef]
- Filippelli, A.; Ciccone, V.; Loppi, S.; Morbidelli, L. Characterization of the safety profile of sweet chestnut wood distillate employed in agriculture. Safety 2021, 7, 79. [Google Scholar] [CrossRef]
- Pessarakli, M. (Ed.) Handbook of Plant and Crop Stress; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Gulías, J.; Traveset, A.; Riera, N.; Mus, M. Critical stages in the recruitment process of Rhamnus alaternus L. Ann. Bot. 2004, 93, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Botanic Gardens Conservation International. 2022. Available online: https://www.bgci.org/ (accessed on 10 April 2022).
- Bartolucci, F.; Peruzzi, L.; Galasso, G.; Albano, A.; Alessandrini, A.N.M.G.; Ardenghi, N.M.G.; Conti, F. An updated checklist of the vascular flora native to Italy. Plant Biosyst. 2018, 152, 179–303. [Google Scholar] [CrossRef]
- Galasso, G.; Conti, F.; Peruzzi, L.; Ardenghi, N.M.G.; Banfi, E.; Celesti-Grapow, L.; Bartolucci, F. An updated checklist of the vascular flora alien to Italy. Plant Biosyst 2018, 152, 556–592. [Google Scholar] [CrossRef]
- BioDea. Available online: https://biodea.bio/bio-wood-distillate/?lang=en (accessed on 6 August 2022).
- Vannini, A.; Moratelli, F.; Monaci, F.; Loppi, S. Effects of wood distillate and soy lecithin on the photosynthetic performance and growth of lettuce (Lactuca sativa L.). SN Appl. Sci. 2021, 3, 113. [Google Scholar] [CrossRef]
- Perez-Harguindeguy, N.; Diaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Cornelissen, J.H.C. Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2016, 64, 715–716. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. PRIMER v6: USersManual/Tutorial PRIMER-E; Plymouth Marine Laboratory: Plymouth, UK, 2006. [Google Scholar]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E: Plymouth, UK, 2008. [Google Scholar]
- Aguirre, J.L.; Baena, J.; Martín, M.T.; González, S.; Manjón, J.L.; Peinado, M. Herbicidal effects of wood vinegar on nitrophilous plant communities. Food Energy Secur. 2020, 9, e253. [Google Scholar] [CrossRef]
- Hao, Z.; Bagavathiannan, M.; Li, Y.; Qu, M.; Wang, Z.; Yu, J. Wood vinegar for control of broadleaf weeds in dormant turfgrass. Weed Technol. 2021, 35, 901–907. [Google Scholar] [CrossRef]
- Albrecht, H.; Cambecèdes, J.; Lang, M.; Wagner, M. Management options for the conservation of rare arable plants in Europe. Bot. Lett. 2016, 163, 389–415. [Google Scholar] [CrossRef]
- Wietzke, A.; Albert, K.; Bergmeier, E.; Sutcliffe, L.M.; van Waveren, C.S.; Leuschner, C. Flower strips, conservation field margins and fallows promote the arable flora in intensively farmed landscapes: Results of a 4-year study. Agric. Ecosyst. Environ. 2020, 304, 107142. [Google Scholar] [CrossRef]
- Adeux, G.; Vieren, E.; Carlesi, S.; Bàrberi, P.; Munier-Jolain, N.; Cordeau, S. Mitigating crop yield losses through weed diversity. Nat. Sustain. 2019, 2, 1018–1026. [Google Scholar] [CrossRef]
- Meyer, S.; Wesche, K.; Leuschner, C.; van Elsen, T.; Metzner, J. A new conservation strategy for arable weed vegetation in Germany: The project ‘100 fields for biodiversity’. Plant Breed. Seed Sci. 2010, 61, 25–34. [Google Scholar]
- Epperlein, L.R.; Prestele, J.W.; Albrecht, H.; Kollmann, J. Reintroduction of a rare arable weed: Competition effects on weed fitness and crop yield. Agric. Ecosyst. Environ. 2014, 188, 57–62. [Google Scholar] [CrossRef]
Source of Variation | Community Composition | TNI | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W2 | W4 | W6 | W2 | W4 | W6 | |||||||||
df | MS | F | MS | F | MS | F | MS | F | MS | F | MS | F | ||
Treatment | 2 | 749 | 2.72 ** | 310 | 1.19 | 93.8 | 0.329 | 40.2 | 3.90 * | 16.7 | 1.40 | 0.62 | 0.0438 | |
Residual | 42 | 276 | 261 | 284 | 10.3 | 11.9 | 14.2 | |||||||
Total | 44 | |||||||||||||
Source of Variation | Centaurea cyanus | Legousia speculum-veneris | ||||||||||||
W2 | W4 | W6 | W2 | W4 | W6 | |||||||||
df | MS | F | MS | F | MS | F | MS | F | MS | F | MS | F | ||
Treatment | 2 | 0.288 | 0.139 | 0.0889 | 0.0433 | 0.200 | 0.0995 | 3.76 | 0.834 | 1.67 | 0.515 | 2.02 | 1.09 | |
Residual | 42 | 2.07 | 2.05 | 2.01 | 4.50 | 3.23 | 1.85 | |||||||
Total | 44 | |||||||||||||
Source of Variation | Scandix pecten-veneris | Lathyrus aphaca | ||||||||||||
W2 | W4 | W6 | W2 | W4 | W6 | |||||||||
df | MS | F | MS | F | MS | F | MS | F | MS | F | MS | F | ||
Treatment | 2 | 2.02 | 2.73 | 2.42 | 2.65 | 3.27 | 3.55 * | 22.5 | 8.29 ** | 10.2 | 2.34 | 2.29 | 0.449 | |
Residual | 42 | 0.739 | 0.914 | 0.921 | 2.71 | 4.33 | 5.09 | |||||||
Total | 44 | |||||||||||||
Source of Variation | Bromus secalinus | |||||||||||||
W2 | W4 | W6 | ||||||||||||
df | MS | F | MS | F | MS | F | ||||||||
Treatment | 2 | 0.200 | 0.295 | 0.822 | 1.30 | 0.0889 | 0.141 | |||||||
Residual | 42 | 0.676 | 0.634 | 0.628 | ||||||||||
Total | 44 |
Community Composition at W2 | t |
---|---|
C, WD1 | 2.04 ** |
C, WD2 | 1.94 * |
WD1, WD2 | 0.577 |
TNI at W2 | t |
C, WD1 | 1.58 |
C, WD2 | 2.55 * |
WD1, WD2 | 1.35 |
TNI of Scandix pecten-veneris at W6 | t |
C, WD1 | 1.90 |
C, WD2 | 2.61 * |
WD1, WD2 | 1.10 |
TNI of Lathyrus apacha at W2 | t |
C, WD1 | 4.10 *** |
C, WD2 | 3.65 ** |
WD1, WD2 | 0.472 |
Source of Variation | Community Composition | TDW | Centaurea cyanus | Legousia speculum-veneris | |||||
---|---|---|---|---|---|---|---|---|---|
df | MS | F | MS | F | MS | F | MS | F | |
Treatment | 2 | 522 | 2.03 | 0.0207 | 0.491 | 0.00191 | 0.266 | 0.0349 | 4.71 * |
Residual | 42 | 257 | 0.0420 | 0.00715 | 0.00742 | ||||
Total | 44 | ||||||||
Source of Variation | Scandix pecten-veneris | Lathyrus apacha | Bromus secalinus | ||||||
df | MS | F | MS | F | MS | F | |||
Treatment | 2 | 0.0283 | 3.78 * | 0.0116 | 1.27 | 0.00483 | 0.616 | ||
Residual | 42 | 0.00746 | 0.00917 | 0.00783 | |||||
Total | 44 |
Legousia speculum-veneris DW | t |
---|---|
C, WD1 | 2.72 * |
C, WD2 | 2.38 * |
WD1, WD2 | 0.249 |
Scandix pecten-veneris DW | t |
C, WD1 | 2.16 * |
C, WD2 | 2.93 ** |
WD1, WD2 | 0.714 |
Source of Variation | Community Composition | TMDW | Centaurea cyanus | Legousia speculum-veneris | |||||
---|---|---|---|---|---|---|---|---|---|
df | MS | F | MS | F | MS | F | MS | F | |
Treatment | 2 | 1324 | 1.68 | 0.000547 | 3.46 * | 0.000795 | 1.25 | 0.00258 | 1.06 |
Residual | 42 | 784 | 0.000158 | 0.000635 | 0.00244 | ||||
Total | 44 | ||||||||
Source of Variation | Scandix pecten-veneris | Lathyrus apacha | Bromus secalinus | ||||||
df | MS | F | MS | F | MS | F | |||
Treatment | 2 | 0.00742 | 2.11 | 0.00668 | 1.10 | 0.0000581 | 0.387 | ||
Residual | 42 | 0.00351 | 0.00607 | 0.000150 | |||||
Total | 44 |
TMDW | t |
---|---|
C, WD1 | 1.19 |
C, WD2 | 2.46 * |
WD1, WD2 | 1.77 |
Source of Variation | Community Composition | TFW | Centaurea cyanus | Legousia speculum-veneris | |||||
---|---|---|---|---|---|---|---|---|---|
df | MS | F | MS | F | MS | F | MS | F | |
Treatment | 2 | 317 | 1.35 | 0.998 | 0.885 | 0.0747 | 0.156 | 0.0649 | 2.86 |
Residual | 42 | 235 | 1.13 | 0.477 | 0.0227 | ||||
Total | 44 | ||||||||
Source of Variation | Scandix pecten-veneris | Lathyrus apacha | Bromus secalinus | ||||||
df | MS | F | MS | F | MS | F | |||
Treatment | 2 | 0.229 | 3.53 | 0.137 | 1.05 | 0.142 | 0.416 | ||
Residual | 42 | 0.0651 | 0.131 | 0.339 | |||||
Total | 44 |
Source of Variation | Community Composition | TMFW | Centaurea cyanus | Legousia speculum-veneris | |||||
---|---|---|---|---|---|---|---|---|---|
df | MS | F | MS | F | MS | F | MS | F | |
Treatment | 2 | 519 | 1.25 | 0.00952 | 2.21 | 0.000259 | 0.0135 | 0.00396 | 0.583 |
Residual | 42 | 414 | 0.00433 | 0.0196 | 0.00679 | ||||
Total | 44 | ||||||||
Source of Variation | Scandix pecten-veneris | Lathyrus apacha | Bromus secalinus | ||||||
df | MS | F | MS | F | MS | F | |||
Treatment | 2 | 0.0399 | 2.07 | 0.0359 | 0.759 | 0.00176 | 0.228 | ||
Residual | 42 | 0.0193 | 0.0473 | 0.00771 | |||||
Total | 44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanfarillo, E.; Fedeli, R.; Fiaschi, T.; de Simone, L.; Vannini, A.; Angiolini, C.; Loppi, S.; Maccherini, S. Effects of Wood Distillate on Seedling Emergence and First-Stage Growth in Five Threatened Arable Plants. Diversity 2022, 14, 669. https://doi.org/10.3390/d14080669
Fanfarillo E, Fedeli R, Fiaschi T, de Simone L, Vannini A, Angiolini C, Loppi S, Maccherini S. Effects of Wood Distillate on Seedling Emergence and First-Stage Growth in Five Threatened Arable Plants. Diversity. 2022; 14(8):669. https://doi.org/10.3390/d14080669
Chicago/Turabian StyleFanfarillo, Emanuele, Riccardo Fedeli, Tiberio Fiaschi, Leopoldo de Simone, Andrea Vannini, Claudia Angiolini, Stefano Loppi, and Simona Maccherini. 2022. "Effects of Wood Distillate on Seedling Emergence and First-Stage Growth in Five Threatened Arable Plants" Diversity 14, no. 8: 669. https://doi.org/10.3390/d14080669
APA StyleFanfarillo, E., Fedeli, R., Fiaschi, T., de Simone, L., Vannini, A., Angiolini, C., Loppi, S., & Maccherini, S. (2022). Effects of Wood Distillate on Seedling Emergence and First-Stage Growth in Five Threatened Arable Plants. Diversity, 14(8), 669. https://doi.org/10.3390/d14080669