Diversity of Rotifers in Small Rivers Affected by Human Activity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Segers, H. Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa 2007, 1564, 1–104. [Google Scholar] [CrossRef]
- Mills, S.; Alcántara-Rodríguez, J.A.; Ciros-Pérez, J.; Gómez, A.; Hagiwara, A.; Galindo, K.H.; Jersabek, C.D.; Malekzadeh-Viayeh, R.; Leasi, F.; Lee, J.-S.; et al. Fifteen species in one: Deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 2017, 796, 39–58. [Google Scholar] [CrossRef] [Green Version]
- Schenk, J.; Fontaneto, D. Biodiversity analyses in freshwater meiofauna through DNA sequence data. Hydrobiologia 2019, 847, 2597–2611. [Google Scholar] [CrossRef]
- Ejsmont-Karabin, J.; Karpowicz, M. Rotifera in lake subhabitats. Aquat. Ecol. 2021, 55, 1285–1296. [Google Scholar] [CrossRef]
- Wallace, R.L.; Walsh, E.J.; Nandini, S.; Sarma, S.S.S. A meta-analysis of benthic rotifer community structure as a function of lake trophic state. Aquat. Ecol. 2021, 55, 1297–1304. [Google Scholar] [CrossRef]
- Ejsmont-Karabin, J. Does the world need faunists? Based on rotifer (Rotifera) occurrence reflections on the role of faunistic research in ecology. Int. Rev. Hydrobiol. 2019, 104, 49–56. [Google Scholar] [CrossRef]
- Iakovenko, N.; Smykla, J.; Convey, P.; Kašparová, E.; Kozeretska, I.; Trokhymets, V.; Dykyy, I.; Plewka, M.; Devetter, M.; Duriš, Z.; et al. Antarctic bdelloid rotifers: Diversity, endemism and evolution. Hydrobiologia 2015, 761, 5–43. [Google Scholar] [CrossRef]
- Kuczyńska-Kippen, N. The distribution of rotifers (Rotifera) within a single Myriophyllum bed. Hydrobiologia 2003, 506-509, 327–331. [Google Scholar] [CrossRef]
- Špoljar, M.; Dražina, T.; Šargač, J.; Borojević, K.K.; Žutinić, P. Submerged macrophytes as a habitat for zooplankton development in two reservoirs of a flow-through system (Papuk Nature Park, Croatia). Ann. de Limnol.-Int. J. Limnol. 2012, 48, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Ejsmont-Karabin, J. The usefulness of zooplankton as lake ecosystem indicators: Rotifer trophic state index. Pol. J. Ecol. 2012, 60, 339–350. [Google Scholar]
- Dembowska, E.; Napiórkowski, P.; Mieszczankin, T.; Józefowicz, S. Planktonic indices in the evaluation of the ecological status and the trophic state of the longest lake in Poland. Ecol. Indic. 2015, 56, 15–22. [Google Scholar] [CrossRef]
- Stamou, G.; Katsiapi, M.; Moustaka-Gouni, M.; Michaloudi, E. Trophic state assessment based on zooplankton communities in Mediterranean lakes. Hydrobiologia 2019, 844, 83–103. [Google Scholar] [CrossRef]
- Duggan, I. The ecology of periphytic rotifers. Hydrobiologia 2001, 446/447, 139–148. [Google Scholar] [CrossRef]
- Rodgers, K.H.; Breen, C.M. An investigation of macrophyte, epiphyte and grazer interactions. In Periphyton of Freshwater Ecosystems; Wetzel, R.G., Ed.; Dr W. Junk Publishers: The Hague, The Netherlands, 1983; pp. 217–226. [Google Scholar]
- Jones, J.I.; Young, J.O.; Haynes, G.M.; Moss, B.; Eaton, J.W.; Hardwick, K.J. Do submerged aquatic plants influence their periphyton to enhance the growth and reproduction of invertebrate mutualists? Oecologia 1999, 120, 463–474. [Google Scholar] [CrossRef]
- Kuczyńska-Kippen, N.; Špoljar, M.; Mleczek, M.; Zhang, C. Elodeids, but not helophytes, increase community diversity and reduce trophic state: Case study with rotifer indices in field ponds. Ecol. Indic. 2021, 128, 107829. [Google Scholar] [CrossRef]
- Illies, J. Limnofauna Europaea. A Checklist of the Animals Inhabiting European Inland Waters, with Account of Their Distribution and Ecology; Second revised and enlarged edition; G. Fischer, Stuttgart Swets en Zeitlinger: Stuttgart, Germany; New York, NY, USA; Amsterdam, The Netherlands, 1978. [Google Scholar]
- Ericsson, B.; Hallmans, B. Treatment and disposal of saline wastewater from coal mines in Poland. Desalination 1994, 98, 239–248. [Google Scholar] [CrossRef]
- Harat, A.; Grmela, A. Impact of mine water from the Upper Silesian Coal Basin areas on change quality of water in Olza River in years 2000–2007. Nat. Environ. Monit. 2008, 9, 57–62. [Google Scholar]
- Harding, J.S.; Young, R.G.; Hayes, J.W.; Shearer, K.A.; Stark, J.D. Changes in agricultural intensity and river health along a river continuum. Freshw. Biol. 1999, 42, 345–357. [Google Scholar] [CrossRef]
- Lewin, I. The gastropod communities in the lowland rivers of agricultural areas—Their biodiversity and bioindicative value in the Ciechanowska Upland, Central Poland. Malacologia 2006, 49, 7–23. [Google Scholar] [CrossRef]
- Baldwin, A.H.; Jensen, K.; Schönfeldt, M. Warming increases plant biomass and reduces diversity across continents, latitudes, and species migration scenarios in experimental wetland communities. Glob. Chang. Biol. 2013, 20, 835–850. [Google Scholar] [CrossRef]
- Drake, B.G. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: Review of a 28-year study. Glob. Chang. Biol. 2014, 20, 3329–3343. [Google Scholar] [CrossRef]
- Liu, Q.P.; Giesy, J.P.; Li, Z.H. Spatio-Temporal Distributions and Environmental Safety Threshold of Cropland Fertilization of Jiangsu Province, China. Adv. Mater. Res. 2014, 962-965, 2110–2115. [Google Scholar] [CrossRef]
- Hautier, Y.; Seabloom, E.; Borer, E.; Adler, P.B.; Harpole, W.S.; Hillebrand, H.; Lind, E.; MacDougall, A.S.; Stevens, C.; Bakker, J.D.; et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 2014, 508, 521–525. [Google Scholar] [CrossRef]
- Maxwell, S.L.; Fuller, R.A.; Brooks, T.M.; Watson, J.E.M. Biodiversity: The ravages of guns, nets and bulldozers. Nature 2016, 546, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.J.; Greaves, H.M.; Sayer, C.D.; Hassall, C.; Milin, M.; Milner, V.S.; Marazzi, L.; Hall, R.; Harper, L.R.; Thornhill, I.; et al. Pond ecology and conservation: Research priorities and knowledge gaps. Ecosphere 2021, 12, e03853. [Google Scholar] [CrossRef]
- Directive, Water Framework. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities 2000, L327, 1–72. [Google Scholar]
- Piscart, C.; Moreteau, J.-C.; Beisel, J.-N. Monitoring Changes in Freshwater Macroinvertebrate Communities Along a Salinity Gradient Using Artificial Substrates. Environ. Monit. Assess. 2006, 116, 529–542. [Google Scholar] [CrossRef]
- Hermanowicz, W.; Dojlido, J.; Dożańska, W.; Koziorowski, B.; Zerbe, J. Fizyczno-Chemiczne Badanie Wody i Ścieków; Arkady: Warszawa, Poland, 1999. [Google Scholar]
- Chindah, A.C. Responses of periphyton community to salinity gradient in tropical estuary, Niger Delta. Pol. J. Ecol. 2004, 52, 83–89. [Google Scholar]
- Tarkowska-Kukuryk, M. Periphytic algae as food source for grazing chironomids in a shallow phytoplankton-dominated lake. Limnologica 2013, 43, 254–264. [Google Scholar] [CrossRef]
- Bielańska-Grajner, I.; Ejsmont-Karabin, J.; Radwan, S. Rotifers. In Rotifera Monogononta; Łódź University Press & Jagiellonian University Press: Łódź–Kraków, Poland, 2015. [Google Scholar]
- Bielańska-Grajner, I.; Ejsmont-Karabin, J.; Iakovenko, N. Wrotki. In Rotifera Bdelloidea; Wydawnictwo Uniwersytetu Łódzkiego: Łódź, Poland, 2014. [Google Scholar]
- Donner, P.J. Ordnung Bdelloidea (Rotatoria, Rädertiere); Bestimmungsbücher zur Bodenfauna Europas, 6; Akademie: Berlin, Germany, 1965. [Google Scholar]
- Nogrady, T.; Pourriot, R.; Segers, H. Rotifera. In Vol. 3: The Notommatidae and the Scaridiidae. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. 8 SPB; Academic Publishing: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Segers, H. Rotifera Volume 2. The Lecanidae. (Monogononta). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 6; Academic Publishing: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Kutikova, L.A. The Bdelloid Rotifers of the Fauna of Russia. Proc. Zool. Inst. 2005, 305, 314. [Google Scholar]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Allan, J.D.; Castillo, M.M. Stream Ecology; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Shen, J.; Qin, G.; Yu, R.; Zhao, Y.; Yang, J.; An, S.; Liu, R.; Leng, X.; Wan, Y. Urbanization has changed the distribution pattern of zooplankton species diversity and the structure of functional groups. Ecol. Indic. 2021, 120, 106944. [Google Scholar] [CrossRef]
- Gromova, Y.F. The Structure and Composition of Pelagic Communities of the Estuarine Region of the Vita River. Hydrobiol. J. 2001, 37, 11. [Google Scholar] [CrossRef]
- Halabowski, D.; Bielańska-Grajner, I.; Lewin, I. Effect of underground salty mine water on the rotifer communities in the Bolina River (Upper Silesia, Southern Poland). Knowl. Manag. Aquat. Ecosyst. 2019, 420, 31. [Google Scholar] [CrossRef]
- Halabowski, D.; Lewin, I.; Buczyński, P.; Krodkiewska, M.; Płaska, W.; Sowa, A.; Buczyńska, E. Impact of the Discharge of Salinised Coal Mine Waters on the Structure of the Macroinvertebrate Communities in an Urban River (Central Europe). Water Air Soil Pollut. 2020, 231, 5. [Google Scholar] [CrossRef]
- Neschuk, N.; Claps, M.; Gabellone, N. Planktonic rotifers of a saline-lowland river: The Salado River (Argentina). Ann. de Limnol.-Int. J. Limnol. 2002, 38, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Korstad, J.; Olsen, Y.; Vadstein, O. Life history characteristics of Brachionus plicatilis (rotifera) fed different algae. Hydrobiologia 1989, 186-187, 43–50. [Google Scholar] [CrossRef]
- Sarma, S.S.S.; Nandini, S. Comparative population dynamics of six brachionid rotifers (Rotifera) fed seston from a hypertrophic, high altitude shallow waterbody from Mexico. Hydrobiologia 2019, 844, 55–65. [Google Scholar] [CrossRef]
- Zhao, J.; Ren, W.; Dai, Y.; Liu, L.; Wang, Z.; Yu, X.; Zhang, J.; Wang, X.; Xing, B. Uptake, Distribution, and Transformation of CuO NPs in a Floating Plant Eichhornia crassipes and Related Stomatal Responses. Environ. Sci. Technol. 2017, 51, 7686–7695. [Google Scholar] [CrossRef]
- Le Coz, M.; Chambord, S.; Souissi, S.; Meire, P.; Ovaert, J.; Buffan-Dubau, E.; Prygiel, J.; Azémar, F.; Sossou, A.; Lamothe, S.; et al. Are zooplankton communities structured by taxa ecological niches or by hydrological features? Ecohydrology 2018, 11, e1956. [Google Scholar] [CrossRef]
- Cimdinš, P.; Druvietis, I.; Liepa, R.; Parele, E.; Urtane, L.; Urtans, A. Latvian catalogue of indicator species of freshwater saprobity. Proc. Latv. Acad. Sci. 1995, 1, 122–133. [Google Scholar]
- Marneffe, Y.; Comblin, S.; Thomé, J.-P. Ecological water quality assessment of the Bütgenbach lake (Belgium) and its impact on the River Warche using rotifers as bioindicators. In Rotifera VIII: A Comparative Approach; Springer: Berlin/Heidelberg, Germany, 1998; Volume 134, pp. 459–467. [Google Scholar]
- Zhou, S.; Tang, T.; Wu, N.; Fu, X.; Cai, Q. Impacts of a Small Dam on Riverine Zooplankton. Int. Rev. Hydrobiol. 2008, 93, 297–311. [Google Scholar] [CrossRef]
- Gromova, Y.F.; Afanasyev, S.A.; Shevtsova, L.V. Structural Organization of Zooplankton in Transformed Small Rivers. Hydrobiol. J. 2013, 49, 21–29. [Google Scholar] [CrossRef]
- Xiong, W.; Li, J.; Chen, Y.; Shan, B.; Wang, W.; Zhan, A. Determinants of community structure of zooplankton in heavily polluted river ecosystems. Sci. Rep. 2016, 6, 22043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czerniawski, R.; Sługocki, Ł. A comparison of the effect of beaver and human-made impoundments on stream zooplankton. Ecohydrology 2018, 11, e1963. [Google Scholar] [CrossRef]
- Senkevich, V.A.; Stojko, T.G.; Tsyganov, A. Species Composition and Community Structure of Zooplankton in Small Rivers of the Forest-Steppe Zone. Inland Water Biol. 2018, 11, 448–455. [Google Scholar] [CrossRef]
- Nandini, S.; Ramírez-García, P.; Sarma, S.S.S.; Gutierrez-Ochoa, R.A. Planktonic indicators of water quality: A case study in the Amacuzac River Basin (State of Morelos, Mexico). River Res. Appl. 2019, 35, 268–279. [Google Scholar] [CrossRef]
- Xiong, W.; Ni, P.; Chen, Y.; Gao, Y.; Li, S.; Zhan, A. Biological consequences of environmental pollution in running water ecosystems: A case study in zooplankton. Environ. Pollut. 2019, 252, 1483–1490. [Google Scholar] [CrossRef]
- Sindt, A.R.; Wolf, M.C. Spatial and temporal trends of Minnesota River phytoplankton and zooplankton. River Res. Appl. 2021, 37, 776–795. [Google Scholar] [CrossRef]
- Chang, K.-H.; Doi, H.; Imai, H.; Gunji, F.; Nakano, S.-I. Longitudinal changes in zooplankton distribution below a reservoir outfall with reference to river planktivory. Limnology 2008, 9, 125–133. [Google Scholar] [CrossRef]
- Czerniawski, R.; Sługocki, Ł.; Kowalska-Góralska, M. Diurnal Changes of Zooplankton Community Reduction Rate at Lake Outlets and Related Environmental Factors. PLoS ONE 2016, 11, e0158837. [Google Scholar] [CrossRef] [Green Version]
- Sługocki, Ł.; Czerniawski, R.; Kowalska-Góralska, M.; Senze, M.; Reis, A.; Carrola, J.S.; Teixeira, C.A. The Impact of Land Use Transformations on Zooplankton Communities in a Small Mountain River (The Corgo River, Northern Portugal). Int. J. Environ. Res. Public Health 2018, 16, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duggan, I.C.; Green, J.D.; Shiel, R.J. Distribution of rotifers in North Island, New Zealand, and their potential use as bioindicators of lake trophic state. Rotifera IX 2001, 446, 155–164. [Google Scholar] [CrossRef]
- Kuczyńska-Kippen, N. Seasonal changes of the rotifer community in the littoral of a polymictic lake. Int. Ver. Theor. Angew. Limnol. Verh. 2000, 27, 2964–2967. [Google Scholar] [CrossRef]
- Liang, D.; Wang, Q.; Wei, N.; Tang, C.; Sun, X.; Yang, Y. Biological indicators of ecological quality in typical urban river-lake ecosystems: The planktonic rotifer community and its response to environmental factors. Ecol. Indic. 2020, 112, 106127. [Google Scholar] [CrossRef]
- Pakulnicka, J.; Zawal, A. Effect of changes in the fractal structure of a littoral zone in the course of lake succession on the abundance, body size sequence and biomass of beetles. PeerJ 2018, 6, e5662. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.-Y.; Kim, S.-K. Responses of Rotifer Community to Microhabitat Changes Caused by Summer-Concentrated Rainfall in a Shallow Reservoir, South Korea. Diversity 2020, 12, 113. [Google Scholar] [CrossRef] [Green Version]
- Kuczyńska-Kippen, N. Habitat choice in rotifera communities of three shallow lakes: Impact of macrophyte substratum and season. Hydrobiologia 2007, 593, 27–37. [Google Scholar] [CrossRef]
- Bolduc, P.; Bertolo, A.; Hudon, C.; Pinel-Alloul, B. Submerged aquatic vegetation cover and complexity drive crustacean zooplankton community structure in a large fluvial lake: An in situ approach. J. Great Lakes Res. 2020, 46, 767–779. [Google Scholar] [CrossRef]
- Deosti, S.; Bomfim, F.D.F.; Lansac-Tôha, F.M.; Quirino, B.A.; Bonecker, C.C.; Lansac-Tôha, F.A. Zooplankton taxonomic and functional structure is determined by macrophytes and fish predation in a Neotropical river. Hydrobiologia 2021, 848, 1475–1490. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, H.; Gao, X.; Zhang, H. Modeling nutrients, oxygen and critical phosphorus loading in a shallow reservoir in China with a coupled water quality—Macrophytes model. Ecol. Indic. 2016, 66, 212–219. [Google Scholar] [CrossRef]
- Špoljar, M.; Zhang, C.; Dražina, T.; Zhao, G.; Lajtner, J.; Radonić, G. Development of submerged macrophyte and epiphyton in a flow-through system: Assessment and modelling predictions in interconnected reservoirs. Ecol. Indic. 2017, 75, 145–154. [Google Scholar] [CrossRef]
- Lucks, R. Über ein neues Rädertier. Zool. Anz. 1911, 38, 568–571. [Google Scholar]
- Lucks, R. Zur Rotatorienfauna Westpreußen; Verlag und Offsetdruck von A. W. Kafemann G.m.b.H.: Gdańsk, Poland, 1912. [Google Scholar]
- Rotifer World Catalog. Available online: http://www.rotifera.hausdernatur.at/Species/Index/1451#TabStripSpecies-7 (accessed on 19 December 2021).
River | Sampling Site | Geographical Coordinates | Ecoregion | Type of River/Geology | Catchment Land Use | Main Anthropogenic Pressure | Bottom Sediments |
---|---|---|---|---|---|---|---|
BOL | Upper | N: 50°13.793; E: 19°05.142 | Ecoregion 14—Central Plains | Type 5/mid-altitude siliceous streams with a fine particulate substratum | Industrial and urban, grassland | Salinisation (coal mine), industrial and communal sewage, regulation of the riverbed | Silty |
Lower | N: 50°14.742; E: 19°06.078 | Silty-sandy | |||||
CEN | Upper | N: 50°24.879; E: 19°29.190 | Natural monument and Natura 2000; Woodland | None | Sandy-silty | ||
Lower | N: 50°21.920; E: 19°29.682 | Natura 2000; Woodland and grassland | Organic pollution (agriculture, animal grazing), fishponds | Sandy-stony | |||
MIT | Upper | N: 50°24.797; E: 19°22.779 | Ecoregion 14—Central Plains | Type 6/mid-altitude calcareous streams with a fine particulate substratum on loess | Built-up area and grassland | Dam reservoir, communal sewage | Sandy-silty |
Lower | N: 50°26.070; E: 19°17.956 | Dam reservoir, communal sewage, regulation of the riverbed | Sandy-silty | ||||
MLE | Upper | N: 52°09.754; E: 19°00.213 | Industrial and urban, grassland | Industrial and communal sewage, regulation of the riverbed | Sandy-silty | ||
Lower | N: 50°07.018; E: 19°04.487 | Salinisation (coal mine), industrial and communal sewage, regulation of the riverbed | Silty-sandy | ||||
DZI | Upper | N: 49°38.021; E: 18°50.828 | Ecoregion 10—Carpathians | Type 12/flysch streams | Woodland, road | None | Stony-gravel |
Lower | N: 49°38.789; E: 18°52.025 | Built-up area, woodland | Regulation of the riverbed | Stony-concrete | |||
VIS | Upper | N: 49°37.190; E: 18°59.160 | Nature reserve and Natura 2000, woodlands, built-up area | None | Stony-gravel | ||
Lower | N: 49°38.728; E: 18°51.167 | Built-up area, woodland | Dam reservoir, communal sewage, regulation of the riverbed | Stony-gravel | |||
KOR | Upper | N: 50°03.509; E:18°56.804 | Ecoregion 14—Central Plains | Type 17/lowland sandy streams | Built-up area and grassland | Fishponds and agriculture, communal sewage | Silty-sandy |
Lower | N: 50°01.850; E: 19°05.839 | Built-up area and grassland, protected areas: Natura 2000 | Fishponds and agriculture | Sandy-stony | |||
WIE | Upper | N: 50°41.117; E: 19°24.472 | Nature reserve and Natura 2000, woodlands and grassland | None | Sandy-stony | ||
Lower | N: 50°52.471; E: 19°26.133 | Woodlands, grassland and built-up area | Agriculture, animal grazing, dam reservoirs | Sandy-silty |
Parameter | Type 5 | Type 6 | Type 12 | Type 17 | H Value | p Value |
---|---|---|---|---|---|---|
Altitude [m a.s.l.] | 257–343 c,d | 236–317 c | 415–748 a,b,d | 215–309 a,c | 44.007 | <0.001 |
Width of the riverbed [m] | 3.30–7.78 | 2.87–9.36 | 3.47–19.80 | 1.85–12.05 | 0.500 | 0.919 |
Depth of the riverbed [cm] | 9.75–58.60 b | 36.80–109.17 a,c | 19.30–57.60 b | 6.70–98.33 | 18.904 | <0.001 |
Flow velocity [m s−1] | 0.060–0.790 b | 0.007–0.384 a,c | 0.107–0.939 b,d | 0.057–0.706 c | 22.633 | <0.001 |
Dissolved oxygen [mg dm−3] | 4.24–9.69 b | 0.69–6.78 a,c | 4.88–5.90 b | 2.98–6.49 | 11.609 | 0.009 |
Temperature [°C] | 7.5–29.1 | 9.4–25.1 | 9.1–23.8 | 9.7–23.5 | 7.797 | 0.050 |
Salinity [PSU] | 0.19–33.55 | 0.28–5.16 | 0.02–0.06 | 0.17–0.28 | 45.479 | <0.001 |
EC [μS cm−1] | 250–46 600 c | 360–7160 c,d | 30–90 a,c,d | 220–370 b,c | 45.479 | <0.001 |
TDS [mg dm−3] | 110–23 300 c | 170–3570 c,d | 10–30 a,b,d | 100–170 b,c | 45.881 | <0.001 |
Chlorides [mg dm−3] | 8–17 028 c | 15–1970 c | 4–9 a,b,d | 4–25 c | 36.478 | <0.001 |
Sulphates [mg dm−3] | 35–770 c,d | 22–272 c,d | 8–18 a,b | 10–64 a,b | 39.919 | <0.001 |
Total hardness [mg CaCO3 dm−3] | 160.00–4857.92 c,d | 160.00–560.00 c,d | 28.00–68.00 a,b,d | 110–320 a,b,c | 47.971 | <0.001 |
Magnesium [mg dm−3] | 1.94–670.00 c,d | 0.06–62.53 c | 0.04–5.14 a,b | 0.00–13.80 a | 32.260 | <0.001 |
Calcium [mg dm−3] | 55–1310 c,d | 40–158 c | 10–21 a,b,d | 24–82 a,c | 45.340 | <0.001 |
Alkalinity [mg CaCO3 dm−3] | 75.0–380.0 c | 125.0–275.0 c | 2.5–50.0 a,b,d | 20.0–180.0 c | 39.516 | <0.001 |
pH | 7.2–7.9 | 6.8–8.1 | 6.5–8.4 | 6.2–8.2 | 2.006 | 0.571 |
Nitrates [mg dm−3] | 0.00–79.74 | 0.89–15.95 c | 0.00–9.30 b,d | 0.44–18.61 c | 13.726 | <0.001 |
Nitrites [mg dm−3] | 0.00–9.96 c | 0.03–093 c | 0.00–0.01 a,b | 0.00–0.59 | 30.897 | <0.001 |
Ammonium [mg dm−3] | 0.00–12.12 c | 0.23–1.42 c | 0.13–0.45 a,b | 0.00–0.63 | 18.045 | <0.001 |
Phosphates [mg dm−3] | 0.00–0.14 b,d | 0.08–19.20 a,c | 0.00–1.52 b | 0.00–0.87 a | 39.919 | <0.001 |
Iron [mg dm−3] | 0.03–0.88 b | 0.25–1.46 a,c | 0.03–0.34 b,d | 0.03–3.11 c | 27.324 | <0.001 |
Taxon | Sampling Site | Microhabitat | Season |
---|---|---|---|
Adineta gracilis Janson, 1893 | DZIL, VISU | Chiloscyphus polyanthos, Fontinalis antipyretica, Platyhypnidium riparioides, Scapania undulata | SP, AU |
Adineta vaga (Davis, 1873) | VISU | Hygrohypnum luridum, Scapania undulata | SU |
Adineta vaga major Bryce, 1893 | WIEL | Phalaris arundinacea | SU |
Anuraeopsis fissa Gosse, 1851 | MITU | open water | SU |
Asplanchna priodonta Gosse, 1850 | MITU | open water | SU |
Bdelloidea non determinata | CENL, DZIL, DZIL, DZIU, KORL, KORU, MITL, MITU, MLEU, WIEL, WIEU, VISU | open water, stones, bottom sediments, diatom aggregation, Berula erecta, Callitriche sp., Chiloscyphus polyanthos, Elodea canadensis, Fontinalis antipyretica, Glyceria maxima, Myosotis palustris, Phalaris arundinacea, Platyhypnidium riparioides, Potamogeton crispus, P. natans, Ranunculus aquatile, R. circinatum, Sagittaria sagittifolia, Scrophularia umbrosa, Sparganium erectum, Thamnobryum alopecurum, Veronica beccabunga | SP, SU, AU |
Brachionus angularis Gosse, 1851 | BOLL, MITU | open water | SU |
Brachionus plicatilis s.l. Müller, 1786 | BOLL, BOLU | open water | SU, AU |
Brachionus quadridentatus Hermann, 1783 | MITL | diatom aggregation | SU |
Brachionus rubens (Ehrenberg, 1838) | BOLL, BOLU | open water, Phragmites australis | SP |
Brachionus species non determinata | BOLL | diatom aggregation | AU |
Cephalodella auriculata (Müller, 1773) | CENU, KORL, KORU, MITL, MITU, MLEU, WIEL, VISL | open water, stones, bottom sediments, diatom aggregation, Berula erecta, Glyceria nemoralis, Phalaris arundinacea, Polygoum hydropiper, Potamogeton crispus, P. pectinatus, Rorippa amphibia, Sagittaria sagittifolia | SP, SU, AU |
Cephalodella catellina (Müller, 1786) | KORU, MITL | open water, diatom aggregation, Callitriche sp., Potamogeton crispus | SP, SU, AU |
Cephalodella delicata Wulfert, 1937 | CENU | Carex rostrata | SU |
Cephalodella eva (Gosse, 1887) | KORL, KORU, MITU, WIEL, VISL | Callitriche sp., Elodea canadensis, Potamogeton crispus, Rorippa amphibia, Spraganium erectum | SU, AU |
Cephalodella forficula (Ehrenberg, 1830) | KORL, MITU | Berula erecta, Fontinalis antipyretica | SU, AU |
Cephalodella gibba (Ehrenberg, 1830) | KORL, KORU, MITL, MITU, MLEU, WIEL, WIEU, VISL | open water, stones, bottom sediments, diatom aggregation, Callitriche sp., Fontinalis antipyretica, Glyceria maxima, Lemna minor, Phalaris arundinacea, Polygonum hydropiper, Potamogeton crispus, Sparganium emersum, S. erectum | SP, SU, AU |
Cephalodella globata (Gosse, 1887) | MITL, WIEU | open water, bottom sediments | SU, AU |
Cephalodella gracilis (Ehrenberg, 1830) | CENL, CENU, KORU, MITU, MLEL, MLEU, WIEL | open water, Berula erecta, Carex rostrata, Phalaris arundinacea, Potamogeton natans, P. pectinatus, Rorippa amphibia, Sparganium erectum | SP, SU, AU |
Cephalodella hoodii (Gosse, 1886) | MLEU | stones | AU |
Cephalodella megalocephala (Glascott, 1893) | VISL | Elodea canadensis | AU |
Cephalodella megalotrocha Wiszniewski, 1934 | CENU | Carex rostrata | SU |
Cephalodella misgurnus Wulfert, 1937 | KORL | Sparganium erectum | AU |
Cephalodella nana Myers, 1924 | KORL | open water | AU |
Cephalodella species non determinata | KOLR, WIEL | open water, Potamogeton natans | SP, SU |
Cephalodella stenroosi Wulfert, 1937 | MITU | Spraganium erectum | SU |
Cephalodella ventripes (Dixon-Nuttall, 1901) | KORU | open water | SP |
Collotheca species non determinata | KORL, MITU, VISL | Elodea canadensis, Fontinalis antipyretica, Phalaris arundinacea | SP, SU, AU |
Colurella adriatica Ehrenberg, 1831 | BOLL, BOLU, CENL, CENU, DZIL, DZIU, KORL, MITL, MLEL, MLEU, WIEU, VISL, VISU | open water, stones, bottom sediments, diatom aggregation, Carex rostrata, Elodea canadensis, Enteromorpha sp., Fontinalis antipyretica, Glyceria nemoralis, Mougeotia sp., Phalaris arundinacea, Phragmites australis, Platyhypnidium riparioides, Veronica beccabunga | SP, SU, AU |
Colurella colurus (Ehrenberg, 1830) | BOLL, CENU, DZIL, KORL, KORU, MLEL, WIEL, VISL, VISU | open water, Callitriche sp., Elodea canadensis, Enteromorpha sp., Glyceria maxima, G. nemoralis, Nuphar lutea, Phalaris arundinacea, Scirpus sylvaticus | SU, AU |
Colurella species non determinata | CENL | open water | SU |
Colurella uncinata (Müller, 1773) | KORL, KORU, MITL, MITU, MLEL, MLEU | open water, diatom aggregation, Fontinalis antipyretica, Phalaris arundinacea, Potamogeton pectinatus, Ranunculus aquatile, Sparganium emersum, S. erectum | SP, SU, AU |
Dicranophorus forcipatus (Müller, 1786) | MITU, WIEL, WIEU | stones, Elodea canadensis, Rorippa amphibia, Thamnobryum alopecurum | AU |
Dicranophorus grandis (Ehrenberg, 1832) | KORU | Potamogeton crispus | SU |
Dicranophorus hercules Wiszniewski, 1932 | DZIU, KORU, MITU, WIEU | open water, stones, bottom sediments, Sparganium erectum | SP, SU, AU |
Dicranophorus rostratus (Dixon-Nuttall & Freeman, 1902) | DZIU | bottom sediments | SU |
Dicranophorus secretus Donner, 1951 | MITU | Spraganium erectum | SU |
Dicranophorus species non determinata | KORU, MITU | open water, Berula erecta, Sparganium erectum | SU |
Dissotrocha macrostyla (Ehrenberg, 1838) | KORL, MLEU | stones, Callitriche sp. | AU |
Dissotrocha species non determinata | CENU | bottom sediments | AU |
Encentrum diglandula (Zawadovsky, 1926) | BOLU | Enteromorpha sp. | AU |
Encentrum lupus Wulfert, 1936 | MITL | Fontinalis antipyretica | AU |
Encentrum marinum (Dujardin, 1841) | BOLL, BOLU, DZIU, KORL, KORU, MLEL | open water, stones, bottom sediments, diatom aggregation, Enteromorpha sp., Phragmites australis | SP, SU, AU |
Encentrum mustela (Milne, 1885) | WIEL | Glyceria maxima | SP |
Encentrum saundersiae (Hudson, 1885) | KORU | open water | SP |
Encentrum species non determinata | CENL | Berula erecta | SU |
Encentrum tyrphos Wulfert, 1936 | KORL, WIEL | open water, Phalaris arundinacea | SU, AU |
Erignatha clastopis (Gosse, 1886) | KORL | Fontinalis antipyretica | SU |
Erignatha species non determinata | KORL | open water | SU |
Euchlanis deflexa (Gosse, 1851) | CENU, MITL, MLEU | Glyceria nemoralis, Phalaris arundinacea, Polygonum hydropiper | AU |
Euchlanis dilatata Ehrenberg, 1832 | KORL, KORU, MITL, MLEU, WIEL | open water, stones, diatom aggregation, Callitriche sp., Glyceria maxima, Mougeotia sp., Phalaris arundinacea, Potamogeton crispus, P. natans, Ranunculus aquatile, Sparganium erectum | SP, SU, AU |
Euchlanis species non determinata | KORL, KORU, WIEL, WIEU, VISL | open water, stones, Callitriche sp., Fontinalis antipyretica, Nuphar lutea, Phalaris arundinacea, Potamogeton crispus, Ranunculus aquatile, Thamnobryum alopecurum | SP, SU, AU |
Filinia longiseta (Ehrenberg, 1834) | MITU, WIEL | open water | SU, AU |
Floscularia ringens (Linnaeus, 1758) | MLEU | Callitriche sp. | AU |
Habrotrocha roeperi (Milne, 1889) | DZIL, MITL | Fontinalis antipyretica, Platyhypnidium riparioides, Scrophularia umbrosa | SU, AU |
Habrotrocha species non determinata | CENL, CENU, DZIL, DZIU, KORL, MITL, MLEU, WIEL, WIEU, VISL, VISU | stones, bottom sediments, Berula erecta, Callitriche sp., Carex rostrata, Fontinalis antipyretica, Hygrohypnum luridum, Nuphar lutea, Phalaris arundinacea, Platyhypnidium riparioides, Ranunculus aquatile, Sparganium erectum, Thamnobryum alopecurum | SP, SU, AU |
Itura aurita (Ehrenberg, 1830) | KORU | open water | SU |
Keratella cochlearis (Gosse, 1851) | CENL, KORU, MITL, MITU | open water | SP, SU, AU |
Keratella quadrata (Müller, 1786) | CENL | open water | SP |
Keratella tecta (Gosse, 1851) | CENL, MITL | open water | SP, SU |
Lecane bulla (Gosse, 1851) | MLEU | open water | SU |
Lecane closterocerca (Schmarda, 1859) | CENU, KORL, KORU, MITL, MITU, MLEL, MLEU, WIEL | open water, stones, diatom aggregation, Callitriche sp., Carex rostrata, Fontinalis antipyretica, Glyceria maxima, Mougeotia sp., Potamogeton crispus, P. natans, P. pectinatus, Ranunculus aquatile, Rorippa amphibia, Sparganium erectum | SP, SU, AU |
Lecane hamata (Stokes, 1896) | WIEU | Thamnobryum alopecurum | AU |
Lecane inermis (Bryce, 1892) | KORU, MITU, MLEL, MLEU, VISL | open water, stones, Potamogeton crispus, Spraganium erectum | SU, AU |
Lecane luna (Müller, 1776) | KORL, MITL | open water, Callitriche sp., Phalaris arundinacea | SP, SU, AU |
Lecane lunaris (Ehrenberg, 1832) | MITL, MLEL, MLEU | open water, bottom sediments, Fontinalis antipyretica, Phragmites australis, Polygonum hydropiper | SU, AU |
Lecane scutata (Harring & Myers, 1926) | KORL | diatom aggregation | SU |
Lecane species non detereminata | KORL | Sparganium emersum | SU |
Lepadella (Lepadella) acuminata (Ehrenberg, 1834) | MITU, MLEU, WIEL | open water, Sparganium erectum | SU, AU |
Lepadella (Lepadella) elliptica Wulfert, 1939 | WIEL | Glyceria maxima | SU |
Lepadella (Lepadella) ovalis (Müller, 1786) | CENL, DZIL, KORU, MITU, MLEU | open water, Platyhypnidium riparioides, Ranunculus aquatile, R. circinatum | SP, SU |
Lepadella (Lepadella) patella (Müller, 1773) | CENL, KORL, KORU, MITL, MITU, MLEL, MLEU, WIEL, WIEU | open water, diatom aggregation, Berula erecta, Elodea canadensis, Glyceria maxima, Myosotis palustris, Phalaris arundinacea, Potamogeton pectinatus, Ranunculus aquatile, Rorippa amphibia, Sparganium emersum, Sparganium erectum, Thamnobryum alopecurum | SP, SU, AU |
Lepadella species non determinata | CENL, MITU | Berula erecta | SU |
Limnias melicerta Weisse, 1848 | MLU | Callitriche sp. | AU |
Lindia species non determinata | KORL, MITU, WIEL | Phalaris arundinacea, Sagittaria sagittifolia, Sparganium erectum | SU |
Lindia (Lindia) torulosa Dujardin, 1841 | KORL, MLEU | open water | SP, AU |
Lindia (Lindia) truncata (Jennings, 1894) | CENU | Glyceria nemoralis | SU |
Macrotrachela species non determinata | KORL | Phalaris arundinacea | AU |
Monogononta species non determinata | BOLU, CENU, KORU, MITL, WIEL | open water, bottom sediments, Glyceria nemoralis, Phragmites australis, Potamogeton crispus | SU |
Monommata species non determinata | KORU, MITL | open water, Potamogeton crispus | SP, SU |
Mytilina mucronata (Müller, 1773) | MITL | Fontinalis antipyretica | AU |
Mytilina species non determinata | WIEL | Rorippa amphibia | SU |
Mytilina ventralis (Ehrenberg, 1830) | WIEL | Phalaris arundinacea | SU, AU |
Notommata cerberus (Gosse, 1886) | MLEU | Phalaris arundinacea | SU |
Notommata cyrtopus Gosse, 1886 | CENL, MITL, MITU, WIEL | stones, diatom aggregation, Phalaris arundinacea, Ranunculus circinatus, Sparganium erectum | SU, AU |
Notommata glyphura Wulfert, 1935 | BOLU, MITU, MELU | open water, stones, Sparganium erectum | SU, AU |
Notommata groenlandica Bergendal, 1892 | CENU, WIEL | Glyceria nemoralis, Sparganium erectum | AU |
Notommata species non determinata | MITL | open water, Sparganium erectum | SU |
Otostephanos donneri Bartoš, 1959 | MLEU | stones | SU |
Philodina acuticornis Murray, 1902 | CENL, CENU, DZIL, DZIU, KORL, KORU, MITL, MITU, MLEU, WIEL, WIEU, VISD, VISU | stones, diatom aggregation, Berula erecta, Cllitriche sp., Chiloscyphus polyanthos, Elodea canadensis, Fontinalis antipyretica, Glyceria maxima, Hygrohypnum luridum, Myosotis palustris, Phalaris arundinacea, Platyhypnidium riparioides, Polygonum hydropiper, Potamogeton crispus, P. natans, Ranunculus aquatile, R. circinatus, Rorippa amphibia, Scirpus sylvaticus, Sparganium emersum, S. erectum, Thamnobyryum alopecurum, Veronica anagalis-aquatica, V. beccabunga | SP, SU, AU |
Philodina citrina Ehrenberg, 1832 | MITL | diatom aggregation | AU |
Philodina flaviceps Bryce, 1906 | WIEU | Veronica beccabunga | SU |
Philodina species non determinata | KORU | Phalaris arundinacea | SU |
Philodinavus paradoxus (Murray, 1905) | KORL | stones | AU |
Pleurotrocha petromyzon (Ehrenberg, 1830) | CENU, KORU, MITL | open water, Fontinalis antipyretica, Glyceria nemoralis, Phalaris arundinacea | SU, AU |
Polyarthra species non determinata | MITU | open water | SU |
Polyarthra vulgaris Carlin, 1943 | MITU, WIEL | open water | AU |
Pompholyx sulcata Hudson, 1885 | KORU, MITU | open water | SU, AU |
Proales daphnicola Thompson, 1892 | KORU, WIEL | open water, Rorippa amphibia | SP, AU |
Proales sordida Gosse, 1886 | MITL, MITU, MLEU, VISL | bottom sediments, diatom aggregation, Berula erecta, Callitriche sp., Sparganium erectum | SU, AU |
Proales species non determinata | WIEL | Glyceria maxima | SU |
Proales theodora (Gosse, 1887) | KORU, WIEL | open water, stones, Glyceria maxima, Sparganium erectum | SP, SU, AU |
Proalinopsis squamipes Hauer, 1935 | KORL | open water | AU |
Rotaria citrina (Ehrenberg, 1838) | WIEL | stones, Potamogeton natans | SU |
Rotaria macrura (Ehrenberg, 1832) | KORU | stones, Batrachium aquatice | SU |
Rotaria magnacalcarata (Parsons, 1892) | KORL, MITU | Berula erecta, Fontinalis antipyretica | SP, SU |
Rotaria rotatoria (Pallas, 1766) | BOLU, CENL, KORL, KORU, MITL, MITU, MLEL, MLEU, WIEU, | open water, stones, bottom sediments, diatom aggregation, Berula erecta, Callitriche sp., Elodea canadensis, Myosotis palustris, Phalaris arundinacea, Phragmites australis, Potamogeton pectinatus, Ranunculus circinatus, Sparganium erectum | SP, SU, AU |
Rotaria species non determinata | KORL, MITU | Callitriche sp., Elodea canadensis | SP, SU |
Rotaria tardigrada (Ehrenberg, 1830) | CENL, MLEL, WIEU | bottom sediments, Elodea canadensis, Phragmites australis, Veronica beccabunga | SP, SU, AU |
Squatinella rostrum (Schmarda, 1846) | MITL | open water | SU |
Synchaeta oblonga Ehrenberg, 1832 | VISL | open water | SU |
Synchaeta stylata Wierzejski, 1893 | CENL | open water | SU |
Synchaeta tremula (Müller, 1786) | KORU | open water | SP |
Taphrocampa selenura Gosse, 1887 | MITL | Fontinalis antipyretica | SU |
Testudinella clypeata (Müller, 1786) | MLEL, MLEU | open water, stones, bottom sediments, Phragmites australis, Potamogeton pectinatus | SU, AU |
Testudinella patina (Hermann, 1783) | KORL, KORU, MLEU | open water, Callitriche sp., Fontinalis antipyretica | SU, AU |
Trichocerca collaris (Rousselet, 1896) | CENU | bottom sediments | SU |
Trichocerca cylindrica (Imhof, 1891) | MITU | open water | SU |
Trichocerca intermedia (Stenroos, 1898) | WIEU | Veronica beccabunga | AU |
Trichocerca rattus (Müller, 1776) | MITL | open water | SU |
Trichocerca similis (Wierzejski, 1893) | CENL, KORU, MTIU | open water Potamogeton crispus | SP, SU, AU |
Trichocerca species non determinata | CENL, KORL, MITL, WIEU | open water, bottom sediments, Sparganium erectum | SU, AU |
Trichocerca taurocephala (Hauer, 1931) | MITU | bottom sediments | SU |
Trichocerca tenuior (Gosse, 1886) | KORU | open water | SU |
Trichocerca weberi (Jennings, 1903) | KORU | open water | SU |
Trichotria pocillum (Müller, 1776) | WIEL | open water, Rorippa amphibia | AU |
Trichotria tetractis (Ehrenberg, 1830) | MITL | diatom aggregation | SU |
Wierzejskiella velox (Wiszniewski, 1932) | DZIU | bottom sediments | AU |
Wulfertia ornata Donner, 1943 | VISL | Elodea canadensis | AU |
Variable | Spring | Summer | Autumn | H Value | p Value |
---|---|---|---|---|---|
Number of taxa (ranges) | 0–15 b,c | 1–20 a,c | 2–23 a,b | 12.408 | 0.002 |
Variable | β | SE | t Value | p Value |
---|---|---|---|---|
Width of the riverbed | 0.1397 | 0.1820 | 0.7675 | 0.4506 |
Flow velocity | −0.1104 | 0.1552 | −0.7111 | 0.4842 |
Dissolved oxygen | −0.3332 | 0.1487 | −2.2408 | 0.0345 |
Temperature | −0.0981 | 0.1594 | −0.6155 | 0.5443 |
TDS | −0.9488 | 0.4505 | −2.1063 | 0.0463 |
Calcium | −0.2322 | 0.5140 | −0.4520 | 0.6555 |
pH | −0.0774 | 0.1358 | −0.5698 | 0.5743 |
Nitrates | 0.0087 | 0.1286 | 0.0675 | 0.9468 |
Nitrites | 0.6085 | 0.2652 | 2.2940 | 0.0313 |
Ammonium | −0.0855 | 0.1862 | −0.4592 | 0.6504 |
Phosphates | −0.2075 | 0.1797 | −1.1550 | 0.2600 |
Iron | −0.0293 | 0.1717 | −0.1709 | 0.8658 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halabowski, D.; Bielańska-Grajner, I.; Lewin, I.; Sowa, A. Diversity of Rotifers in Small Rivers Affected by Human Activity. Diversity 2022, 14, 127. https://doi.org/10.3390/d14020127
Halabowski D, Bielańska-Grajner I, Lewin I, Sowa A. Diversity of Rotifers in Small Rivers Affected by Human Activity. Diversity. 2022; 14(2):127. https://doi.org/10.3390/d14020127
Chicago/Turabian StyleHalabowski, Dariusz, Irena Bielańska-Grajner, Iga Lewin, and Agnieszka Sowa. 2022. "Diversity of Rotifers in Small Rivers Affected by Human Activity" Diversity 14, no. 2: 127. https://doi.org/10.3390/d14020127
APA StyleHalabowski, D., Bielańska-Grajner, I., Lewin, I., & Sowa, A. (2022). Diversity of Rotifers in Small Rivers Affected by Human Activity. Diversity, 14(2), 127. https://doi.org/10.3390/d14020127