Ontogenetic Migration of Juvenile Grunts (Haemulon) across a Coral Reef Seascape: Pathways and Potential Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Small-Scale Study
2.3. Large-Scale Study
2.4. Data Analysis
3. Results
3.1. Small-Scale Juvenile Movement
3.2. Large-Scale Juvenile/Adult Movement
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brothers, E.B.; McFarland, W.N. Correlation between otolith microstructure, growth, and life history transitions in newly recruited French grunts [Haemulon flavolineatum (Desmarest), Haemulidae]. Rapp. Procès-Verbaux Réunions Cons. Int. Explor. Mer. 1981, 178, 369–374. [Google Scholar]
- Appeldoorn, R.S.; Recksiek, C.W.; Hill, R.L.; Pagan, F.E.; Dennis, G.D. Marine protected areas and reef fish movements: The role of habitat in controlling ontogenetic migration. In Proceedings of the 8th International Coral Reef Symposium; Smithsonian Tropical Research Institute: Panama City, Panama, 1997; Volume 2, pp. 1917–1922. [Google Scholar]
- Dahlgren, C.P.; Eggleston, D.B. Ecological process underlying ontogenetic habitat shifts in a coral reef fish. Ecology 2000, 81, 2227–2244. [Google Scholar] [CrossRef]
- McBride, R.S.; MacDonald, T.C.; Matheson, R.E., Jr.; Rydene, D.A.; Hood, P.B. Nursery habitats for ladyfish, Elops saurus, along salinity gradients in two Florida estuaries. Fish. Bull. 2001, 99, 443–458. [Google Scholar]
- Cocheret de la Moriniere, E.; Pollux, B.J.; Nagelkerken, I.; van der Velde, G. Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuar. Coast. Shelf Sci. 2002, 55, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Perera, A.; Appeldoorn, R.S. Variations in juvenile fish density along the mangrove-seagrass-coral reef continuum in SW Puerto Rico. Mar. Ecol. Prog. Ser. 2007, 348, 139–148. [Google Scholar] [CrossRef]
- Werner, E.E.; Gilliam, J.F. The ontogenetic niche and species interactions in size-structured populations. Ann. Rev. Ecol. Syst. 1984, 15, 393–423. [Google Scholar] [CrossRef]
- Childress, M.J.; Herrnkind, W.F. Influence of conspecifics on the ontogenetic habitat shift of juvenile Caribbean spiny lobsters. Mar. Freshwat. Res. 2002, 52, 1077–1084. [Google Scholar] [CrossRef]
- Grol, M.G.G.; Nagelkerken, I.; Rypel, A.L.; Layman, C.A. Simple ecological trade-offs give rise to emergent cross-ecosystem distribution of a coral reef fish. Oecologia 2011, 165, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Grol, M.G.G.; Rypel, A.L.; Nagelkerken, I. Growth potential and predation risk drive ontogenetic shifts among nursery habitats in a coral reef fish. Mar. Ecol. Prog. Ser. 2014, 502, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Appeldoorn, R.S.; Friedlander, A.; Sladek Nowlis, J.; Ussegilo, P.; Mitchell-Chui, A. Habitat connectivity in reef fish communities and marine reserve design in Old Providence—Santa Catalina, Colombia. Gulf Caribb. Res. 2003, 14, 61–77. [Google Scholar] [CrossRef]
- Nagelkerken, I.; van der Velde, G. Connectivity between coastal habitats of two oceanic Caribbean islands as inferred from ontogenetic shifts by coral reef fishes. Gulf Caribb. Res. 2003, 14, 43–59. [Google Scholar] [CrossRef] [Green Version]
- Cocheret de la Moriniére, E.; Pollux, B.J.A.; Nagelkerken, I.; van der Velde, G. Diet shifts of Caribbean grunts (Haemulidae) and snappers (Lutjanidae) and the relation with nursery to coral reef migrations. Estuar. Coast. Shelf Sci. 2003, 57, 1079–1089. [Google Scholar] [CrossRef]
- Pereira, P.H.C.; Barros, B.; Zemoi, R.; Ferreira, B. Ontogenetic diet changes and food partitioning of Haemulon spp. coral reef fishes, with a review of the genus diet. Rev. Fish Biol. Fish. 2015, 25, 245–260. [Google Scholar] [CrossRef]
- Mateo, J. Función de la Madurez Sexual en el Control de las Migraciones Ontogénicas de la Cachicata Blanca, Haemulon plumieri, (Pices: Haemulidae) en La Parguera, Puerto Rico. Master’s Thesis, University of Puerto Rico, Mayagüez, Puerto Rico, 1999. [Google Scholar]
- Appeldoorn, R.S.; Aguilar-Perera, A.; Bouwmeester, B.L.K.; Dennis, G.D.; Hill, R.L.; Merten, W.; Recksiek, C.W.; Williams, S.J. Movement of fishes (Grunts: Haemulidae) across the coral reef seascape: A review of scales, patterns and processes. Caribb. J. Sci. 2009, 45, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Hill, R.L. Post Settlement Processes and Recruitment Dynamics in the White Grunt, Haemulon plumieri Lacepede (Pices: Haemulidae). Ph.D. Dissertation, University of Puerto Rico, Mayagüez, Puerto Rico, 2001. [Google Scholar]
- Ogden, J.C.; Ehrlich, P.R. The behavior of heterotypic resting schools of juvenile grunts (Pomadasyidae). Mar. Biol. 1977, 42, 273–280. [Google Scholar] [CrossRef]
- Helfman, G.S.; Meyer, J.L.; McFarland, W.N. The ontogeny of twilight migrations patterns in grunts (Pisces: Haemulidae). Anim. Behav. 1982, 30, 317–326. [Google Scholar] [CrossRef]
- Rooker, J.R.; . Dennis, G.D. Diel, lunar and seasonal changes in a mangrove fish assemblage off southwestern Puerto Rico. Bull. Mar. Sci. 1991, 49, 684–698. [Google Scholar]
- Burke, N.C. Nocturnal foraging habitats of French and bluestriped grunts, Haemulon flavolineatum and H. Sciurus, at Tobacco Caye, Belize. Env. Biol. Fish. 1995, 42, 365–374. [Google Scholar] [CrossRef]
- Nagelkerken, I.; Roberts, C.M.; van der Velde, G.; Dorenbosch, M.; van Riel, M.C.; Cocheret de la Morinière, E.; Nienhuis, P.H. How important are mangroves and seagrass beds for coral-reef fish? The nursery hypothesis tested on an island scale. Mar. Ecol. Prog. Ser. 2002, 244, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Beck, M.W.; Heck, K.L., Jr.; Able, K.W.; Childers, D.L.; Eggleston, D.B.; Gillanders, B.M.; Halpern, B.; Hays, C.G.; Hoshino, K.; Minello, T.J.; et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 2001, 51, 633–641. [Google Scholar] [CrossRef]
- Burke, J.S.; Kenworthy, W.J.; Wood, L.L. Ontogenetic patterns of concentration indicate lagoon nurseries are essential to common grunts stocks in a Puerto Rican bay. Estuar. Coast. Shelf. Sci. 2009, 81, 533–543. [Google Scholar] [CrossRef]
- Jaxion-Harm, J.; Saunders, J.; Speight, M.R. Distribution of fish in seagrass, mangroves and coral reefs: Life-stage dependent habitat use in Honduras. Rev. Biol. Trop. 2012, 60, 683–698. [Google Scholar] [CrossRef] [PubMed]
- Mateo, I.; Durbin, E.; Appeldoorn, R.S.; Adams, A.J.; Juanes, F.; Kingsley, R.; Swart, P.K.; Durant, D. Assessing the role of mangroves as nurseries for French grunt and schoolmaster through otolith elemental fingerprints. Mar. Ecol. Prog. Ser. 2010, 402, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Mumby, P.J. Connectivity of reef fish between mangroves and coral reefs: Algorithms for the design of marine reserves at seascape scales. Biol. Conserv. 2006, 128, 215–222. [Google Scholar] [CrossRef]
- Martin, T.; Olds, A.D.; Pitt, K.A.; Johnston, A.B.; Butler, I.R.; Maxwell, P.S.; Connolly, R.M. Effective protection of fish on inshore coral reefs depends on the scale of mangrove−reef connectivity. Mar. Ecol. Prog. Ser. 2015, 527, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Dorenbosch, M.; Verberk, W.; Nagelkerken, I.; van der Velde, G. Influence of habitat configuration on connectivity between fish assemblages of Caribbean seagrass beds, mangroves and coral reefs. Mar. Ecol. Prog. Ser. 2007, 334, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Munro, J.L. (Ed.) Caribbean Coral Reef Fishery Resources. ICLARM Studies and Reviews 7; International Center for Living Aquatic Resources Management: Manila, Philippines, 1983; 279p. [Google Scholar]
- Claro, R.; Lindemen, K.C.; Parenti, L.R. The Ecology of the Marine Fishes of Cuba; Smithsonian Institution Press: Washington, DC, USA, 2001. [Google Scholar]
- Meyer, J.; Schultz, E. Migrating haemulid fishes as a source of nutrients and organic matter on coral reefs. Limnol. Oceanogr. 1985, 30, 146–156. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.D.; Pittman, S.; Caldow, C.; Christensen, J.; Roque, B.; Appeldoorn, R.S.; Monaco, M.E. Nocturnal fish movement and trophic flow across habitat boundaries in a coral reef ecosystem (SW Puerto Rico). Caribb. J. Sci. 2009, 45, 282–303. [Google Scholar] [CrossRef]
- Valdés-Pizzini, M.; Schärer-Umpierre, M. People, Habitats, Species, and Governance: An Assessment of the Social-Ecological System of La Parguera, Puerto Rico; Interdisciplinary Center for Coastal Studies, University of Puerto Rico: Mayagüez, Puerto Rico, 2014. [Google Scholar]
- Morelock, J.; Schneidermann, N.; Bryant, W.R. Shelf reefs, southwestern Puerto Rico: Modern and ancient reefs. In Studies in Geology 4. Reefs and Related Carbonates—Ecology and Sedimentology; Frost, S.H., Weiss, M.P., Saunders, J.B., Eds.; American Association Petroleum Geologists: Tulsa, OK, USA, 1977; pp. 17–25. [Google Scholar]
- Morelock, J.; Winget, E.A.; Goenaga, C. Geologic Maps of the Southwestern Puerto Rico Parguera to Guánica Insular Shelf. Scale 1:40,000. Map I-2387; Miscellaneous Investigations Series; U.S. Department of the Interior, U.S. Geological Survey: Washington, DC, USA, 1994. [Google Scholar]
- Kendall, M.S.; Monaco, M.E.; Buja, K.R.; Christensen, J.D.; Kruer, C.R.; Finkbeiner, M.; Warner, R.A. Methods used to map the benthic habitats of Puerto Rico and the U.S. Virgin Islands. In Benthic Habitats of Puerto Rico and the U.S. Virgin Islands; [CD-ROM]; U.S. National Oceanic and Atmospheric Administration: Washington, DC, USA; National Ocean Service, National Centers for Coastal Ocean Science Biogeography Program: Silver Spring, MD, USA, 2001. Available online: http://biogeo.nos.noaa.gov/projects/mapping/caribbean/startup.htm (accessed on 12 January 2022).
- Aguilar-Perera, A.; Appeldoorn, R.S. Spatial distribution of marine fishes along a cross-shelf gradient containing a continuum of mangrove-seagrass-coral reefs off Southwestern Puerto Rico. Estuar. Coast. Shelf Sci. 2008, 76, 378–394. [Google Scholar] [CrossRef]
- Bouwmeester, B.L.K. Ontogenetic Migration and Growth of French Grunt (Teleostei: Haemulon flavolineatum) as Determined by Coded Wire Tags. Master’s Thesis, University of Puerto Rico, Mayagüez, Puerto Rico, 2005. [Google Scholar]
- Beukers, J.S.; Jones, G.P.; Buckley, R.M. Use of implant micro tags for studies on populations of small reef fish. Mar. Ecol. Prog. Ser. 1995, 125, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Buckley, R.M.; West, J.E.; Doty, D.C. Internal micro tag systems for marking juvenile reef fishes. Bull. Mar. Sci. 1994, 55, 848–857. [Google Scholar]
- Heidinger, R.C.; Cook, S.B. Use of coded wire tags for marking fingerling fishes. N. Am. J. Fish. Manag. 1988, 8, 268–272. [Google Scholar] [CrossRef]
- Anderson, M.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER User Manual; PRIMER-E Ltd.: Plymouth, UK, 2008. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 12 January 2022).
- Verweij, M.C.; Nagelkerken, I. Short and long-term movement and site fidelity of juvenile Haemulidae in back-reef habitats of a Caribbean embayment. Hydrobiologia 2007, 592, 257–270. [Google Scholar] [CrossRef]
- McFarland, W.N.; Hillis, Z.M. Observations on agnostic behavior between members of juvenile French and white grunts—Family Haemulidae. Bull. Mar. Sci. 1982, 32, 255–268. [Google Scholar]
- Huijbers, C.M.; Nagelkerken, I.; Layman, C.A. Fish movement from nursery bays to coral reefs: A matter of size? Hydrobiologia 2015, 750, 89–101. [Google Scholar] [CrossRef] [Green Version]
- McFarland, W.N. Observations on recruitment in haemulid fishes. Proc. Gulf Caribb. Fish. Inst. 1980, 32, 132–138. [Google Scholar]
- Quinn, T.P.; Ogden, J.C. Field evidence of compass orientation in migrating juvenile grunts (Haemulidae). J. Exp. Mar. Biol. Ecol. 1984, 81, 181–192. [Google Scholar] [CrossRef]
- Hein, R.G. Age, Growth and Factors Controlling Post Settlement Habitat of Juvenile French Grunts (Haemulon flavolineatum) near Tobacco Caye, Belize, Central America. Ph.D. Dissertation, University of Rhode Island, Kingston, RI, USA, 1999. [Google Scholar]
- Willliams, S.J. The Movement of White Grunts (Haemulon plumierii) Relative to Habitat and Boundaries at Various Spatial and Temporal Scales. Ph.D. Dissertation, University of Puerto Rico, Mayagüez, Puerto Rico, 2011. [Google Scholar]
- Gallardo Cabello, M.; Espino Barr, E.; Gonzalez Orozco, F.; Garcia Boa, A. Age determination of Anisotremus interruptus (Perciformes: Haemulidae) by scale reading, in the coast of Colima, Mexico. Rev. Biol. Trop. 2003, 51, 519–528. [Google Scholar]
- Potts, J.C.; Manooch III, C.S. Differences in the age and growth of white grunt (Haemulon plumieri) from North Carolina and South Carolina compared with Southeast Florida. Bull. Mar. Sci. 2001, 68, 1–12. [Google Scholar]
- Peters, D.S.; Settle, L.; Burke, J.; Laban, E. Comparative utilization of Florida Bay as a nursery area by juvenile grunts. Bull. Mar. Sci. 1994, 54, 1082. [Google Scholar]
- Shaw II, J.C. Otolith Age Validation and Growth of the White Grunt, Haemulon plumieri (Lacipede, 1801) in Southwestern Puerto Rico. Master’s Thesis, University of Rhode Island, Kinston, RI, USA, 1997. [Google Scholar]
School | Samples | N | Minimum | Maximum | Average | Median |
---|---|---|---|---|---|---|
1 | 3 | 774 | 4.7 | 12.0 | 6.93 | 6.6 |
2 | 3 | 97 | 7.4 | 27.8 | 13.02 | 12.1 |
3 | 3 | 1121 | 5.0 | 13.9 | 7.84 | 7.6 |
4 | 2 | 1315 | 4.6 | 12.2 | 7.66 | 7.2 |
5 | 3 | 584 | 4.5 | 13.1 | 7.98 | 7.5 |
6 | 3 | 1713 | 5.0 | 16.0 | 7.47 | 7.2 |
7 | 3 | 2203 | 5.1 | 14.2 | 8.35 | 8.5 |
8 | 3 | 564 | 5.5 | 16.1 | 10.23 | 10.5 |
9 | 3 | 740 | 4.4 | 13.6 | 8.10 | 8.2 |
10 | 3 | 948 | 5.1 | 28.5 | 8.00 | 7.0 |
11 | 4 | 231 | 5.8 | 16.3 | 9.88 | 9.9 |
12 | 3 | 614 | 4.9 | 14 | 8.01 | 7,8 |
13 | 1 | 9 | 12.8 | 16.4 | 13.91 | 13.1 |
14 | 1 | 23 | 11.5 | 15.2 | 13.74 | 13.8 |
Species | N | % | Minimum | Maximum | Average | Median |
---|---|---|---|---|---|---|
H. flavolineatum | 8820 | 82.330 | 4.4 | 16.4 | 8.07 | 7.8 |
H. plumierii | 1352 | 12.620 | 5 | 28.5 | 8.24 | 7.8 |
H. aurolineatum | 407 | 3.799 | 5.6 | 12.3 | 7.62 | 7.3 |
H. carbonarium | 55 | 0.513 | 5.5 | 14.8 | 8.72 | 8.4 |
H. chrysargreum | 55 | 0.513 | 6.2 | 15.4 | 9.25 | 8.5 |
H. sciurus | 22 | 0.205 | 9.5 | 27.8 | 16.67 | 15.6 |
H. macrostomum | 1 | 0.009 | 9.90 | |||
H. parra | 1 | 0.009 | 16.50 | |||
ALL = | 10,712 | 4.4 | 28.5 | 8.11 | 7.8 |
Source | df | SS | MS | Pseudo-F | P(perm) | Unique Permutations |
---|---|---|---|---|---|---|
Time 1 | ||||||
Habitat | 2 | 1645.5 | 822.74 | 3.331 | 0.099 | 999 |
School (Habitat) | 10 | 2546.3 | 254.63 | 65.459 | 0.001 | 997 |
Residual | 1722 | 6697.3 | 3.89 | |||
Total | 1734 | 10,889 | ||||
Time 2 | ||||||
Habitat | 2 | 716.1 | 358.04 | 3.427 | 0.095 | 998 |
School (Habitat) | 9 | 1421.1 | 157.9 | 54.074 | 0.001 | 997 |
Residual | 3471 | 10,135 | 2.92 | |||
Total | 3482 | 12,273 | ||||
Time 3 | ||||||
Habitat | 2 | 1172.5 | 586.26 | 3.942 | 0.100 | 999 |
School (Habitat) | 9 | 2505.9 | 278.43 | 123.09 | 0.001 | 999 |
Residual | 4837 | 10,941 | 2.26 | |||
Total | 4848 | 14,620 |
Species | Date Tagging | Days at Liberty | Recovery Location—Sample | Initial Fork Length (cm) | Change in Fork Length (cm) | Distance Moved (m) |
---|---|---|---|---|---|---|
Flav | 09/03/03 | 21 | 1-1 | 7.5 | 0.1 | 0 |
Flav | 09/03/03 | 101 | 1-2 | 8.2 | 2.0 | 0 |
Flav | 09/03/03 | 101 | 1-2 | 6.7 | 2.4 | 0 |
Flav | 09/03/03 | 101 | 1-2 | 7.5 | 1.6 | 0 |
Flav | 09/03/03 | 101 | 1-2 | 7.7 | 2.2 | 0 |
Flav | 09/24/03 | 80 | 1-2 | 7.7 | 1.5 | 0 |
Flav | 09/03/03 | 49 | 2-1 | 9.0 | 1.1 | 48 |
Flav | 09/24/03 | 28 | 2-1 | 11.0 | 0.1 | 48 |
Flav | 09/03/03 | 92 | 2-2 | 8.3 | 1.0 | 48 |
Flav | 09/03/03 | 92 | 2-2 | 8.9 | 1.3 | 48 |
Flav | 09/24/03 | 113 | 2-3 | 9.3 | 1.3 | 48 |
Flav | 09/03/03 | 55 | 3-1 | 7.9 | 0.6 | 154 |
Flav | 09/24/03 | 34 | 3-1 | 10.0 | 0.5 | 154 |
Flav | 09/24/03 | 34 | 3-1 | 8.6 | 0.6 | 154 |
Flav | ? | ? | 3-1 | ? | ? | 154 |
Flav | 09/03/03 | 93 | 3-2 | 8.0 | 1.0 | 154 |
Flav | 09/03/03 | 93 | 3-2 | 7.5 | 1.1 | 154 |
Flav | 09/03/03 | 93 | 3-2 | 8.1 | 1.2 | 154 |
Flav | 09/03/03 | 93 | 3-2 | 7.5 | 0.8 | 154 |
Flav | 09/03/03 | 93 | 3-2 | 8.2 | 0.3 | 154 |
Flav | 09/03/03 | 135 | 3-3 | 8.1 | 2.5 | 154 |
Flav | 09/03/03 | 135 | 3-3 | 7.5 | 1.2 | 154 |
Plu | 09/19/03 | 119 | 3-3 | 6.4 | 3.0 | 154 |
Plu | 09/19/03 | 119 | 3-3 | 6.6 | 2.7 | 154 |
Flav | 09/03/03 | 100 | 6-2 | 7.5 | 0.8 | 133 |
Plu | 09/19/03 | 84 | 6-2 | 7.0 | 2.0 | 133 |
Flav | 09/24/03 | 79 | 6-2 | 7.0 | 0.9 | 133 |
Flav | 09/03/03 | 76 | 7-1 | 7.2 | 0.7 | 141 |
Flav | 08/22/03 | 158 | 8-3 | 11.6 | 2.5 | 216 |
DAL | 34–55 | 93 | 119–135 |
---|---|---|---|
10.0 | 8.0 | 6.4 | |
8.6 | 7.5 | 6.6 | |
7.9 | 8.1 | 8.1 | |
7.5 | 7.5 | ||
8.2 | |||
Average | 8.8 | 7.9 | 7.2 |
Median | 8.6 | 8.0 | 7.1 |
Species | Date Tagging | Days at Liberty | Tagged Location | Initial Fork Length (cm) | Change in Fork Length (cm) | Distance Moved (m) |
---|---|---|---|---|---|---|
Flav | 10/08/2003 | 7 | Corral East | 10.9 | 0.0 | 0 |
Flav | 10/08/2003 | 503 * | Corral East | 9.9 | 4.8 | 109 |
Flav | 10/08/2003 | 503 * | Corral East | 10.7 | 3.7 | 109 |
Flav | 10/16/2003 | 292 | Corral East | 11.5 | 2.0 | 0 |
Flav | 01/30/2004 | 160 | Romero West | 11.3 | 0.6 | 50 |
Flav | 01/30/2004 | 160 | Romero West | 11.2 | 0.6 | 50 |
Flav | 01/30/2004 | 160 | Romero West | 10.7 | 0.6 | 50 |
Flav | 01/30/2004 | 160 | Romero West | 12.3 | 1.1 | 50 |
Flav | 01/30/2004 | 160 | Romero West | 10.8 | 0.5 | 50 |
Flav | 01/30/2004 | 160 | Romero West | 10.7 | 0.3 | 50 |
Flav | 01/30/2004 | 160 | Romero West | 12.1 | 0.1 | 50 |
Flav | 01/30/2004 | 160 | Romero West | 10.8 | 0.9 | 50 |
Flav | 01/30/2004 | 160 | Romero West | 11.4 | 0.8 | 50 |
Flav | 01/30/2004 | 160 | Romero West | 12.7 | 0.8 | 50 |
Flav | 01/30/2004 | 160 | Romero West | 11.8 | 1.2 | 50 |
Flav | 01/30/2004 | 160 | Romero West | 10.6 | 0.9 | 50 |
Flav | 01/30/2004 | 160 | Romero West | 11.5 | 1.8 | 50 |
Flav | 01/30/2004 | 390 * | Romero West | 11.1 | 3.7 | 109 |
Flav | 02/27/2004 | 14 | Romero West | 11.9 | −0.3 | 50 |
Flav | 03/17/2004 | 97 * | Caracoles | 10.8 | 0.4 | 155 |
Flav | 03/17/2004 | 97 * | Caracoles | 11.2 | 0.5 | 155 |
Flav | 06/15/2004 | 239 * | Caracoles | 10.6 | 3.1 | 153 |
Flav | 06/24/2004 | 82 * | Caracoles | 10.5 | 0.6 | 164 |
Flav | 06/30/2004 | 226 * | Caracoles | 10.5 | 2.6 | 187 |
Flav | 07/01/2004 | 96 * | Caracoles | 11.3 | 0.0 | 297 |
Flav | 07/01/2004 | 223 * | Caracoles | 11.5 | 2.1 | 153 |
Flav | 07/01/2004 | 223 * | Caracoles | 10.7 | 2.3 | 153 |
Flav | 11/21–26/2003 | 489–494? * | Romero West? | ? | 2.4–5.7 | 178 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Appeldoorn, R.S.; Bouwmeester, B.L.K. Ontogenetic Migration of Juvenile Grunts (Haemulon) across a Coral Reef Seascape: Pathways and Potential Mechanisms. Diversity 2022, 14, 168. https://doi.org/10.3390/d14030168
Appeldoorn RS, Bouwmeester BLK. Ontogenetic Migration of Juvenile Grunts (Haemulon) across a Coral Reef Seascape: Pathways and Potential Mechanisms. Diversity. 2022; 14(3):168. https://doi.org/10.3390/d14030168
Chicago/Turabian StyleAppeldoorn, Richard S., and Björn L. K. Bouwmeester. 2022. "Ontogenetic Migration of Juvenile Grunts (Haemulon) across a Coral Reef Seascape: Pathways and Potential Mechanisms" Diversity 14, no. 3: 168. https://doi.org/10.3390/d14030168
APA StyleAppeldoorn, R. S., & Bouwmeester, B. L. K. (2022). Ontogenetic Migration of Juvenile Grunts (Haemulon) across a Coral Reef Seascape: Pathways and Potential Mechanisms. Diversity, 14(3), 168. https://doi.org/10.3390/d14030168