Temporal Partitioning of Fungal Sporophores in a Temperate Deciduous Broad-Leaved Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling
2.2. Collection and Identification of Fungal Sporocarps
2.3. Data Analysis
3. Results
3.1. Species’ Diversity Differences among Months
3.2. Associations between Sporophores and Months
3.3. Association Difference between Fungal Sporocarps
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Senn-Irlet, B.; Heilmann-Clausen, J.; Genney, D.; Dahlberg, A. Guidance for Conservation of Macrofungi in Europe; European Council for Conservation of Fungi (ECCF): Strasbourg, France, 2007. [Google Scholar]
- Chen, Y.; Yuan, Z.; Bi, S.; Wang, X.; Ye, Y.; Svenning, J.C. Macrofungal species distributions depend on habitat partitioning of topography, light, and vegetation in a temperate mountain forest. Sci. Rep. 2018, 8, 13589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balmford, A.; Lyon, A.J.E.; Lang, R.M. Testing the higher-taxon approach to conservation planning in a megadiverse group: The macrofungi. Biol. Conserv. 2000, 93, 209–217. [Google Scholar] [CrossRef]
- Andrew, E.E.; Kinge, T.R.; Tabi, E.M.; Thiobal, N.; Mih, A.M. Diversity and distribution of macrofungi (mushrooms) in the Mount Cameroon Region. J. Ecol. Nat. Environ. 2013, 5, 318–334. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, Z.; Li, P.; Cao, R.; Jia, H.; Ye, Y. Effects of environment and space on species turnover of woody plants across multiple forest dynamic plots in East Asia. Front. Plant Sci. 2016, 7, 1533. [Google Scholar] [CrossRef] [Green Version]
- Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 2000, 31, 343–366. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Wang, B.; Mallik, A.U.; Huang, F.; Xiang, W.; Ding, T.; Li, X. Topographic species–habitat associations of tree species in a heterogeneous tropical karst seasonal rain forest, China. J. Plant Ecol. 2017, 10, 450460. [Google Scholar] [CrossRef]
- Svenning, J.C. Microhabitat specialization in a species-rich palm community in Amazonian Ecuador. J. Ecol. 1999, 87, 55–65. [Google Scholar] [CrossRef]
- Ignasi, B.; Montserrat, V.; Luís, S. Contrasting effects of invasive plants in plant-pollinator networks. Oecologia 2008, 155, 761–770. [Google Scholar] [CrossRef]
- Harms, K.E.; Condit, R.; Hubbell, S.P.; Foster, R.B. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J. Plant Ecol. 2001, 89, 947–959. [Google Scholar] [CrossRef]
- Lai, J.; Mi, X.; Ren, H.; Ma, K. Species-habitat associations change in a subtropical forest of China. J. Veg. Sci. 2009, 20, 415–423. [Google Scholar] [CrossRef]
- Chen, Y.; Shao, Y.; Xi, J.; Yuan, Z.; Ye, Y.; Wang, T. Community Preferences of Woody Plant Species in a Heterogeneous Temperate Forest, China. Front. Ecol. Evol. 2020, 8, 165. [Google Scholar] [CrossRef]
- Ziv, Y.; Abramsky, Z.; Kotler, B.P.; Subach, A. Interference competition and temporal and habitat partitioning in two gerbil species. Oikos 1993, 66, 237–246. [Google Scholar] [CrossRef]
- Hayward, M.W.; Slotow, R. Temporal partitioning of activity in large African carnivores: Tests of multiple hypotheses. S. Afr. J. Wildl. Res. 2009, 39, 109–125. Available online: https://hdl.handle.net/10520/EJC117325 (accessed on 13 March 2022). [CrossRef]
- Bourgis, F.; Kilaru, A.; Cao, X.; Ngando-Ebongue, G.F.; Drira, N.; Ohlrogge, J.B.; Arondel, V. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc. Natl. Acad. Sci. USA 2011, 108, 12527–12532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anten, N.P.; Hirose, T. Interspecific differences in above-ground growth patterns result in spatial and temporal partitioning of light among species in a tall-grass meadow. J. Ecol. 1999, 87, 583–597. [Google Scholar] [CrossRef]
- Hansen, R.A. Effects of Habitat Complexity and Composition on a Diverse Litter Microarthropod Assemblage. Ecology 2000, 81, 1120–1132. [Google Scholar] [CrossRef]
- Pronk, T.E.; During, H.J.; Schieving, F. Coexistence by temporal partitioning of the available light in plants with different height and leaf investments. Ecol. Model. 2007, 204, 349–358. [Google Scholar] [CrossRef]
- Hustad, V.P.; Meiners, S.J.; Methven, A.S. Terrestrial Macrofungi of Illinois Old-Growth Prairie Groves. Am. Midl. Nat. 2011, 166, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Koide, R.T.; Shumway, D.L.; Xu, B.; Sharda, J.N. On temporal partitioning of a community of ectomycorrhizal fungi. New Phytol. 2007, 174, 420–429. [Google Scholar] [CrossRef]
- Büntgen, U.; Kauserud, H.; Egli, S. Linking climate variability to mushroom productivity and phenology. Front. Ecol. Environ. 2012, 10, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Vacher, C.; Vile, D.; Helion, E.; Piou, D.; Desprez-Loustau, M.L. Distribution of parasitic fungal species richness: Influence of climate versus host species diversity. Divers. Distrib. 2008, 14, 786–798. [Google Scholar] [CrossRef]
- Hawksworth, D. Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycol. Res. 2001, 105, 515–523. [Google Scholar] [CrossRef]
- Ágreda, T.; Águeda, B.; Fernández-Toirán, M.; Vicente-Serrano, S.M.; Òlano, J.M. Long-term monitoring reveals a highly structured interspecific variability in climatic control of sporophores production. Agric. For. Meteorol. 2016, 223, 39–47. [Google Scholar] [CrossRef]
- Hou, H.Y.; Hou, X.Y. Vegetation of China with reference to its geographical distribution. Ann. Mo. Bot. Gard. 1983, 70, 509–549. [Google Scholar] [CrossRef]
- Miles, P.G.; Chang, S.T. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact; CRC Press: Boca Raton, FL, USA, 2004; pp. 1–431. [Google Scholar] [CrossRef]
- Chen, Y.; Svenning, J.C.; Wang, X.; Cao, R.; Yuan, Z.; Ye, Y. Drivers of Macrofungi Community Structure Differ between Soil and Rotten-Wood Substrates in a Temperate Mountain Forest in China. Front. Microbiol. 2018, 9, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Condit, R. Research in large long-term tropical forest plots. Trends Ecol. Evol. 1995, 10, 18–22. [Google Scholar] [CrossRef]
- Hawksworth, D.L.; Sutton, B.C.; Ainsworth, G.C. Ainsworth and Bisby’s Dictionary of the Fungi Seventh Edition; Commonwealth Agricultural Bureaux: Slough, UK, 1983. [Google Scholar]
- Oksanen, J.; Kindt, R.; Legendre, P.; O’Hara, B.; Stevens, M.H.H.; Oksanen, M.J.; Suggests, M. Vegan: Community Ecology Package. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 13 December 2021).
- Blüthgen, N.; Menzel, F.; Hovestadt, T.; Fiala, B.; Blüthgen, N. Specialization, constraints, and conflicting interests in mutualistic networks. Curr. Biol. 2007, 17, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Dormann, C.F.; Fründ, J.; Blüthgen, N.; Gruber, B. Open Access Indices, Graphs and Null Models: Analyzing Bipartite Ecological Networks. Open Ecol. J. 2013, 2, 7–24. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: https://www.R-project.org/ (accessed on 15 June 2019).
- Toju, H.; Guimaraes, P.R.; Olesen, J.M.; Thompson, J.N. Assembly of complex plant–fungus networks. Nat. Commun. 2014, 5, 5273. [Google Scholar] [CrossRef] [Green Version]
- Dicks, L.V.; Corbet, S.A.; Pywell, R.F. Compartmentalization in Plant–Insect flower visitor webs. J. Anim. Ecol. 2002, 71, 32–43. [Google Scholar] [CrossRef]
- Marc, B.; Jean, P.M.; Bernd, Z.; Andrianarisoa, S.; Ranger, J.; Courtecuisse, R.; Marçais, B.; Tacon, F.L. Influence of tree species on richness and diversity of epigeous fungal communities in a French temperate forest stand. Fungal Ecol. 2011, 4, 22–31. [Google Scholar] [CrossRef]
- Tedersoo, L.; Jairus, T.; Horton, B.M.; Abarenkov, K.; Suvi, T.; Saar, I. Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol. 2008, 180, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Alday, J.G.; De Aragón, J.M.; de-Miguel, S.; Bonet, J.A. Mushroom biomass and diversity are driven by different spatio-temporal scales along Mediterranean elevation gradients. Sci. Rep. 2017, 7, 45824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Xiao, M.; Wang, S.; Wang, X.; Li, W.; Chen, Y.; Yuan, Z.; Guo, E. Temporal Partitioning of Fungal Sporophores in a Temperate Deciduous Broad-Leaved Forest. Diversity 2022, 14, 483. https://doi.org/10.3390/d14060483
Zhou Z, Xiao M, Wang S, Wang X, Li W, Chen Y, Yuan Z, Guo E. Temporal Partitioning of Fungal Sporophores in a Temperate Deciduous Broad-Leaved Forest. Diversity. 2022; 14(6):483. https://doi.org/10.3390/d14060483
Chicago/Turabian StyleZhou, Ziyu, Man Xiao, Senlin Wang, Xueying Wang, Wang Li, Yun Chen, Zhiliang Yuan, and Erhui Guo. 2022. "Temporal Partitioning of Fungal Sporophores in a Temperate Deciduous Broad-Leaved Forest" Diversity 14, no. 6: 483. https://doi.org/10.3390/d14060483
APA StyleZhou, Z., Xiao, M., Wang, S., Wang, X., Li, W., Chen, Y., Yuan, Z., & Guo, E. (2022). Temporal Partitioning of Fungal Sporophores in a Temperate Deciduous Broad-Leaved Forest. Diversity, 14(6), 483. https://doi.org/10.3390/d14060483