Contrasted Impacts of Yellow Flag Iris (Iris pseudacorus) on Plant Diversity in Tidal Wetlands within Its Native and Invaded Distribution Ranges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Data Collection
2.2.1. Establishment of Monitoring Plots
2.2.2. Sediment Electrical Conductivity
2.2.3. Plant Community Composition
2.3. Data Analyses
3. Results
3.1. Sediment Electrical Conductivity
3.2. Iris pseudacorus Abundance
3.3. Iris pseudacorus Impacts on Plant Community Diversity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaggi, D.; Varun, M.; Pagare, S.; Tripathi, N.; Rathore, M.; Singh, R.; Kumar, B. Invasive Alien Weed Species: A Threat to Plant Biodiversity. Ansari, Plant Biodiversity. In Monitoring, Assessment and Conservation; CABI: Wallingford, UK, 2017; pp. 564–592. [Google Scholar]
- Pyšek, P.; Jarošík, V.; Hulme, P.E.; Pergl, J.; Hejda, M.; Schaffner, U.; Vilà, M. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 2017, 18, 1725–1737. [Google Scholar] [CrossRef]
- Melbourne, B.A.; Cornell, H.V.; Davies, K.F.; Dugaw, C.J.; Elmendorf, S.; Freestone, A.L.; Hall, R.J.; Harrison, S.; Hastings, A.; Holland, M.; et al. Invasion in a heterogeneous world: Resistance, coexistence or hostile takeover? Ecol. Lett. 2007, 10, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Carboni, M.; Livingstone, S.W.; Isaac, M.E.; Cadotte, M.W. Invasion drives plant diversity loss through competition and ecosystem modification. J. Ecol. 2021, 109, 3587–3601. [Google Scholar] [CrossRef]
- Dong, L.-J.; Yu, H.-W.; He, W.-M. What determines positive, neutral and negative impacts of Solidago canadensis invasion on native plant species richness? Sci. Rep. 2015, 5, 16804. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.-Q.; Zhang, C.-B.; Ma, L.; Qiang, S.; Silander, J.A.; Qi, L.L. Biotic Homogenization Caused by the Invasion of Solidago canadensis in China. J. Integr. Agric. 2013, 12, 835–845. [Google Scholar] [CrossRef]
- Iacarella, J.C.; Mankiewicz, P.; Ricciardi, A. Negative competitive effects of invasive plants change with time since invasion. Ecosphere 2015, 6, 1–14. [Google Scholar] [CrossRef]
- Elton, C.S. The Ecology of Invasions by Animals and Plants; Methuen and Company: London, UK, 1958. [Google Scholar]
- Case, T.J. Invasion resistance arises in strongly interacting species-rich model competition communities. Proc. Natl. Acad. Sci. USA 1990, 87, 9610–9614. [Google Scholar] [CrossRef] [Green Version]
- Muthukrishnan, R.; Hansel-Welch, N.; Larkin, D.J. Environmental filtering and competitive exclusion drive biodiversity-invasibility relationships in shallow lake plant communities. J. Ecol. 2018, 106, 2058–2070. [Google Scholar] [CrossRef]
- Peng, S.; Kinlock, N.L.; Gurevitch, J.; Peng, S. Correlation of native and exotic species richness: A global meta-analysis finds no invasion paradox across scales. Ecology 2019, 100, e02552. [Google Scholar] [CrossRef]
- Gribben, P.E.; Poore, A.G.B.; Thomsen, M.S.; Quesey, P.; Weschke, E.; Wright, J.T. Habitat provided by native species facilitates higher abundances of an invader in its introduced compared to native range. Sci. Rep. 2020, 10, 6385. [Google Scholar] [CrossRef]
- Stohlgren, T.J.; Rejmánek, M. No universal scale-dependent impacts of invasive species on native plant species richness. Biol. Lett. 2014, 10, 20130939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.L.; Burns, J.H.; Liao, Z.Y.; Li, Y.P.; Yang, J.; Chen, Y.J.; Zhang, J.L.; Zheng, Y.G. Species composition, functional and phylogenetic distances correlate with success of invasive Chromolaena odorata in an experimental test. Ecol. Lett. 2018, 21, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Kuebbing, S.E.; Nuñez, M. Invasive non-native plants have a greater effect on neighbouring natives than other non-natives. Nat. Plants 2016, 2, 16134. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.M.; Adler, P.B.; Yelenik, S.G. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 2004, 7, 975–989. [Google Scholar] [CrossRef] [Green Version]
- Braga, R.R.; Gómez-Aparicio, L.; Heger, T.; Vitule, J.R.S.; Jeske, J.M. Invasion Meltdown Hypothesis. In Invasion Biology: Hypotheses and Evidence; Jeske, J.M., Heger, T., Eds.; CABI Invasive Species Compendium: Oxfordshire, UK, 2018; pp. 79–91. [Google Scholar] [CrossRef]
- Braga, R.R.; Gómez-Aparicio, L.; Heger, T.; Vitule, J.R.S.; Jeschke, J.M. Structuring evidence for invasional meltdown: Broad support but with biases and gaps. Biol. Invasions 2018, 20, 923–936. [Google Scholar] [CrossRef] [Green Version]
- Moroney, J.R.; Rundel, P.W. Abundance and dispersion of the invasive Mediterranean annual, Centaurea melitensis in its native and non-native ranges. Biol. Invasions 2013, 15, 495–507. [Google Scholar] [CrossRef]
- Hejda, M.; Štajerová, K.; Pyšek, P. Dominance has a biogeographical component: Do plants tend to exert stronger impacts in their invaded rather than native range? J. Biogeogr. 2017, 44, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Lolis, L.A.; Alves, D.C.; Fan, S.F.; Lv, T.; Yang, L.; Li, Y.; Liu, C.H.; Yu, D.; Thomaz, S.M. Negative correlations between native macrophyte diversity and water hyacinth abundance are stronger in its introduced than in its native range. Divers. Distrib. 2020, 26, 242–253. [Google Scholar] [CrossRef]
- Taylor, K.T.; Maxwell, B.D.; Pauchard, A.; Nuñez, M.A.; Rew, L.J. Native versus non-native invasions: Similarities and differences in the biodiversity impacts of Pinus contortain introduced and native ranges. Divers. Distrib. 2016, 22, 578–588. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Liao, Z. High-density native-range species affects the invasive plant Chromolaena odorata more strongly than species from its invasive range. Sci. Rep. 2017, 7, 16075. [Google Scholar] [CrossRef] [Green Version]
- Bossdorf, O.; Lipowsky, A.; Prati, D. Selection of preadapted populations allowed Senecio inaequidens to invade Central Europe. Divers. Distrib. 2008, 14, 676–685. [Google Scholar] [CrossRef]
- Harrison, S.; Spasojevic, M.J.; Li, D. Climate and plant community diversity in space and time. Proc. Natl. Acad. Sci. USA 2020, 117, 4464–4470. [Google Scholar] [CrossRef] [PubMed]
- GBIF.org Global Biodiversity Information Facility. GBIF Occurrence Download. Available online: https://www.gbif.org/es/ (accessed on 15 March 2022).
- Minuti, G.; Stiers, I.; Coetzee, J.A. Climatic suitability and compatibility of the invasive Iris pseudacorus L. (Iridaceae) in the Southern Hemisphere: Considerations for biocontrol. Biol. Control. 2022, 169, 104886. [Google Scholar] [CrossRef]
- POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. 2022. Available online: http://www.plantsoftheworldonline.org (accessed on 15 March 2022).
- Panetta, F.D.; Gooden, B. Managing for biodiversity: Impact and action thresholds for invasive plants in natural ecosystems. NeoBiota 2017, 34, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Mopper, S.; Wiens, K.C.; Goranova, G.A. Competition, salinity, and clonal growth in native and introduced irises. Am. J. Bot. 2016, 103, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Hayasaka, D.; Fujiwara, S.; Uchida, T. Impacts of invasive Iris pseudacorus L. (yellow flag) establishing in an abandoned urban pond on native semi-wetland vegetation. J. Integr. Agric. 2018, 17, 1881–1887. [Google Scholar] [CrossRef] [Green Version]
- Whitcraft, C.R.; Talley, D.M.; Crooks, J.A.; Boland, J.; Gaskin, J. Invasion of tamarisk (Tamarix spp.) in a southern California salt marsh. Biol. Invasions 2007, 9, 875–879. [Google Scholar] [CrossRef]
- Fleming, J.P.; Dibble, E.D. Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia 2015, 746, 23–37. [Google Scholar] [CrossRef]
- Hierro, J.L.; Maron, J.L.; Callaway, R.M. A biogeographical approach to plant invasions: The importance of studying exotics in their introduced and native range. J. Ecol. 2004, 93, 5–15. [Google Scholar] [CrossRef]
- Guo, Q. Intercontinental biotic invasions: What can we learn from native populations and habitats? Biol. Invasions 2006, 8, 1451–1459. [Google Scholar] [CrossRef] [Green Version]
- NCEI. NOAA’S National Centers for Environmental Information. 2020. Available online: https://www.ncdc.noaa.gov/ (accessed on 13 November 2020).
- Rubtzoff, P. Iris pseudacorus and Caltha palustris in California. Leaf West Bot. 1959, 9, 31–32. [Google Scholar]
- Light, T.; Grosholz, T.; Moyle, P. Delta Ecological Survey (Phase I): Nonindigenous Aquatic Species in the Sacramento-San Joaquin Delta, a Literature Review; US Fish and Wildlife Service: Stockton, CA, USA, 2005.
- Gillard, M.B.; Castillo, J.M.; Mesgaran, M.B.; Futrell, C.J.; Grewell, B.J. High aqueous salinity does not preclude germination of invasive Iris pseudacorus from estuarine populations. Ecosphere 2021, 12, e03486. [Google Scholar] [CrossRef]
- Díez-Minguito, M.; Baquerizo, A.; Sánchez, M.O.; Navarro, G.; Losada, M. Tide transformation in the Guadalquivir estuary (SW Spain) and process-based zonation. J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- AEMET. AEMET OpenData. 2020. Available online: https://opendata.aemet.es/centrodedescargas/inicio (accessed on 27 November 2020).
- La Peyre, M.K.G.; Grace, J.B.; Hahn, E.; Mendelssohn, I.A. The importance of competition in regulating plant species abundance along a salinity gradient. Ecology 2001, 82, 62–69. [Google Scholar] [CrossRef]
- Grewell, B.J.; Gallego-Tévar, B.; Gillard, M.B.; Futrell, C.J.; Reicholf, R.; Castillo, J.M. Salinity and inundation effects on Iris pseudacorus: Implications for tidal wetland invasion with sea level rise. Plant Soil 2021, 466, 275–291. [Google Scholar] [CrossRef]
- Castillo, J.M.; Gallego-Tévar, B.; Castellanos, E.M.; Figueroa, M.E.; Davy, A.J. Primary succession in an Atlantic salt marsh: From intertidal flats to mid-marsh platform in 35 years. J. Ecol. 2021, 109, 2909–2921. [Google Scholar] [CrossRef]
- Baldwin, B.G.; Goldman, D.H.; Keil, D.J.; Patterson, R.; Rosatti, T.J.; Wilken, D.H. The Jepson Manual: Vascular Plants of California, 2nd ed.; University of California Press: Berkeley, CA, USA, 2012; p. 1600. [Google Scholar]
- Flora of North America Editorial Committee. Flora of North America North of Mexico; Oxford University Press: New York, NY, USA; Oxford, UK, 1993. [Google Scholar]
- Castroviejo, S. Flora ibérica: Plantas Vasculares de la Península Ibérica e Islas Baleares; Real Jardín Botánico, CSIC: Madrid, Spain. 1986–2012; p. 784. Available online: http://www.floraiberica.es/ (accessed on 29 March 2022).
- Valdés, B.; Talavera, S.; Fernández-Galiano, E. Flora Vascular de Andalucía Occidental; Ketres Editora S.A.: Barcelona, Spain, 1987. [Google Scholar]
- Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Oksanen, J.; Blanchet, M.F.; Friendly, R.; Kindt, P.; Legendre, D.; McGlinn, P.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. 2018. Available online: http://cran.r-project.org/package=vegan (accessed on 1 July 2021).
- Jost, L.; Chao, A.; Chazdon, R. Compositional Similarity and Beta Diversity. Biological Diversity: Frontiers in Measurement and Assessment; Magurran, A., McGill, B.J., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 66–84. [Google Scholar]
- De Cáceres, M.; Legendre, P.; Wiser, S.; Brotons, L. Using species combinations in indicator value analyses. Methods Ecol. Evol. 2012, 3, 973–982. [Google Scholar] [CrossRef]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Ng, V.K.; Cribbie, R.A. Using the Gamma Generalized Linear Model for Modeling Continuous, Skewed and Heteroscedastic Outcomes in Psychology. Curr. Psychol. 2016, 36, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Scheiner, S. Multiple Response Variables and Multi-Species Interactions. In Design and Analysis of Ecological Experiments, 2nd ed.; Scheiner, S., Gurevitch, J., Eds.; Oxford University Press: Oxford, UK, 2001; pp. 99–115. [Google Scholar]
- Ungar, I.A. Are biotic factors significant in influencing the distribution of halophytes in saline habitats? Bot. Rev. 1998, 74, 176–199. [Google Scholar] [CrossRef]
- Hejda, M.; Pyšek, P.; Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 2009, 97, 393–403. [Google Scholar] [CrossRef]
- Jelbert, K.; Stott, I.; McDonald, R.A.; Hodgson, D. Invasiveness of plants is predicted by size and fecundity in the native range. Ecol. Evol. 2015, 5, 1933–1943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bansal, S.; Lishawa, S.C.; Newman, S.; Tangen, B.A.; Wilcox, D.; Albert, D.; Anteau, M.J.; Chimney, M.J.; Cressey, R.L.; DeKeyser, E.; et al. Typha (Cattail) Invasion in North American Wetlands: Biology, Regional Problems, Impacts, Ecosystem Services, and Management. Wetlands 2019, 39, 645–684. [Google Scholar] [CrossRef] [Green Version]
- Castillo, J.M.; Gallego-Tévar, B.; Figueroa, E.; Grewell, B.J.; Vallet, D.; Rousseau, H.; Keller, J.; Lima, O.; Dréano, S.; Salmon, A.; et al. Low genetic diversity contrasts with high phenotypic variability in heptaploid Spartina densiflora populations invading the Pacific coast of North America. Ecol. Evol. 2018, 8, 4992–5007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldwell, P.-A. The Spatial Development of Spartina Colonies Growing without Competition. Ann. Bot. 1957, 21, 203–214. [Google Scholar] [CrossRef]
- Castellanos, E.M.; Figueroa, M.E.; Davy, A.J. Nucleation and Facilitation in Saltmarsh Succession: Interactions between Spartina Maritima and Arthrocnemum Perenne. J. Ecol. 1994, 82, 239–248. [Google Scholar] [CrossRef]
- Castillo, J.M.; Rubio-Casal, A.E.; Luque, T.; Figueroa, M.E.; Jiménez-Nieva, F.J. Intratussock tiller distribution and biomass of Spartina densiflora Brongn. in an invaded salt marsh. Lagascalia 2003, 23, 61–73. [Google Scholar]
- Drenovsky, R.E.; Grewell, B.J.; D’Antonio, C.M.; Funk, J.L.; James, J.J.; Molinari, N.; Parker, I.M.; Richards, C. A functional trait perspective on plant invasion. Ann. Bot. 2012, 110, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Gaskin, J.F.; Pokorny, M.L.; Mangold, J.M. An unusual case of seed dispersal in an invasive aquatic; yellow flag iris (Iris pseudacorus). Biol. Invasions 2016, 7, 2067–2075. [Google Scholar] [CrossRef]
Chi-Square of Wald | Degrees of Freedom | p | |
---|---|---|---|
Intersection | 166,897.467 | 1 | <0.0001 |
Range | 1030.079 | 1 | <0.0001 |
Location | 51,983.170 | 4 | <0.0001 |
Range × Location | 6,778.427 | 4 | <0.0001 |
Sum of Squares Type III | Degrees of Freedom | Mean Square | F | p | |
---|---|---|---|---|---|
Corrected model | 10,920.305 | 10 | 1092.030 | 3.391 | 0.001 |
Intersection | 56,945.542 | 1 | 56,945.542 | 176.821 | <0.0001 |
EC | 41.287 | 1 | 41.287 | 0.128 | 0.721 |
Range | 2960.432 | 1 | 2960.432 | 9.192 | 0.003 |
Location | 2160.140 | 4 | 540.035 | 1.677 | 0.166 |
Range × Location | 4082.218 | 4 | 1020.554 | 3.169 | 0.019 |
Error | 21,255.410 | 66 | 322.052 | ||
Total | 395,743.000 | 77 | |||
Corrected total | 32,175.714 | 76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallego-Tévar, B.; Grewell, B.J.; Whitcraft, C.R.; Futrell, J.C.; Bárcenas-Moreno, G.; Castillo, J.M. Contrasted Impacts of Yellow Flag Iris (Iris pseudacorus) on Plant Diversity in Tidal Wetlands within Its Native and Invaded Distribution Ranges. Diversity 2022, 14, 326. https://doi.org/10.3390/d14050326
Gallego-Tévar B, Grewell BJ, Whitcraft CR, Futrell JC, Bárcenas-Moreno G, Castillo JM. Contrasted Impacts of Yellow Flag Iris (Iris pseudacorus) on Plant Diversity in Tidal Wetlands within Its Native and Invaded Distribution Ranges. Diversity. 2022; 14(5):326. https://doi.org/10.3390/d14050326
Chicago/Turabian StyleGallego-Tévar, Blanca, Brenda J. Grewell, Christine R. Whitcraft, Joy C. Futrell, Gael Bárcenas-Moreno, and Jesús M. Castillo. 2022. "Contrasted Impacts of Yellow Flag Iris (Iris pseudacorus) on Plant Diversity in Tidal Wetlands within Its Native and Invaded Distribution Ranges" Diversity 14, no. 5: 326. https://doi.org/10.3390/d14050326
APA StyleGallego-Tévar, B., Grewell, B. J., Whitcraft, C. R., Futrell, J. C., Bárcenas-Moreno, G., & Castillo, J. M. (2022). Contrasted Impacts of Yellow Flag Iris (Iris pseudacorus) on Plant Diversity in Tidal Wetlands within Its Native and Invaded Distribution Ranges. Diversity, 14(5), 326. https://doi.org/10.3390/d14050326