Bioclimatic Envelopes for Two Bat Species from a Tropical Island: Insights on Current and Future Distribution from Ecological Niche Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Focal Species
2.2. Distribution Records
2.3. Data Sources and Modeling Approach
2.4. Bioclimatic Variable Selection
2.5. Model Building and Evaluation
2.6. Extent of Occurrence and Area of Occupancy
3. Results
3.1. Habitat Suitability Modeling
3.1.1. Evaluation of the Model and Analysis of Variable Contribution
3.1.2. Variables of Importance for Kerivoula picta
3.1.3. Variables of Importance for Kerivoula malpasi
3.1.4. Potential Distribution Analysis
3.2. AOO and EOO
4. Discussion
5. Limitations of ENM and Future Work
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adams, R.A.; Shaw, J.B. Time’s arrow in the evolutionary development of bat flight. In Bat Evolution, Ecology, and Conservation; Adams, R.A., Pedersen, S.C., Eds.; Springer: New York, NY, USA, 2013; pp. 21–46. [Google Scholar]
- Cooper, L.N.; Sears, K.E. How to Grow a Bat Wing. In Bat Evolution, Ecology, and Conservation; Adams, R.A., Pedersen, S.C., Eds.; Springer: New York, NY, USA, 2013; pp. 3–20. [Google Scholar]
- Burgin, C.J.; Moratelli, R. Family Vespertilionidae (Vesper bats). In Handbook of the Mammals of the World; Wilson, D.E., Mittermeier, R.A., Eds.; Lynx Ediciones: Barcelona, Spain, 2019; Volume 9, pp. 716–981. [Google Scholar]
- Jones, G.; Teeling, E.C. The evolution of echolocation in bats. Trends Ecol. Evol. 2006, 21, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Freeman, P.W. Macroevolution in Microchiroptera: Recoupling morphology and ecology with phylogeny. Evol. Ecol. Res. 2000, 2, 317–335. [Google Scholar]
- Teeling, E.C.; Madsen, O.; Van Den Bussche, R.A.; de Jong, W.W.; Stanhope, M.J.; Springer, M.S. Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc. Natl. Acad. Sci. USA 2002, 99, 1431–1436. [Google Scholar] [CrossRef] [Green Version]
- Ransome, R.D.; Mcowat, T.P. Birth timing and population changes in greater horseshoe bat colonies (Rhinolophus ferrumequinum) are synchronized by climatic temperature. Zool. J. Linn. Soc. 1994, 112, 337–351. [Google Scholar] [CrossRef]
- Fleming, T.H.; Eby, P. Ecology of bat migration. In Bat Ecology; Kunz, T.H., FenTON, M.B., Eds.; University of Chicago Press: Chicago, IL, USA, 2003; pp. 156–208. [Google Scholar]
- Jones, G.; Jacobs, D.S.; Kunz, T.H.; Willig, M.R.; Racey, P.A. Carpe noctem: The importance of bats as bioindicators. Endanger. Species Res. 2009, 8, 93–115. [Google Scholar] [CrossRef] [Green Version]
- Yapa, W. A Field Guide to the Bats of Sri Lanka; Dilmah Ceylon Tea Company PLC: Colombo, Sri Lanka, 2017; 142p. [Google Scholar]
- Hodgkison, R.; Balding, S.T.; Zubaid, A.; Kunz, T.H. Fruit bats (Chiroptera: Pteropodidae) as seed dispersers and pollinators in a lowland Malaysian rain forest1. Biotropica 2003, 35, 491–502. [Google Scholar] [CrossRef]
- Kunz, T.H.; de Torrez, E.B.; Bauer, D.; Lobova, T.; Fleming, T.H. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 2011, 1223, 1–38. [Google Scholar] [CrossRef]
- Ghanem, S.J.; Voigt, C.C. Chapter 7—Increasing awareness of ecosystem services provided by Bats. In Advances in the Study of Behavior Advances in the Study of Behavior; Brockmann, H.J., Roper, T.J., Naguib, M., Mitani, J.C., Simmons, L.W., Eds.; Academic Press: Cambridge, MA, USA, 2012; pp. 279–302. [Google Scholar]
- Hirzel, A.H.; Le Lay, G. Habitat suitability modelling and niche theory. J. Appl. Ecol. 2008, 45, 1372–1381. [Google Scholar] [CrossRef]
- Ramasindrazana, B.; Goodman, S.M.; Schoeman, M.C.; Appleton, B. Identification of cryptic species of Miniopterus bats (Chiroptera: Miniopteridae) from Madagascar and the Comoros using bioacoustics overlaid on molecular genetic and morphological characters. Biol. J. Linn. Soc. 2011, 104, 284–302. [Google Scholar] [CrossRef] [Green Version]
- Pijanowski, B.C.; Villanueva-Rivera, L.J.; Dumyahn, S.L.; Farina, A.; Krause, B.L.; Napoletano, B.M.; Gage, S.H.; Pieretti, N. Soundscape ecology: The science of sound in the landscape. Bioscience 2011, 61, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Aide, T.M.; Corrada-Bravo, C.; Campos-Cerqueira, M.; Milan, C.; Vega, G.; Alvarez, R. Real-time bioacoustics monitoring and automated species identification. PeerJ 2013, 1, e103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Fielding, A.H.; Haworth, P.F. Testing the generality of bird habitat models. Conserv. Biol. 1995, 9, 1466–1481. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Soto-Centeno, J.A.; Steadman, D.W. Fossils reject climate change as the cause of extinction of Caribbean bats. Sci. Rep. 2015, 5, 7971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russ, J.M.; Briffa, M.; Montgomery, W.I. Seasonal patterns in activity and habitat use by bats (Pipistrellus spp. and Nyctalus leisleri) in Northern Ireland, determined using a driven transect. J. Zool. 2003, 259, 289–299. [Google Scholar] [CrossRef]
- Vasko, V.; Blomberg, A.S.; Vesterinen, E.J.; Suominen, K.M.; Ruokolainen, L.; Brommer, J.E.; Norrdahl, K.; Niemelä, P.; Laine, V.N.; Selonen, V.; et al. Within-season changes in habitat use of forest-dwelling boreal bats. Ecol. Evol. 2020, 10, 4164–4174. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.W.; Gao, W.G.; Wang, L.W.; Metzner, W.M.; Ma, J.M.; Feng, J.F. Seasonal variation in prey abundance influences habitat use by greater horseshoe bats (Rhinolophus ferrumequinum) in a temperate deciduous forest. Can. J. Zool. 2010, 88, 315–323. [Google Scholar] [CrossRef]
- Stawski, C.; Willis, C.; Geiser, F. The importance of temporal heterothermy in bats. J. Zool. 2014, 292, 86–100. [Google Scholar] [CrossRef] [Green Version]
- Hettiarachchi, C.J.; Gamage, S.N.; Marikar, F.M.; Mahanayakage, C.A.; Padmalal, U.K.; Kotagama, S.W. Habitat suitability model for the montane slender loris in the Hakgala strict nature reserve, Sri Lanka. Asian Primates J. 2018, 7, 2018. [Google Scholar]
- Kariyawasam, C.S.; Kumar, L.; Ratnayake, S.S. Invasive plant species establishment and range dynamics in Sri Lanka under climate change. Entropy 2019, 21, 571. [Google Scholar] [CrossRef] [Green Version]
- Ukuwela, K.D.; Bandara, I.N.; De Zoysa, H.; Rupasinghe, U.D.; Vandercone, R.P. New localities, distribution and habitat modeling of the critically endangered Sri Lankan frog Nannophrys marmorata. Russ. J. Herpetol. 2020, 27, 33–40. [Google Scholar] [CrossRef]
- Frick, W.F.; Kingston, T.; Flanders, J. A review of the major threats and challenges to global bat conservation. Ann. N. Y. Acad. Sci. 2020, 1469, 5–25. [Google Scholar] [CrossRef] [PubMed]
- Lovegrove, B.G.; Canale, C.; Levesque, D.; Fluch, G.; Řeháková-Petrů, M.; Ruf, T. Are tropical small mammals physiologically vulnerable to arrhenius effects and climate change? Physiol. Biochem. Zool. 2014, 87, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef] [Green Version]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- MOE (Ministry of Environment). The National Red List 2012 of Sri Lanka; Conservation Status of the Fauna and Flora; Ministry of Environment: Colombo, Sri Lanka, 2012; pp. viii + 476. Available online: http://www.cea.lk/web/images/pdf/redlist2012.pdf (accessed on 14 August 2021).
- Kingston, T.; Francis, C.M.; Akbar, Z.; Kunz, T.H. Species richness in an insectivorous bat assemblage from Malaysia. J. Trop. Ecol. 2003, 19, 67–79. [Google Scholar] [CrossRef]
- Yapa, W.B.; Ratnasooriya, W.D. Ecology and Biology of Sri Lankan Bats; A Report Submitted to National Science Foundation; University of Colombo: Colombo, Sri Lanka, 2012; 28p. [Google Scholar]
- Yapa, A.; Ratnavira, G. The Mammals of Sri Lanka; Field Ornithology Group of Sri Lanka, Department of Zoology, University of Colombo: Colombo, Sri Lanka, 2013; 1009p. [Google Scholar]
- Kotagama, S.; Goonatilake, S.A. Pictorial Pocket Guide to the Mammals of SriLanka (Revised & Expanded Edition 2019); Field Ornithology Group of Sri Lanka: Colombo, Sri Lanka, 2019; 66p. [Google Scholar]
- The IUCN Red List of Threatened Species 2020, e.T10985A22022952. Available online: https://doi.org/10.2305/IUCN.UK.20202.RLTS.T10985A22022952.en (accessed on 18 July 2021).
- Gabadage, D.; Edirisinghe, G.; Botejue, M.; Perera, K.; Surasinghe, T.; Karunarathna, S. A new record of the rare Hardwicke’s Woolly Bat Kerivoula hardwickii (Horsefield, 1824) (Mammalia: Chiroptera: Vespertilionidae) after 23 years from a lowland rainforest of Sri Lanka. J. Threat. Taxa 2018, 10, 12344–12349. [Google Scholar] [CrossRef]
- Phillips, W.W.A. Additional to the fauna of Ceylon—Part II. Some new and interesting bats from the hills of the Central Province. Spolia Zeylan. 1932, 16, 331–332. [Google Scholar]
- Phillips, W.W.A. Manual of the Mammals of Ceylon; Dulau & Company Ltd.: London, UK, 1935; pp. 130–133. [Google Scholar]
- Phillips, W.W.A. Manual of the Mammals of Sri Lanka—Part 1, 2nd ed.; Wildlife and Nature Protection Society of Sri Lanka: Colombo, Sri Lanka, 1980; pp. 93–96. [Google Scholar]
- Molur, S.; Marimuthu, G.; Srinivasulu, C.; Mistry, S.; Hutson, A.M.; Bates, P.J.J.; Walker, S.; Padmapriya, K.; Binupriya, A.R. Status of South Asian Chiroptera. Conservation Assessment and Management Plan (C.A.M.P.) Workshop Report; Zoo Outreach Organization/CBSG-South Asia: Coimbatore, India, 2002; pp. 101–105. [Google Scholar]
- Edirisinghe, G.; Surasinghe, T.; Gabadage, D.; Botejue, M.; Perera, K.; Madawala, M.; Weerakoon, D.; Karunarathna, S. Chiropteran diversity in the peripheral areas of the Maduru-Oya National Park in Sri Lanka: Insights for conservation and management. Zookeys 2018, 12, 139–162. [Google Scholar] [CrossRef] [PubMed]
- Kelaart, E.F. Prodromus Faunae Zeylanicae; WHT Publications (Private) Limited: Colombo, Sri Lanka, 1998; pp. 24–26. [Google Scholar]
- Bates, P.J.J.; Harrison, D.L. Bats of the Indian Subcontinent; Harrison Zoological Museum: Sevenoaks, Kent, UK, 1997; pp. 212–215. [Google Scholar]
- GBIF. Free and Open Access to Biodiversity Data. Available online: https://www.gbif.org (accessed on 13 July 2021).
- Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 2006, 29, 773–785. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Townsend, P.A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- Russo, D.; Di Febbraro, M.; Cistrone, L.; Jones, G.; Smeraldo, S.; Garonna, A.; Bosso, L. Protecting one, protecting both? Scale-dependent ecological differences in two species using dead trees, the rosalia longicorn beetle and the barbastelle bat. J. Zool. 2015, 297, 165–175. [Google Scholar] [CrossRef]
- Buchhorn, M.; Smets, B.; Bertels, L.; De Roo, B.; Lesiv, M.; Tsendbazar, N.E.; Linlin, L.; Tarko, A. Copernicus Global Land Service: Land Cover 100m: Version 3 Globe 2015–2019: Product User Manual; Zenodo: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Bertels, L.; Smets, B. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef] [Green Version]
- Tsendbazar, N.M.; Herold, L.; Li, A.; Tarko, S.; de Bruin, D.; Masiliunas, M.; Lesiv, S.; Fritz, M.; Buchhorn, B.; Smets, R.; et al. Towards operational validation of annual global land cover maps. Remote Sens. Environ. 2021, 266, 112686. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high re-solution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965e1978. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled Seamless SRTM Data V4, International Centre for Tropical Agriculture. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 1 February 2022).
- Reuter, H.I.; Nelson, A.; Jarvis, A. An evaluation of void-filling interpolation methods for SRTM data. Int. J. Geogra. Inf. Sci. 2007, 21, 983–1008. [Google Scholar] [CrossRef]
- Ashoori, A.; Kafash, A.; Varasteh Moradi, H.; Yousefi, M.; Kamyab, H.; Behdarvand, N.; Mohammadi, S. Habitat modeling of the common pheasant Phasianuscolchicus (Galliformes: Phasianidae) in a highly modified landscape: Application of species distribution models in the study of a poorly documented bird in Iran. Eur. Zool. J. 2018, 85, 372–380. [Google Scholar] [CrossRef] [Green Version]
- Fois, M.; Bacchetta, G.; Cuena-Lombraña, A.; Cogoni, D.; Pinna, M.; Sulis, E.; Fenu, G. Using extinctions in species distribution models to evaluate and predict threats: A contribution to plant conservation planning on the island of Sardinia. Environ. Conserv. 2018, 45, 11–19. [Google Scholar] [CrossRef]
- Butler, C.J.; Wheeler, E.A.; Stabler, L.B. Distribution of the threatened lace hedgehog cactus (Echinocereus reichenbachii) under various climate change scenarios. J. Torrey Bot. Soc. 2012, 139, 46–55. [Google Scholar] [CrossRef]
- Mohammadi, S.; Ebrahimi, E.; Moghadam, M.S. Modelling current and future potential distributions of two desert jerboas under climate change in Iran. Ecol. Inform. 2019, 52, 7–13. [Google Scholar] [CrossRef]
- Donner, L.J.; Wyman, B.L.; Hemler, R.S.; Horowitz, L.W.; Ming, Y.; Zhao, M.; Golaz, J.-C.; Ginoux, P.; Lin, S.-J.; Schwarzkopf, M.D. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Clim. 2011, 24, 3484–3519. [Google Scholar] [CrossRef]
- Bentsen, M.; Bethke, I.; Debernard, J.B.; Iversen, T.; Kirkevåg, A.; Seland, Ø.; Drange, H.; Roelandt, C.; Seierstad, I.A.; Hoose, C.; et al. The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev. 2013, 6, 687–720. [Google Scholar] [CrossRef] [Green Version]
- Iversen, T.; Bentsen, M.; Bethke, I.; Debernard, J.B.; Kirkevåg, A.; Seland, Ø.; Drange, H.; Kristjansson, J.E.; Medhaug, I.; Sand, M.; et al. The Norwegian Earth System Model, NorESM1-M—Part 2: Climate response and scenario projections. Geosci. Model Dev. 2013, 6, 389–415. [Google Scholar] [CrossRef] [Green Version]
- Remya, K.; Ramachandran, A.; Jayakumar, S. Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecol. Eng. 2015, 82, 184–188. [Google Scholar] [CrossRef]
- Chaturvedi, R.K.; Joshi, J.; Jayaraman, M.; Bala, G.; Ravindranath, N.H. Multi-model climate change projections for India under representative concentration pathways. Curr. Sci. 2012, Vol., 791–802. [Google Scholar]
- Menon, A.; Levermann, A.; Schewe, J.; Lehmann, J.; Frieler, K. Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst. Dyn. 2013, 4, 287–300. [Google Scholar] [CrossRef] [Green Version]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Change 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Riahi, K.; Grubler, A.; Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast Soc. 2007, 74, 887–935. [Google Scholar] [CrossRef]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.; Lamarque, J.F.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.; Thomsom, A.G.J.M.V. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 2011, 109, 213–241. [Google Scholar] [CrossRef] [Green Version]
- Munasinghe, J. National Physical Planning Policy & The Plan 2017–2050; National Physical Planning Department Sri Lanka: Battaramulla, Sri Lanka, 2019; 148p. Available online: https://www.tamilnet.com/img/publish/2020/03/NPPD-ENGweb-27_12.pdf. (accessed on 15 May 2022).
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Peterson, A.T.; Soberón, J. Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right. Nat. Conserv. 2012, 10, 102–107. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, X.; Yingdan, Y.; Xiangming, L.; Jinchi, Z. Maximum entropy modeling to predict the impact of climate change on pine wilt disease in China. Front. Plant Sci. 2021, 12, 764. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Torres, J.; Brito, J.C.; Vasconcelos, M.J.; Catarino, L.; Gonçalves, J.; Honrado, J. Ensemble models of habitat suitability relate chimpanzee (Pan troglo-dytes) conservation to forest and landscape dynamics in Western Africa. Biol. Conserv. 2010, 143, 416e425. [Google Scholar] [CrossRef]
- Coban, H.O.; Örücü, Ö.K.; Arslan, E.S. MaxEnt modeling for predicting the current and future potential geographical distribution of Quercus libani Olivier. Sustainability 2020, 12, 2671. [Google Scholar] [CrossRef] [Green Version]
- Karunarathna, S.; Dayananda, S.K.; Gabadage, D.; Botejue, M.; Madawala, M.; Peabotuwage, I.; Madurapperuma, B.D.; Ranagalage, M.; Udayakumara, A.; Surasinghe, T.D. Distribution, Habitat Associations and Conservation Status of the Sri Lanka Frogmouth Batrachostomus moniliger. Ardeola 2021, 69, 75–95. [Google Scholar] [CrossRef]
- Gabadage, D.; Surasinghe, T.; De Silva, A.; Somaweera, R.; Madurapperuma, B.; Madawala, M.; Karunarathna, S. Ecological and zoological study of endemic Sri Lankan Keelback (Balanophis ceylonensis): With implications for its conservation. Vertebr. Zool. 2018, 68, 225–236. [Google Scholar]
- Bachman, S.; Moat, J.; Hill, A.W.; de la Torre, J.; Scott, B. Supporting Red List threat assessments with GeoCAT: Geospatial conservation assessment tool. ZooKeys 2011, 150, 117–126. [Google Scholar] [CrossRef] [PubMed]
- IUCN. IUCN Red List Categories and Criteria: Version 3.1, 2nd ed.; IUCN Species Survival Commission: Gland, Switzerland; Cambridge, UK, 2012. [Google Scholar]
- Razgour, O.; Rebelo, H.; Di Febbraro, M.; Russo, D. Painting maps with bats: Species distribution modelling in bat research and conservation. Hystrix 2016, 27, 1–8. [Google Scholar]
- Ellis, E.C. Anthropogenic transformation of the terrestrial biosphere. Phil. Trans. R. Soc. A 2011, 369, 1010–1035. [Google Scholar] [CrossRef]
- Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 2007, 10, 1115–1123. [Google Scholar] [CrossRef]
- Sánchez-Barradas, A.; Villalobos, F. Species geographical co-occurrence and the effect of Grinnellian and Eltonian niche partitioning: The case of a Neotropical felid assemblage. Ecol. Res. 2020, 35, 382–393. [Google Scholar] [CrossRef]
- Rebelo, H.; Tarroso, P.; Jones, G. Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob. Change Biol. 2010, 16, 561–576. [Google Scholar] [CrossRef]
- Pereira, M.J.R.; Peste, F.; Paula, A.; Pereira, P.; Bernardino, J.; Vieira, J.; Bastos, C.; Mascarenhas, M.; Costa, H.; Fonseca, C. Managing coniferous production forests towards bat conservation. Wildl. Res. 2016, 43, 80–92. [Google Scholar] [CrossRef]
- Kumar, S.; Stohlgren, T.J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J. Ecol. Nat. Environ. 2009, 1, 094–098. [Google Scholar]
- Marmion, M.; Parviainen, M.; Luoto, M.; Heikkinen, R.K.; Thuiller, W. Evaluation of consensus methods in predictive species distribution modeling. Divers. Distrib. 2009, 15, 59–69. [Google Scholar] [CrossRef]
- Harper, K.A.; Macdonald, S.E.; Burton, P.J.; Chen, J.; Brosofske, K.D.; Saunders, S.C.; Euskirchen, E.S.; Roberts, D.; Jaiteh, M.S.; Esseen, P.A. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 2005, 19, 768–782. [Google Scholar] [CrossRef]
- Andrén, H. Effects of landscape composition on predation rates at habitat edges. In Mosaic Landscapes and Ecological Processes Mosaic Landscapes and Ecological Processes; Springer: Berlin/Heidelberg, Germany, 1995; pp. 225–255. [Google Scholar]
- Fox, B.J.; Fox, M.D. Factors determining mammal species richness on habitat islands and isolates: Habitat diversity, disturbance, species interactions and guild assembly rules. Glob. Ecol. Biogeogr. 2000, 9, 19–37. [Google Scholar] [CrossRef]
- Synes, N.W.; Ponchon, A.; Palmer, S.C.F.; Osborne, P.E.; Bocedi, G.; Travis, J.M.J.; Watts, K. Prioritising conservation actions for biodiversity: Lessening the impact from habitat fragmentation and climate change. Biol. Conserv. 2020, 252, 108819. [Google Scholar] [CrossRef]
- Opdam, P.; Wascher, D. Climate change meets habitat fragmentation: Linking landscape and biogeographical scale levels in research and conservation. Biol. Conserv. 2004, 117, 285–297. [Google Scholar] [CrossRef]
- Oliver, T.H.; Brereton, T.; Roy, D.B. Population resilience to an extreme drought is influenced by habitat area and fragmentation in the local landscape. Ecography 2013, 36, 579–586. [Google Scholar] [CrossRef] [Green Version]
- Lawler, J.J.; Hepinstall-Cymerman, J. Conservation planning in a changing climate: Assessing the impacts of potential range shifts on a reserve network. In Landscape-Scale Conservation Planning; Springer: Berlin/Heidelberg, Germany, 2010; pp. 325–348. [Google Scholar]
- Trombulak, S.C.; Baldwin, R.F. Introduction: Creating a context for landscape-scale conservation planning. In Landscape-Scale Conservation Planning Landscape-Scale Conservation Planning; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–15. [Google Scholar]
- Patel, J.; Gamit, K.; Gamit, N.; Debata, S. Painted Bat (Kerivoula picta) in Gujarat. Zoos Print J. 2017, 32, 13–16. [Google Scholar]
- Hawkeswood, T.J.; Sommung, B. Record of the Painted Woolly Bat, Kerivoulapicta (Pallas, 1767) (Mammalia: Chiroptera: Vespertilionidae) from the Sisaket farming district of Thailand. Calodema 2017, 555, 1–4. [Google Scholar]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Razgour, O.; Hanmer, J.; Jones, G. Using multi-scale modelling to predict habitat suitability for species of conservation concern: The grey long-eared bat as a case study. Biol. Conser. 2011, 144, 2922–2930. [Google Scholar] [CrossRef] [Green Version]
- Klüg-Baerwald, B.J.; Gower, L.E.; Lausen, C.L.; Brigham, R.M. Environmental correlates and energetics of winter flight by bats in southern Alberta, Canada. Can. J. Zool. 2016, 94, 829–836. [Google Scholar] [CrossRef] [Green Version]
- Catto, C.M.C.; Racey, P.A.; Stephenson, P.J. Activity patterns of the serotine bat (Eptesicus serotinus) at a roost in southern England. J. Zool. 1995, 235, 635–644. [Google Scholar] [CrossRef]
- Burles, D.W.B.W.; Brigham, R.M.B.M.; Ring, R.A.R.A.; Reimchen, T.E.R.E. Influence of weather on two insectivorous bats in a temperate Pacific Northwest rainforest. Can. J. Zool. 2009, 87, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Grindal, S.D.; Collard, T.S.; Brigham, R.M.; Robert, M.R.B. The influence of precipitation on reproduction by Myotis bats in British Columbia. Am. Midl. Nat. 1992, 128, 339–344. [Google Scholar] [CrossRef]
- Mittermeier, R.A.; Gil, P.R.; Hoffman, M.; Pilgrim, J.; Brooks, T.; Mittermeier, C.G.; Lamoreux, J.; Da Fonseca, G.A.B. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions; Cemex: Mexico City, Mexico, 2005. [Google Scholar]
- Mittermeier, R.A.; Myers, N.; Mittermeier, C.G.; Gil, P.R. Hotspots: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions; CEMEX, SA, Agrupación Sierra Madre, SC: Mexico City, Mexico, 1999. [Google Scholar]
- Brooks, T.M.; Mittermeier, R.A.; da Fonseca, G.A.; Gerlach, J.; Hoffmann, M.; Lamoreux, J.F.; Mittermeier, C.G.; Pilgrim, J.D.; Rodrigues, A.S. Global biodiversity conservation priorities. Science 2006, 313, 58–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, T.M.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Rylands, A.B.; Konstant, W.R.; Flick, P.; Pilgrim, J.; Oldfield, S.; Magin, G. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 2002, 16, 909–923. [Google Scholar] [CrossRef] [Green Version]
- Zamora-Gutierrez, V.; Pearson, R.G.; Green, R.E.; Jones, K.E. Forecasting the combined effects of climate and land use change on Mexican bats. Divers. Distrib. 2018, 24, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Hughes, A.C. Understanding the drivers of S outheast A sian biodiversity loss. Ecosphere 2017, 8, e01624. [Google Scholar] [CrossRef]
- Wiens, J.J.; Graham, C.H. Niche conservatism: Integrating evolution, ecology and conservation biology. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 519–539. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, H.; Froufe, E.; Brito, J.C.; Russo, D.; Cistrone, L.; Ferrand, N.; Jones, G. Postglacial colonization of Europe by the barbastelle bat: Agreement between molecular data and past predictive modelling. Mol. Ecol. 2012, 21, 2761–2774. [Google Scholar] [CrossRef]
- Razgour, O.; Juste, J.; Ibáñez, C.; Kiefer, A.; Rebelo, H.; Puechmaille, S.J.; Arlettaz, R.; Burke, T.; Dawson, D.A.; Beaumont, M.; et al. The shaping of genetic variation in edge-of-range populations under past and future climate change. Ecol. Lett. 2013, 16, 1258–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, A.C.; Satasook, C.; Bates, P.J.; Bumrungsri, S.; Jones, G. The projected effects of climatic and vegetation changes on the distribution and diversity of Southeast Asian bats. Glob. Change Biol. 2012, 18, 1854–1865. [Google Scholar] [CrossRef]
- Oliver, T.H.; Morecroft, M.D. Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Clim. Change 2014, 5, 317–335. [Google Scholar] [CrossRef] [Green Version]
- Heer, K.; Helbig-Bonitz, M.; Fernandes, R.G.; Mello, M.A.; Kalko, E.K. Effects of land use on bat diversity in a complex plantation–forest landscape in northeastern Brazil. J. Mammal. 2015, 96, 720–731. [Google Scholar] [CrossRef] [Green Version]
- Costello, M.J.; Michener, W.K.; Gahegan, M.; Zhang, Z.Q.; Bourne, P.E. Biodiversity data should be published, cited, and peer reviewed. Trends Ecol. Evol. 2013, 28, 454–461. [Google Scholar] [CrossRef]
- Rabbani, M.; Rahman, A.A.; Islam, N.; Michel, D.; Pandya, A. Climate change and sea level rise: Issues and challenges for coastal communities in the Indian Ocean region. Coastl. Zones Clim. Change 2010, Vol., 17–29. [Google Scholar]
- Weerakkody, U. Potential impact of accelerated sea-level rise on beaches of Sri Lanka. J. Coast. Res. 1997, Vol., 225–242. [Google Scholar]
- Gopalakrishnan, T.; Kumar, L. Potential impacts of sea-level rise upon the Jaffna Peninsula, Sri Lanka: How climate change can adversely affect the coastal zone. J. Coast. Res. 2020, 36, 951–960. [Google Scholar] [CrossRef]
- Gopalakrishnan, T.; Kumar, L.; Hasan, M.K. Coastal settlement patterns and exposure to sea-level rise in the Jaffna Peninsula, Sri Lanka. Popul. Environ. 2020, 42, 129–145. [Google Scholar] [CrossRef]
- Palamakumbure, L.; Ratnayake, A.S.; Premasiri, H.; Ratnayake, N.P.; Katupotha, J.; Dushyantha, N.; Weththasinghe, S.; Weerakoon, W. Sea-level inundation and risk assessment along the south and southwest coasts of Sri Lanka. Geoenviron. Disasters 2020, 7, 1–9. [Google Scholar] [CrossRef]
Code | Variable | Description | Unit |
---|---|---|---|
bio1 | Annual mean temperature | The average temperature for each month | °C |
bio2 | Annual mean diurnal range | Measure of temperature change over the course of the year using monthly maximum temperatures and monthly minimum temperatures | °C |
bio3 | Isothermality | Derived by calculating the ratio of the mean diurnal range (bio 2) to the annual temperature range (bio 7, discussed below), and then multiplying by 100 | % |
bio4 | Temperature seasonality (Standard Deviation) | The amount of temperature variation over a cause of the year, based on the standard deviation (variation) of monthly temperature averages | % |
bio5 | Max temperature of warmest month | The maximum monthly temperature occurrence over a given year (time series) or averaged span of years (normal) | °C |
bio6 | Min temperature of coldest month | The minimum monthly temperature occurrence over a given year (time series) or averaged span of years (normal) | °C |
bio7 | Annual Temperature range | A measure of temperature variation over a given period. (bio 7 = bio 5 − bio 6) | °C |
bio8 | Mean temperature of wettest quarter | Mean temperatures that prevail during the wettest season | °C |
bio9 | Mean temperature of driest quarter | Quarterly index approximates mean temperatures that prevail during the driest quarter | °C |
bio10 | Mean temperature of warmest quarter | Quarterly index approximates mean temperatures that prevail during the warmest quarter | °C |
bio11 | Mean temperature of coldest quarter | Quarterly index approximates mean temperatures that prevail during the coldest quarter | °C |
bio12 | Annual precipitation | Sum of all total monthly precipitation values | mm |
bio13 | Precipitation of wettest period | The total precipitation that prevails during the wettest month. | mm |
bio14 | Precipitation of driest period | The total precipitation that prevails during the driest month | mm |
bio15 | Precipitation seasonality (Coefficient variable) | Measure of the variation in monthly precipitation totals over the course of the year | % |
bio16 | Precipitation of wettest quarter | Total precipitation that prevails during the wettest quarter | mm |
bio17 | Precipitation of driest quarter | Total precipitation that prevails during the driest quarter | mm |
bio18 | Precipitation of warmest quarter | Total precipitation that prevails during the warmest quarter | mm |
bio19 | Precipitation of coldest quarter | Total precipitation that prevails during the coldest quarter | mm |
Variable | Current | GFDL-CM3 | NorESM1-M | |||
---|---|---|---|---|---|---|
PC | PI | PC | PI | PC | PI | |
bio1 | 0.2 | 0 | 0.2 | 1.5 | 2.4 | 3.5 |
bio2 | 5.3 | 1.7 | 0.2 | 0 | 5 | 3.7 |
bio3 | 2.8 | 4.4 | 1.4 | 2.1 | 1.1 | 1.3 |
bio4 | 39.6 | 17.3 | 36.5 | 20.7 | 30.1 | 19.9 |
bio5 | 3.3 | 0.7 | 8.7 | 7.2 | 7.2 | 5.3 |
bio6 | 2.6 | 16.2 | 0.6 | 0.7 | 0.1 | 0.1 |
bio7 | 1.9 | 0.2 | 4.1 | 9.1 | 0.8 | 1.2 |
bio8 | 0.2 | 0.3 | 2.2 | 7 | 0.7 | 0.6 |
bio9 | 0 | 0 | 1.6 | 5.7 | 0 | 0 |
bio10 | 0.1 | 0.5 | 8.3 | 7.1 | 0.4 | 0.2 |
bio15 | 9.5 | 16.8 | 5.9 | 5.6 | 21.8 | 23.6 |
bio17 | 9 | 7.7 | 18.5 | 8.3 | 19.9 | 20.4 |
land-use | 18.8 | 14.4 | 5.6 | 6.5 | 4.4 | 5 |
elevation | 6.7 | 19.9 | 6.3 | 18.6 | 6.1 | 15.4 |
Species | Current | GFDL-CM3 | NorESM1-M | ||||||
---|---|---|---|---|---|---|---|---|---|
PC | PI | JK | PC | PI | JK | PC | PI | JK | |
K. picta | bio4 | elevation | bio4 | bio4 | bio4 | bio15 | bio4 | bio15 | bio15 |
land use | bio4 | bio15 | bio17 | elevation | bio4 | bio15 | bio17 | bio4 | |
bio15 | bio15 | bio17 | bio5 | bio7 | bio17 | bio17 | bio4 | bio17 | |
K. malpasi | bio15 | bio15 | bio15 | bio15 | bio15 | bio15 | bio15 | bio15 | bio15 |
bio2 | bio2 | bio9 | bio2 | bio2 | bio17 | bio2 | bio2 | bio2 | |
land use | land use | bio2 | bio17 | bio9 | bio2 | land use | bio9 | elevation |
Variable | Current | GFDL-CM3 | NorESM1-M | |||
---|---|---|---|---|---|---|
PC | PI | PC | PI | PC | PI | |
bio1 | 0 | 0 | 0 | 0 | 0 | 0 |
bio2 | 31.3 | 35.3 | 32.1 | 32 | 28 | 28 |
bio3 | 0 | 0.4 | 0 | 0 | 0 | 0 |
bio4 | 0.1 | 0 | 0.3 | 3.3 | 0 | 0.1 |
bio5 | 0 | 0 | 2 | 0 | 1.4 | 0.4 |
bio6 | 0 | 0 | 0 | 0 | 0 | 0 |
bio7 | 0.2 | 0 | 0 | 0 | 0 | 0 |
bio8 | 0 | 0 | 0 | 0 | 0 | 0 |
bio9 | 0 | 0 | 0.9 | 7 | 0.2 | 4.1 |
bio10 | 0 | 0 | 0.6 | 0 | 0.3 | 0 |
bio15 | 63.6 | 46.6 | 40.7 | 57.6 | 51.6 | 67.4 |
bio17 | 0 | 0 | 15 | 0.1 | 8.2 | 0 |
land-use | 3 | 15.5 | 8.5 | 0 | 9.8 | 0 |
elevation | 1.8 | 2.2 | 0 | 0 | 0.4 | 0 |
Model | Distribution Range Metrics | Species | |
---|---|---|---|
K. picta | K. malpasi | ||
Without ENMs | EOO | 55,374 (84.40) | 5340 (8.14) |
AOO | 62 (0.09) | 5 (0.01) | |
Current | EOO | 31,580 (48.13) | 3266 (5.00) |
AOO | 291 (0.44) | 91 (0.14) | |
GFDL-CM3 | EOO | 19,339 (29.48) | 4420(6.74) |
AOO | 324 (0.49) | 96 (0.14) | |
NorESM1-M | EOO | 21,908 (33.39) | 4035 (6.15) |
AOO | 348 (0.53) | 123 (0.19) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandara, A.P.M.J.; Madurapperuma, B.D.; Edirisinghe, G.; Gabadage, D.; Botejue, M.; Surasinghe, T.D. Bioclimatic Envelopes for Two Bat Species from a Tropical Island: Insights on Current and Future Distribution from Ecological Niche Modeling. Diversity 2022, 14, 506. https://doi.org/10.3390/d14070506
Bandara APMJ, Madurapperuma BD, Edirisinghe G, Gabadage D, Botejue M, Surasinghe TD. Bioclimatic Envelopes for Two Bat Species from a Tropical Island: Insights on Current and Future Distribution from Ecological Niche Modeling. Diversity. 2022; 14(7):506. https://doi.org/10.3390/d14070506
Chicago/Turabian StyleBandara, A. P. Malsha J., Buddhika D. Madurapperuma, Gayan Edirisinghe, Dinesh Gabadage, Madhava Botejue, and Thilina D. Surasinghe. 2022. "Bioclimatic Envelopes for Two Bat Species from a Tropical Island: Insights on Current and Future Distribution from Ecological Niche Modeling" Diversity 14, no. 7: 506. https://doi.org/10.3390/d14070506
APA StyleBandara, A. P. M. J., Madurapperuma, B. D., Edirisinghe, G., Gabadage, D., Botejue, M., & Surasinghe, T. D. (2022). Bioclimatic Envelopes for Two Bat Species from a Tropical Island: Insights on Current and Future Distribution from Ecological Niche Modeling. Diversity, 14(7), 506. https://doi.org/10.3390/d14070506