Habitat Complexity Alters Predator-Prey Interactions in a Shallow Water Ecosystem
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carpenter, S.R.; Lodge, D.M. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot. 1986, 26, 341–370. [Google Scholar] [CrossRef]
- Bronmark, C. Interactions between epiphytes, macrophytes and freshwater snails: A review. J. Molluscan Stud. 1989, 55, 299–311. [Google Scholar] [CrossRef]
- Sagrario, M.A.G.; Balseiro, E. The role of macroinvertebrates and fish in regulating the provision by macrophytes of refugia for zooplankton in a warm temperate shallow lake. Freshwater Biol 2010, 55, 2153–2166. [Google Scholar] [CrossRef]
- Manatunge, J.; Asaeda, T.; Priyadarshana, T. The influence of structural complexity on fish-zooplankton interactions: A study using artificial submerged macrophytes. Environ. Biol. Fishes 2000, 58, 425–438. [Google Scholar] [CrossRef]
- Jerling, H.; Wooldridge, T. Plankton distribution and abundance in the Sundays River, South Africa with comments on potential feeding interactions. S. Afr. J. Mar. Sci. 1995, 15, 169–184. [Google Scholar] [CrossRef][Green Version]
- Froneman, P.W. Feeding ecology of the mysid, Mesopodopsis wooldridgei, in a temperate estuary along the eastern seaboard of South Africa. J. Plankton Res. 2002, 9, 999–1008. [Google Scholar] [CrossRef]
- Froneman, P.W.; Cuthbert, R.N. Ratio-independent prey preferences by an estuarine mysid. J. Plankton Res. 2022, 42, 398–401. [Google Scholar] [CrossRef]
- Connell, A.D.; Grindley, J.R. Two new species of Acartia (Copepoda, Calanoidea) from South African estuaries. Ann. S. Afr. Mus. 1974, 65, 89–97. [Google Scholar]
- Holling, C.S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 1959, 91, 385–398. [Google Scholar] [CrossRef]
- Dick, J.T.A.; Alexander, M.E.; Jeschke, J.M.; Ricciardi, A.; MacIsaac, H.J.; Robinson, T.B.; Kumschick, S.; Weyl, O.L.F.; Dunn, A.M.; Hatcher, M.J.; et al. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol. Invasions 2014, 16, 735–753. [Google Scholar] [CrossRef]
- Englund, G.; Öhlund, G.; Hein, C.L.; Diehl, S. Temperature dependence of the functional response. Ecol. Lett. 2011, 14, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Rall, B.C.; Brose, U.; Hartvig, M.; Kalinkat, G.; Schwarzmüller, F.; Vucic-Pestic, O.; Petchey, O.L. Universal temperature and body-mass scaling of feeding rates. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 2923–2934. [Google Scholar] [CrossRef] [PubMed]
- Cuthbert, R.N.; Wasserman, R.J.; Dalu, T.; Kaiser, H.; Weyl, O.L.F.; Dick, J.T.A.; Sentis, A.; McCoy, M.W.; Alexander, M.E. Influence of intra- and interspecific variations in predator-prey body size ratios on trophic interaction strengths. Ecol. Evolut. 2020, 10, 5946–5962. [Google Scholar] [CrossRef] [PubMed]
- Kalinoski, R.M.; DeLong, J.P. Beyond body mass: How prey traits improve predictions of functional response parameters. Oecologia 2016, 180, 543–550. [Google Scholar] [CrossRef]
- Li, Y.; Rall, B.C.; Kalinkat, G. Experimental duration and predator satiation levels systematically affect functional response parameters. Oikos 2018, 127, 590–598. [Google Scholar] [CrossRef]
- Uiterwaal, S.F.; DeLong, J.P. Multiple factors, including arena size, shape the functional responses of ladybird beetles. J. Appl. Ecol. 2018, 55, 2429–2438. [Google Scholar] [CrossRef]
- Barrios-O’Neill, D.; Dick, J.T.A.; Emmerson, M.C.; Ricciardi, A.; MacIsaac, H.J. Predator-free space, functional responses and biological invasions. Funct. Ecol. 2015, 29, 377–384. [Google Scholar] [CrossRef]
- Barrios-O’Neill, D.; Kelly, R.; Dick, J.T.A.; Ricciardi, A.; MacIsaac, H.J.; Emmerson, M.C. On the context-dependent scaling of consumer feeding rates. Ecol. Lett. 2016, 19, 668–678. [Google Scholar] [CrossRef]
- Wasserman, R.J.; Alexander, M.E.; Weyll, O.L.F.; Barrios-O’Neill, N.; Froneman, P.W.; Dalu, T. Emergent effects of structural complexity and temperature on predator-prey interactions. Ecosphere 2016, 72, 1239. [Google Scholar] [CrossRef]
- Cuthbert, R.N.; Dalu, T.; Wasserman, R.J.; Callaghan, A.; Weyl, O.L.F.; Dick, T.A. Using functional responses to quantify notonectid predatory impacts across increasingly complex environments. Acta Oecol. 2019, 95, 116–119. [Google Scholar] [CrossRef]
- Cuthbert, R.N.; Dalu, T.; Wasserman, R.J.; Weyl, O.L.; Callaghan, A.; Froneman, W.; Dick, J.T. Sex skewed trophic impacts in ephemeral wetlands. Freshw. Biol. 2019, 64, 369–370. [Google Scholar] [CrossRef]
- Crawley, M.J. The R Book; John Wiley & Sons Ltd.: Chichester, UK, 2007. [Google Scholar]
- Fox, J.; Weisberg, S. Multivariate linear models in R. In An Appendix to An R Companion to Applied Regression, 2nd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Lenth, R.V. Least-squares means: The R package lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef]
- Juliano, S.A. Nonlinear curve fitting: Predation and functional responses curves. In Design and Analysis of Ecological Experiments, 2nd ed.; Scheiner, S.M., Gurvich, J., Eds.; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Rogers, D. Random search and insect population models. J. Anim. Ecol. 1972, 41, 369–383. [Google Scholar] [CrossRef]
- Hassell, M.; Lawton, J.; Beddington, J. Sigmoid functional responses by invertebrate predators and parasitoids. J. Anim. Ecol. 1977, 46, 249–262. [Google Scholar] [CrossRef]
- Real, L.A. The Kinetics of Functional Response. Am. Nat. 1977, 111, 289–300. [Google Scholar] [CrossRef]
- Pritchard, D.W.; Paterson, R.A.; Bovey, H.C.; Barria-O’Neill, D. Frair: An R package for fitting and comparing functional responses. Methods Ecol. Evol. 2017, 8, 1528–1534. [Google Scholar] [CrossRef]
- Burnham, K.P.; Andersen, D.R. Model Selection and Multi-Model Interference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002. [Google Scholar]
- Bolker, B.M. Emdbook: Ecologiocal Models and Data in R; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Gotceitas, V.; Colgan, P. Predator foraging success and habitat complexity: Quantitative test of the threshold hypothesis. Oecologia 1989, 80, 158–166. [Google Scholar] [CrossRef]
- DeRoy, E.M.; Scott, N.; Hussey, N.E.; Macissac, H.J. Density dependence mediates the ecological impact of an invasive fish. Divers. Distrib. 2020, 26, 869–880. [Google Scholar] [CrossRef]
- Barrios-ONeill, D.; Dick, J.T.A.; Emmerson, M.C.; Hugh, A.R.; Macissac, H.J.; Alexander, M.E.; Bovy, H.C. Fortune favours the bold: A higher predator reduces the impact of a native but not an invasive intermediate predator. J. Anim. Ecol. 2013, 83, 693–701. [Google Scholar] [CrossRef]
- Kolar, V.; Boukal, D.S.; Sentis, A. Predation risk and habitat complexity modify intermediate predator feeding rates and energetic efficiencies in a tri-trophic system. Freshw. Biol. 2019, 64, 1480–1491. [Google Scholar] [CrossRef]
- Kleka, J.; Boukal, D.S. The effect of habitat structure on prey mortality depends on predator and prey microhabitat use. Oecologia 2014, 176, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Convey, P. Competition for perches between larval damselflies: The influence of perch use on feeding efficiency, growth rate and predator avoidance. Freshw. Biol. 1988, 19, 15–28. [Google Scholar] [CrossRef]
- Savino, J.F.; Stein, R.A. Behavior of fish predators and their prey: Habitat choice between open water and dense vegetation. Environ. Biol. Fishes 1989, 24, 287–293. [Google Scholar] [CrossRef]
- Kreuzinger-Janik, B.; Bruchner-Huttemann, H.; Traunspurger, W.W. Effect of prey size and structural complexity on the functional response in a nematode- nematode system. Sci. Rep. 2019, 9, 5696. [Google Scholar] [CrossRef] [PubMed]
- Fulton, R.S. Predatory feeding of two marine mysids. Mar. Biol. 1982, 72, 183–191. [Google Scholar] [CrossRef]
- Alexander, M.E.; Dick, J.T.A.; O’Connor, N.E.; Haddaway, N.R.; Farnsworth, K.D. Functional responses of the intertidal amphipod Echinogammarus marinus: Effects of prey supply, model selection and habitat complexity. Mar. Ecol. Prog. Ser. 2012, 468, 191–202. [Google Scholar] [CrossRef]
- Dunn, R.P.; Hovel, K.A. Predator type influences the frequency of functional responses to prey in marine habitats. Biol. Lett. 2020, 16, 20190758. [Google Scholar] [CrossRef]
- Uszko, W.; Diel, S.; Pitsch, N.; Lengfeller, K.; Muller, T.R. When is a type III functional response stabilizing? Theory and practice of predicting plankton dynamics under enrichment. Ecology 2015, 96, 3243–3256. [Google Scholar] [CrossRef]
- Daugaard, U.; Petchy, O.L.; Pennekamp, F. Warming can destabalise predator-prey interaction by shifting the functional response from Type III to type II. J. Anim. Ecol. 2018, 88, 1575–1586. [Google Scholar] [CrossRef]
- Wasserman, R.J.; Cuthbert, R.N.; Alexander, M.E.; Dalu, T. Shifting interaction strength between estuarine mysid species across a temperature gradient. Mar. Environ. Res. 2018, 140, 390–393. [Google Scholar] [CrossRef]
Sex | Habitat | First-Order Term, p | Attack Rate, p | Handling Time, p |
---|---|---|---|---|
Female | 0% | −0.14, <0.001 | 6.33, 0.15 | 0.16, <0.001 |
25% | −0.07, 0.05 | 1.33, 0.06 | 0.11, 0.01 | |
50% | −0.07, 0.04 | 1.01, 0.07 | 0.12, 0.02 | |
75% | −0.04, 0.26 | 0.46, 0.06 | 0.11, 0.27 | |
100% | −0.04, 0.28 | 0.65, 0.15 | 0.13, 0.18 | |
Male | 0% | −0.12, <0.001 | 3.65, 0.09 | 0.14, <0.001 |
25% | −0.09, 0.01 | 1.99, 0.14 | 0.15, <0.001 | |
50% | −0.11, 0.002 | 2.29, 0.20 | 0.18, <0.001 | |
75% | −0.06, 0.14 | 0.62, 0.12 | 0.15, 0.11 | |
100% | −0.07, 0.05 | 0.86, 0.12 | 0.16, 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Froneman, P.W.; Cuthbert, R.N. Habitat Complexity Alters Predator-Prey Interactions in a Shallow Water Ecosystem. Diversity 2022, 14, 431. https://doi.org/10.3390/d14060431
Froneman PW, Cuthbert RN. Habitat Complexity Alters Predator-Prey Interactions in a Shallow Water Ecosystem. Diversity. 2022; 14(6):431. https://doi.org/10.3390/d14060431
Chicago/Turabian StyleFroneman, Pierre William, and Ross Noel Cuthbert. 2022. "Habitat Complexity Alters Predator-Prey Interactions in a Shallow Water Ecosystem" Diversity 14, no. 6: 431. https://doi.org/10.3390/d14060431
APA StyleFroneman, P. W., & Cuthbert, R. N. (2022). Habitat Complexity Alters Predator-Prey Interactions in a Shallow Water Ecosystem. Diversity, 14(6), 431. https://doi.org/10.3390/d14060431