Evaluation of Genetic Diversity in Dog Breeds Using Pedigree and Molecular Analysis: A Review
Abstract
:1. Introduction
2. The Importance of Keeping Dogs
3. The Importance of Conserving Genetic Diversity in Dog Breeds
4. The Management of Genetic Diversity
4.1. Pedigree Information
Breed | Country | EqG | F | N > 50% | Ne | References | |||
---|---|---|---|---|---|---|---|---|---|
Bracco Italiano | Italy | 4.70 | 4.10 | 9 | 61.3 | 46 | 1.3 | 38.86 | [102] |
Tatra Shepherd | Poland | 3.44 | 7.17 | 4 | 44 | 11 | 4 | - | [103] |
Bullmastiff | Australia | 3.24 | 0.039 | 20 | 79 | 62 | 1.3 | 41 | [94] |
Bichon frise | Belgium | 2.14 | 10.0 | - | 13 | 10 | 1.3 | 17.8 | [23] |
Bouvier des Ardennes | Belgium | 4.87 | 44.7 | - | 3 | 3 | 1 | 3.2 | [23] |
Finnish Spitz | Finland | 10.88 | 6.33 | - | 30.71 | 20.18 | 1.5 | 73.53 | [101] |
Nordic Spitz | Finland | 6.54 | 4.36 | - | 42.35 | 27.91 | 1.5 | 108.70 | [101] |
Border Collie | Hungary | 4.47 | 9.86 | 8 | 117 | 20 | 5.85 | >100 | [24] |
Polish Hunting | Poland | - | 0.1151 | - | - | - | - | 28.51 | [104] |
Ca de Bestiar | Spain | - | 0.34 | 15 | 87.32 | 26 | 3.4 | 384.62 | [91] |
Ca de Rater | Spain | - | 1.41 | 31 | 66.08 | 36 | 1.8 | 54.35 | [91] |
Ca Mè | Spain | 4.87 | 11.23 | - | 29.09 | 10 | 2.9 | 13.25 | [65] |
Polish Lowland Sheepdogs | Germany | 10.09 | 0.18 | 2 | 10 | 6 | 1.7 | 22.16 | [101] |
Czech Spotted | Czech Republic | 9.46 | 36.45 | 2 | 4 | 3 | 1.3 | 10.28. | [67] |
Border Collie | Australia | 10.4 | 0.095 | 13 | 205.5 | 28 | 7.3 | 123.5 | [89] |
Deutsch Drahthaar | Germany | 8.62 | 0.042 | 13 | 65.5 | 37.8 | 1.7 | 91.6 | [105] |
Programs | Uses | Data Records | Download | References |
---|---|---|---|---|
PEDIG | Pedigree completeness, inbreeding and relationship coefficients, effective founders, and ancestors. | Several tens of million individuals. | https://www6.jouy.inrae.fr/gabi_eng/Support-Expertise/Software/Pedig (accessed on 26 October 2022) | [106] |
ENDOG | Inbreeding and relationship coefficients, effective founders and ancestors, and generation intervals. | 75,000 records. | http://www.ucm.es/info/prodanim/html/JP_Web.htm#_Endog_3.0:_A. (accessed on 26 October 2022) | [107] |
Coancestry, inbreeding (F) and Contribution (CFC) | Inbreeding coefficients and relationships, founder genome equivalent, and effective non-founders. | 1,010,500 individuals. | https://mybiosoftware.com/cfc-1-0-monitor-genetic-diversity.html (accessed on 26 October 2022) | [108] |
PyPedal | Pedigree completeness, inbreeding and relationship coefficients, effective founders, and ancestors. | ∼500,000 animals for inbreeding calculations. | https://pypedal.sourceforge.net/ (accessed on 26 October 2022) | [111] |
Population Management x (PMx) | Inbreeding coefficients, kinship, and founder allele contribution and survival. | 20,000 individuals. | https://scti.tools/downloads/#tab-4200585ee2aed8893e8 (accessed on 26 October 2022) | [112] |
4.2. Molecular Markers
4.2.1. Microsatellite Markers
4.2.2. Single-Nucleotide Polymorphism
5. Factors Contributing to the Loss of Genetic Diversity
5.1. The Founders’ Genetic Contribution
5.2. Reduction in Effective Population Size
5.3. The Levels of Inbreeding in Dog Populations
6. Genetic Diversity Conservation Strategies
- A genetically distinct population with high levels of genetic diversity, and a high level of adaptation and survival. It is recommended that if Ne is greater than 500–1000 and not declining, changing management practices may not be necessary. Efforts should be dedicated toward preventing the formation of genetic bottlenecks, and the management programme should be developed to identify the number of individuals who can be sustained in the long run, allowing the population to be managed without major changes in population size.
- A genetically distinct population with high adaptation and survival yet low genetic diversity. Although it has a high level of adaptability, it is recommended to introduce some gene flow to the population to enhance Ne and genetic variation. A good management strategy should also reduce the differences in individual contributions to the upcoming generation. If parents have different numbers of offspring, those who have more offspring contribute a greater share of the genome transferred. Individuals who do not have offspring do not pass on allelic variations. As a result, a reasonable approach is to equalise individual contributions.
- A population that is distinct yet poorly adapted, with high levels of genetic diversity. It is recommended to determine why this population is poorly adapted and begin to select for improved local adaptation if the population is controlled. If a population does not react to selection, it is recommended to introduce populations with gene flow that is adapted to similar conditions.
- A locally adapted population that is not genetically distinct and has minimal levels of genetic diversity. It is recommended that management should promote improving Ne and genetic diversity. Furthermore, it is recommended to introduce populations with gene flow adapted to similar environments.
- A population that is not distinctive, poorly adapted, and has limited genetic variation. It is recommended to avoid mating of related individuals and introduce populations with gene flow that is adapted to the same conditions. Crossbreeding with a closely related breed may be an option for reintroducing genetic variation.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Mastrangelo, S.; Biscarini, F.; Tolone, M.; Auzino, B.; Ragatzu, M.; Spaterna, A.; Ciampolini, R. Genomic characterization of the Braque Français type Pyrénées dog and relationship with other breeds. PLoS ONE 2018, 13, e0208548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajaweera, C.; Kang, J.M.; Lee, D.H.; Lee, S.H.; Kim, Y.K.; Wijayananda, H.I.; Kim, J.J.; Ha, J.H.; Choi, B.H.; Lee, S.H. Genetic diversity and population structure of the Sapsaree, a native Korean dog breed. BMC Genet. 2019, 20, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.D.; Zhai, W.; Yang, H.C.; Wang, L.U.; Zhong, L.I.; Liu, Y.H.; Fan, R.X.; Yin, T.T.; Zhu, C.L.; Poyarkov, A.D.; et al. Out of southern East Asia: The natural history of domestic dogs across the world. Cell Res. 2016, 26, 21–33. [Google Scholar] [CrossRef]
- Lampi, S.; Donner, J.; Anderson, H.; Pohjoismäki, J. Variation in breeding practices and geographic isolation drive subpopulation differentiation, contributing to the loss of genetic diversity within dog breed lineages. Canine Med. Genet. 2020, 7, 5. [Google Scholar] [CrossRef]
- Lee, E.W.; Choi, S.K.; Cho, G.J. Molecular genetic diversity of the Gyeongju Donggyeong dog in Korea. J. Vet. Med. Sci. 2014, 14, 189. [Google Scholar] [CrossRef] [Green Version]
- Parker, H.G.; Dreger, D.L.; Rimbault, M.; Davis, B.W.; Mullen, A.B.; Carpintero-Ramirez, G.; Ostrander, E.A. Genomic analyses reveal the influence of geographic origin, migration, and hybridization on modern dog breed development. Cell Rep. 2017, 19, 697–708. [Google Scholar] [CrossRef]
- Hiby, E.F.; Hiby, L.R. Dog population management. In The Domestic Dog: Its Evolution, Behavior and Interactions with People; Cambridge University Press: Cambridge, UK, 2016; p. 385. [Google Scholar]
- Thalmann, S.; Behrens, M.; Meyerhof, W. Major haplotypes of the human bitter taste receptor TAS2R41 encode functional receptors for chloramphenicol. Biochem. Biophys. Res. Commun. 2013, 435, 267–273. [Google Scholar] [CrossRef]
- Freedman, A.H.; Wayne, R.K. Deciphering the origin of dogs: From fossils to genomes. Annu. Rev. Anim. Biosci. 2017, 5, 281–307. [Google Scholar] [CrossRef]
- King, T.; Marston, L.C.; Bennett, P.C. Describing the ideal Australian companion dog. Appl. Anim. Behav. Sci. 2009, 120, 84–93. [Google Scholar] [CrossRef]
- King, T.; Marston, L.C.; Bennett, P.C. Breeding dogs for beauty and behaviour: Why scientists need to do more to develop valid and reliable behaviour assessments for dogs kept as companions. Appl. Anim. Behav. Sci. 2012, 137, 1–12. [Google Scholar] [CrossRef]
- Gompper, M.E. The dog-human-wildlife interface: Assessing the scope of the problem. In Free-Ranging Dogs and Wildlife Conservation; Oxford University Press: Oxford, UK, 2014; pp. 9–54. [Google Scholar]
- Lescureux, N.; Linnell, J.D. Warring brothers: The complex interactions between wolves (Canis lupus) and dogs (Canis familiaris) in a conservation context. Biol. Conserv. 2014, 171, 232–245. [Google Scholar] [CrossRef]
- Kim, J.; Williams, F.J.; Dreger, D.L.; Plassais, J.; Davis, B.W.; Parker, H.G.; Ostrander, E.A. Genetic selection of athletic success in sport-hunting dogs. Proc. Natl. Acad. Sci. USA 2018, 115, E7212–E7221. [Google Scholar] [CrossRef] [Green Version]
- Chyan, P. Decision Support System for Selection of Dog Breeds. In Proceedings of the 2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 21–22 November 2018; pp. 343–346. [Google Scholar]
- Jung, C.; Pörtl, D. How old are (pet) dog breeds? Pet Behav. Sci. 2019, 7, 29–37. [Google Scholar] [CrossRef]
- Sheriff, O.; Alemayehu, K. Genetic diversity studies using microsatellite markers and their contribution in supporting sustainable sheep breeding programs: A review. Cogent Food Agric. 2018, 4, 1459062. [Google Scholar] [CrossRef]
- Ali, A.; Roossinck, M.J. Genetic bottlenecks. In Plant Virus Evolution; Springer: Berlin/Heidelberg, Germany, 2008; pp. 123–131. [Google Scholar]
- Vonholdt, B.M.; Pollinger, J.P.; Lohmueller, K.E.; Han, E.; Parker, H.G.; Quignon, P.; Degenhardt, J.D.; Boyko, A.R.; Earl, D.A.; Auton, A.; et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 2010, 464, 898–902. [Google Scholar] [CrossRef] [Green Version]
- Freedman, A.H.; Gronau, I.; Schweizer, R.M.; Ortega-Del Vecchyo, D.; Han, E.; Silva, P.M.; Galaverni, M.; Fan, Z.; Marx, P.; Lorente-Galdos, B.; et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 2014, 10, e1004016. [Google Scholar] [CrossRef] [Green Version]
- Marsden, C.D.; Ortega-Del Vecchyo, D.; O’Brien, D.P.; Taylor, J.F.; Ramirez, O.; Vilà, C.; Marques-Bonet, T.; Schnabel, R.D.; Wayne, R.K.; Lohmueller, K.E. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc. Natl. Acad. Sci. USA 2016, 113, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Mäki, K. Population structure and genetic diversity of worldwide Nova Scotia Duck Tolling Retriever and Lancashire Heeler dog populations. J. Anim. Breed. Genet. 2010, 127, 318–326. [Google Scholar] [CrossRef]
- Wijnrocx, K.; François, L.; Stinckens, A.; Janssens, S.; Buys, N. Half of 23 Belgian dog breeds has a compromised genetic diversity, as revealed by genealogical and molecular data analysis. J. Anim. Breed. Genet. 2016, 133, 375–383. [Google Scholar] [CrossRef]
- Ács, V.; Bokor, Á.; Nagy, I. Population structure analysis of the border collie dog breed in Hungary. Animals 2019, 9, 250. [Google Scholar] [CrossRef]
- Windig, J.J.; Hulsegge, I. Retriever and pointer: Software to evaluate inbreeding and genetic management in captive populations. Animals 2021, 11, 1332. [Google Scholar] [CrossRef] [PubMed]
- Bouirmane, J. Genetic Variation Influencing Body Size in Purebred Dogs. Bachelor’s Thesis, Turku University of Applied Sciences, Turku, Finland, 2016. [Google Scholar]
- Fratkin, J.L.; Baker, S.C. The role of coat color and ear shape on the perception of personality in dogs. Anthrozoös 2013, 26, 125–133. [Google Scholar] [CrossRef]
- Dendoncker, P.A. On the Origin of Puppies: A Multidisciplinary Investigation into Belgian Dog Breeding Facilities. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2019. [Google Scholar]
- Singh, A.P. Labrador retriever a perfect apartment dog: A review. Bhartiya Krishi Anusandhan Patrika 2021, 36, 353–354. [Google Scholar] [CrossRef]
- Lazarowski, L.; Foster, M.L.; Gruen, M.E.; Sherman, B.L.; Case, B.C.; Fish, R.E.; Milgram, N.W.; Dorman, D.C. Acquisition of a visual discrimination and reversal learning task by Labrador retrievers. Anim. Cogn. 2014, 17, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Jansson, M.; Laikre, L. Recent breeding history of dog breeds in Sweden: Modest rates of inbreeding, extensive loss of genetic diversity and lack of correlation between inbreeding and health. J. Anim. Breed. Genet. 2013, 131, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Jansson, M. Assessing Inbreeding and Loss of Genetic Variation in Canids, Domestic Dog (Canis familiaris) and Wolf (Canis lupus), Using Pedigree Data. Ph.D. Thesis, Stockholm University, Stockholm, Sweden, 2014. [Google Scholar]
- Pedersen, N.C.; Liu, H.; Leonard, A.; Griffioen, L. A search for genetic diversity among Italian Greyhounds from Continental Europe and the USA and the effect of inbreeding on susceptibility to autoimmune disease. Canine Genet. Epidemiol. 2015, 2, 17. [Google Scholar] [CrossRef] [Green Version]
- Radko, A.; Podbielska, A. Microsatellite DNA Analysis of Genetic Diversity and Parentage Testing in the Popular Dog Breeds in Poland. Genes 2021, 12, 485. [Google Scholar] [CrossRef]
- Wells, D.L. Domestic dogs and human health: An overview. Br. J. Health Psychol. 2007, 12, 145–156. [Google Scholar] [CrossRef]
- Serpell, J.A.; Kruger, K.A.; Freeman, L.M.; Griffin, J.A.; Ng, Z.Y. Current standards and practices within the therapy dog industry: Results of a representative survey of United States therapy dog organizations. Front. Vet. Sci. 2020, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Westgarth, C.; Christley, R.M.; Jewell, C.; German, A.J.; Boddy, L.M.; Christian, H.E. Dog owners are more likely to meet physical activity guidelines than people without a dog: An investigation of the association between dog ownership and physical activity levels in a UK community. Sci. Rep. 2019, 9, 5704. [Google Scholar] [CrossRef]
- Krouzecky, C.; Emmett, L.; Klaps, A.; Aden, J.; Bunina, A.; Stetina, B.U. And in the Middle of My Chaos There Was You?—Dog Companionship and Its Impact on the Assessment of Stressful Situations. Int. J. Environ. Res. Public Health 2019, 16, 3664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, E.E.; Otto, C.M.; Udell, M.A.; Hall, N.J.; Johnston, A.M.; MacLean, E.L. Enhancing the selection and performance of working dogs. Front. Vet. Sci. 2021, 8, 430. [Google Scholar]
- Griss, S.; Riemer, S.; Warembourg, C.; Sousa, F.M.; Wera, E.; Berger-Gonzalez, M.; Alvarez, D.; Bulu, P.M.; Hernández, A.L.; Roquel, P.; et al. If they could choose: How would dogs spend their days? Activity patterns in four populations of domestic dogs. Appl. Anim. Behav. Sci. 2021, 243, 105449. [Google Scholar] [CrossRef]
- Cutt, H.; Giles-Corti, B.; Knuiman, M.; Burke, V. Dog ownership, health and physical activity: A critical review of the literature. Health Place 2007, 13, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, M.; Ekiz, B.; Ozturk, N.; Berk, H.O.S. Factors Affecting Turkish Dog Owners’ Breed Choices, and Their Associations with Socio-demographic and Dog-Related Variables. Anthrozoös 2019, 32, 647–664. [Google Scholar] [CrossRef]
- Salonen, M. Complex traits, complex results: The genetic, demographic, and environmental factors of cat and dog behaviour. Ph.D. Thesis, Helsingin yliopisto, Helsinki, Finland, 2020. [Google Scholar]
- Calboli, F.C.; Sampson, J.; Fretwell, N.; Balding, D.J. Population structure and inbreeding from pedigree analysis of purebred dogs. Genetics 2008, 179, 593–601. [Google Scholar] [CrossRef] [Green Version]
- FEDIAF. Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs; Fédération Européenne de l’Industrie des Aliments pour Animaux Familiers: Brussels, Belgium, 2018. [Google Scholar]
- Westgarth, C.; Pinchbeck, G.L.; Bradshaw, J.W.; Dawson, S.; Gaskell, R.M.; Christley, R.M. Factors associated with dog ownership and contact with dogs in a UK community. BMC Vet. Res. 2007, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Boyko, R.H.; Boyko, A.R. Dog conservation and the population genetic structure of dogs. In Free-Ranging Dogs and Wildlife Conservation; Oxford University Press: Oxford, UK, 2014; pp. 185–210. [Google Scholar]
- Farrell, L.L.; Schoenebeck, J.J.; Wiener, P.; Clements, D.N.; Summers, K.M. The challenges of pedigree dog health: Approaches to combating inherited disease. Canine Genet. Epidemiol. 2015, 2, 3. [Google Scholar]
- Bigi, D.; Marelli, S.P.; Randi, E.; Polli, M. Genetic characterization of four native Italian shepherd dog breeds and analysis of their relationship to cosmopolitan dog breeds using microsatellite markers. Animal 2015, 9, 1921–1928. [Google Scholar] [CrossRef]
- Ocampo Gallego, R.; Ramírez Toro, J.; Lopera Peña, J.; Restrepo Castañeda, G.; Gallego Gil, J. Genetic diversity assessed by pedigree analysis in the Blanco Orejinegro (BON) cattle breed population from the Colombian germplasm bank. Chil. J. Agric. Anim. Sci. 2020, 36, 69–77. [Google Scholar] [CrossRef]
- Bhandari, H.R.; Bhanu, A.N.; Srivastava, K.; Singh, M.N.; Shreya, H.A. Assessment of genetic diversity in crop plants-an overview. Adv. Plants Agric. Res. 2017, 7, 279–286. [Google Scholar]
- Barros, E.A.; Brasil, L.D.A.; Tejero, J.P.; Delgado-Bermejo, J.V.; Ribeiro, M.N. Population structure and genetic variability of the Segureña sheep breed through pedigree analysis and inbreeding effects on growth traits. Small Rumin. Res. 2017, 149, 128–133. [Google Scholar] [CrossRef]
- Robertson, A. A numerical description of breed structure. J. Agric. Sci. 1953, 43, 334–336. [Google Scholar] [CrossRef]
- Lacy, R.C. Analysis of founder representation in pedigrees: Founder equivalents and founder genome equivalents. Zoo Biol. 1989, 8, 111–123. [Google Scholar] [CrossRef]
- Boichard, D.; Maignel, L.; Verrier, E. The value of using probabilities of gene origin to measure genetic variability in a population. Genet. Sel. Evol. 1997, 29, 5–23. [Google Scholar] [CrossRef]
- Vicente, A.A.; Carolino, N.; Gama, L.T. Genetic diversity in the Lusitano horse breed assessed by pedigree analysis. Livest. Sci. 2012, 148, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Ceh, E.; Dovc, P. Population structure and genetic differentiation of livestock guard dog breeds from the Western Balkans. J. Anim. Breed. Genet. 2014, 131, 313–325. [Google Scholar] [CrossRef]
- Sams, A.J.; Ford, B.; Gardner, A.; Boyko, A.R. Examination of the efficacy of small genetic panels in genomic conservation of companion animal populations. Evol. Appl. 2020, 13, 2555–2565. [Google Scholar] [CrossRef]
- Jansson, M.; Laikre, L. Pedigree data indicate rapid inbreeding and loss of genetic diversity within populations of native, traditional dog breeds of conservation concern. PLoS ONE 2018, 13, e0202849. [Google Scholar] [CrossRef] [Green Version]
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.; Butchart, S.H.; et al. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. In Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- Grimm-Seyfarth, A.; Harms, W.; Berger, A. Detection dogs in nature conservation: A database on their world-wide deployment with a review on breeds used and their performance compared to other methods. Methods Ecol. Evol. 2021, 12, 568–579. [Google Scholar] [CrossRef]
- Kettunen, A.; Daverdin, M.; Helfjord, T.; Berg, P. Cross-breeding is inevitable to conserve the highly inbred population of puffin hunter: The Norwegian Lundehund. PLoS ONE 2017, 12, e0170039. [Google Scholar] [CrossRef] [PubMed]
- Stronen, A.V.; Salmela, E.; Baldursdottir, B.K.; Berg, P.; Espelien, I.S.; Järvi, K.; Jensen, H.; Kristensen, T.N.; Melis, C.; Manenti, T.; et al. Genetic rescue of an endangered domestic animal through outcrossing with closely related breeds: A case study of the Norwegian Lundehund. PLoS ONE 2017, 12, e0177429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Głażewska, I.; Prusak, B. Evaluation of the effectiveness of introducing new alleles into the gene pool of a rare dog breed: Polish Hound as the example. Czech J. Anim. Sci. 2012, 57, 248–254. [Google Scholar] [CrossRef]
- Navas, C.M.; González, F.J.N.; López, V.C.; Capellà, L.P.; Fernández, M.G.; Bermejo, J.V.D. Impact of breeding for coat and spotting patterns on the population structure and genetic diversity of an islander endangered dog breed. Res. Vet. Sci. 2020, 131, 117–130. [Google Scholar] [CrossRef]
- Machová, K.; Kranjčevičová, A.; Vostrý, L.; Krupa, E. Analysis of Genetic Diversity in the Czech Spotted Dog. Animals 2020, 10, 1416. [Google Scholar] [CrossRef]
- Oliveira, H.R.; Tomás, D.; Silva, M.; Lopes, S.; Viegas, W.; Veloso, M.M. Genetic diversity and population structure in Vicia faba L. landraces and wild related species assessed by nuclear SSRs. PLoS ONE 2016, 11, e0154801. [Google Scholar] [CrossRef] [Green Version]
- Fadhil, M.; Zülkadir, U.; Aytekin, İ. Genetic Diversity in Farm Animals. Elixir Horm. Signal. 2018, 117, 50032–50037. [Google Scholar]
- Carolino, N.; Vitorino, A.; Carolino, I.; Pais, J.; Henriques, N.; Silveira, M.; Vicente, A. Genetic diversity in the Portuguese mertolenga cattle breed assessed by pedigree analysis. Animals 2020, 10, 1990. [Google Scholar] [CrossRef]
- Jansson, M.; Laikre, L. Is there a correlation between conservation genetic status and health in dog breeds? J. Vet. Behav. Clin. Appl. Res. 2011, 1, 59. [Google Scholar] [CrossRef]
- FAO. In Vivo conservation of animal genetic resources. In FAO Animal Production and Health Guidelines; FAO: Rome, Italy, 2013. [Google Scholar]
- Biscarini, F.; Nicolazzi, E.L.; Stella, A.; Boettcher, P.J.; Gandini, G. Challenges and opportunities in genetic improvement of local livestock breeds. Front. Genet. 2015, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Sattaei Mokhtari, M.; Miraei-Ashtiani, S.R.; Jafaroghli, M.; Gutiérrez, J.P. Studying genetic diversity in Moghani sheep using pedigree analysis. J. Agric. Sci. Technol. 2015, 17, 1151–1160. [Google Scholar]
- Stachowicz, K.; Brito, L.F.; Oliveira, H.R.; Miller, S.P.; Schenkel, F.S. Assessing genetic diversity of various Canadian sheep breeds through pedigree analyses. Can. J. Anim. Sci. 2018, 98, 741–749. [Google Scholar] [CrossRef]
- Funk, W.C.; McKay, J.K.; Hohenlohe, P.A.; Allendorf, F.W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 2012, 27, 489–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Convention on Biological Diversity. 2020. Strategic Plan for Biodiversity 2011–2020, Including Aichi Biodiversity Targets. Available online: https://www.cbd.int/sp/ (accessed on 16 May 2022).
- Sheikhlou, M.; Abbasi, M.A. Genetic diversity of Iranian Lori-Bakhtiari sheep assessed by pedigree analysis. Small Rumin. Res. 2016, 141, 99–105. [Google Scholar] [CrossRef]
- González, A.R.M.; Navas González, F.J.; Crudeli, G.Á.; Delgado Bermejo, J.V.; Camacho Vallejo, M.E.; Quirino, C.R. Process of Introduction of Australian Braford Cattle to South America: Configuration of Population Structure and Genetic Diversity Evolution. Animals 2022, 12, 275. [Google Scholar] [CrossRef] [PubMed]
- Amador, C.; Hayes, B.J.; Daetwyler, H.D. Genomic selection for recovery of original genetic background from hybrids of endangered and common breeds. Evol. Appl. 2014, 7, 227–237. [Google Scholar] [CrossRef]
- Kristensen, T.N.; Hoffmann, A.A.; Pertoldi, C.; Stronen, A.V. What can livestock breeders learn from conservation genetics and vice versa? Front. Genet. 2015, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Goleman, M.; Balicki, I.; Radko, A.; Rozempolska-Rucińska, I.; Zięba, G. Pedigree and Molecular Analyses in the Assessment of Genetic Variability of the Polish Greyhound. Animals 2021, 11, 353. [Google Scholar] [CrossRef]
- Baena, M.M.; Gervásio, I.C.; Rocha, R.D.F.B.; Procópio, A.M.; de Moura, R.S.; Meirelles, S.L.C. Population structure and genetic diversity of Mangalarga Marchador horses. Livest. Sci. 2020, 239, 104109. [Google Scholar] [CrossRef]
- Vigeland, M.D. Relatedness coefficients in pedigrees with inbred founders. J. Math. Biol. 2020, 81, 185–207. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, B.; Zhang, T.; Yan, X.; Yu, Y.; Li, J.; Mei, B.; Wang, Z.; Zhang, Y.; Wang, R.; et al. Assessing Genetic Diversity and Estimating the Inbreeding Effect on Economic Traits of Inner Mongolia White Cashmere Goats through Pedigree Analysis. Front. Vet. Sci. 2021, 8, 591. [Google Scholar] [CrossRef] [PubMed]
- Bernardes, P.A.; Grossi, D.A.; Savegnago, R.P.; Buzanskas, M.E.; Ramos, S.B.; Romanzini, E.P.; Guidolin, D.G.F.; Bezerra, L.A.F.; Lôbo, R.B.; Munari, D.P. Population structure of Tabapuã beef cattle using pedigree analysis. Livest. Sci. 2016, 187, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Santana Jr, M.L.; Pereira, R.J.; Bignardi, A.B.; Ayres, D.R.; Menezes, G.D.O.; Silva, L.O.C.; Leroy, G.; Machado, C.H.C.; Josahkian, L.A.; Albuquerque, L.G. Structure and genetic diversity of Brazilian Zebu cattle breeds assessed by pedigree analysis. Livest. Sci. 2016, 187, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Leroy, G. Genetic diversity, inbreeding and breeding practices in dogs: Results from pedigree analyses. Vet. J. 2011, 189, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Velazco, J.G.; Malosetti, M.; Hunt, C.H.; Mace, E.S.; Jordan, D.R.; Van Eeuwijk, F.A. Combining pedigree and genomic information to improve prediction quality: An example in sorghum. Theor. Appl. Genet. 2019, 132, 2055–2067. [Google Scholar] [CrossRef] [PubMed]
- Soh, P.X.Y.; Hsu, W.T.; Khatkar, M.S.; Williamson, P. Evaluation of genetic diversity and management of disease in Border Collie dogs. Sci. Rep. 2021, 11, 6243. [Google Scholar] [CrossRef]
- Rashidi, A.; Mokhtari, M.S.; Gutiérrez, J.P. Pedigree analysis and inbreeding effects on early growth traits and greasy fleece weight in Markhoz goat. Small Rumin. Res. 2015, 124, 1–8. [Google Scholar] [CrossRef]
- Alanzor Puente, J.M.; Pons Barro, Á.L.; de la Haba Giraldo, M.R.; Delgado Bermejo, J.V.; Navas González, F.J. Does Functionality Condition the Population Structure and Genetic Diversity of Endangered Dog Breeds under Island Territorial Isolation? Animals 2020, 10, 1893. [Google Scholar] [CrossRef]
- Leroy, G.; Rognon, X.; Varlet, A.; Joffrin, C.; Verrier, E. Genetic variability in French dog breeds assessed by pedigree data. J. Anim. Breed. Genet. 2006, 123, 1–9. [Google Scholar] [CrossRef]
- Velie, B.D.; Wilson, B.J.; Arnott, E.R.; Early, J.B.; McGreevy, P.D.; Wade, C.M. Inbreeding levels in an open-registry pedigreed dog breed: The Australian working kelpie. Vet. J. 2021, 269, 105609. [Google Scholar] [CrossRef]
- Mortlock, S.A.; Khatkar, M.S.; Williamson, P. Comparative analysis of genome diversity in bullmastiff dogs. PLoS ONE 2016, 11, e0147941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanella, R.; Peixoto, J.O.; Cardoso, F.F.; Cardoso, L.L.; Biegelmeyer, P.; Cantão, M.E.; Otaviano, A.; Freitas, M.S.; Caetano, A.R.; Ledur, M.C. Genetic diversity analysis of two commercial breeds of pigs using genomic and pedigree data. Genet. Sel. Evol. 2016, 48, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pjontek, J.; Kadlečík, O.; Kasarda, R.; Horný, M. Pedigree analysis in four Slovak endangered horse breeds. Czech J. Anim. Sci. 2012, 57, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Brito, F.V.; Sargolzaei, M.; Braccini Neto, J.; Cobuci, J.A.; Pimentel, C.M.; Barcellos, J.; Schenkel, F.S. In-depth pedigree analysis in a large Brazilian Nellore herd. Genet. Mol. Res. 2013, 12, 5758–5765. [Google Scholar] [CrossRef] [PubMed]
- Urfer, S.R.; André, A.; Steiger, A.; Gaillard, C.; Creevy, K.E.; Kaeberlein, M.; Promislow, D. Pedigree Analysis of a Large Dog Population. In Proceedings of the Population, Evolutionary, and Quantitative Genetics Conference, Pacific Grove, CA, USA, 7–10 June 2018. [Google Scholar]
- Broeckx, B.J. The dog 2.0: Lessons learned from the past. Theriogenology 2020, 150, 20–26. [Google Scholar] [CrossRef]
- Kumpulainen, M.; Anderson, H.; Svevar, T.; Kangasvuo, I.; Donner, J.; Pohjoismäki, J. Founder representation and effective population size in old versus young breeds—Genetic diversity of Finnish and Nordic Spitz. J. Anim. Breed. Genet. 2017, 134, 422–433. [Google Scholar] [CrossRef] [Green Version]
- Michels, P.W.; Distl, O. Genetic variability in polish lowland sheepdogs assessed by pedigree and genomic data. Animals 2020, 10, 1520. [Google Scholar] [CrossRef]
- Cecchi, F.; Paci, G.; Spaterna, A.; Ciampolini, R. Genetic variability in Bracco Italiano dog breed assessed by pedigree data. Ital. J. Anim. Sci. 2013, 12, e54. [Google Scholar] [CrossRef] [Green Version]
- Kania-Gierdziewicz, J.; Gierdziewicz, M.; Budzynski, B. Genetic structure analysis of Tatra Shepherd dog population from Tatra Mountain region. Ann. Anim. Sci. 2015, 15, 323. [Google Scholar] [CrossRef] [Green Version]
- Goleman, M.; Balicki, I.; Radko, A.; Jakubczak, A.; Fornal, A. Genetic diversity of the Polish Hunting Dog population based on pedigree analyses and molecular studies. Livest. Sci. 2019, 229, 114–117. [Google Scholar] [CrossRef]
- Michels, P.W.; Distl, O. Genetic Diversity and Trends of Ancestral and New Inbreeding in Deutsch Drahthaar Assessed by Pedigree Data. Animals 2022, 12, 929. [Google Scholar] [CrossRef] [PubMed]
- Boichard, D. Pedig: A fortran package for pedigree analysis suited for large populations. In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Institut National de la Recherche Agronomique (INRA), Montpellier, France, 19–23 August 2002. [Google Scholar]
- Gutiérrez, J.P.; Goyache, F. A note on ENDOG: A computer program for analysing pedigree information. J. Anim. Breed. Genet. 2005, 122, 172–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sargolzaei, M.; Iwaisaki, H.; Colleau, J.J. CFC: A tool for monitoring genetic diversity. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil, 13–18 August 2006; pp. 13–18. [Google Scholar]
- Cecchi, F.; Paci, G.; Spaterna, A.; Ragatzu, M.; Ciampolini, R. Demographic approach on the study of genetic parameters in the dog Braque Français type Pyrénées italian population. Ital. J. Anim. Sci. 2016, 15, 30–36. [Google Scholar] [CrossRef]
- Cecchi, F.; Carlini, G.; Giuliotti, L.; Russo, C. Inbreeding may affect phenotypic traits in an Italian population of Basset Hound dogs. Rend. Lincei. Sci. Fis. E Nat. 2018, 29, 165–170. [Google Scholar] [CrossRef]
- Cole, J.B. PyPedal: A computer program for pedigree analysis. Comput. Electron. Agric. 2007, 57, 107–113. [Google Scholar] [CrossRef]
- Lacy, R.C.; Ballou, J.D.; Pollak, J.P. PMx: Software package for demographic and genetic analysis and management of pedigreed populations. Methods Ecol. Evol. 2012, 3, 433–437. [Google Scholar] [CrossRef]
- Dar, A.A.; Mahajan, R.; Sharma, S. Molecular markers for the characterization and conservation of plant genetic resources. Indian J. Agric. Sci. 2019, 89, 1755–1763. [Google Scholar] [CrossRef]
- Frascaroli, E.; Schrag, T.A.; Melchinger, A.E. Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs. Theor. Appl. Genet. 2013, 126, 133–141. [Google Scholar] [CrossRef]
- Barani, A.; Rahumathulla, P.S.; Rajendran, R.; Kumarasamy, P.; Ganapathi, P.; Radha, P. Molecular characterization of Pulikulam cattle using microsatellite markers. Indian J. Anim. Res. 2015, 49, 36–39. [Google Scholar] [CrossRef]
- Singh, N.V.; Abburi, V.L.; Ramajayam, D.; Kumar, R.; Chandra, R.; Sharma, K.K.; Sharma, J.; Babu, K.D.; Pal, R.K.; Mundewadikar, D.M.; et al. Genetic diversity and association mapping of bacterial blight and other horticulturally important traits with microsatellite markers in pomegranate from India. Mol. Genet. Genom. 2015, 290, 1393–1402. [Google Scholar] [CrossRef]
- da Silva Reis, A.A.; Teixeira, A.L.C.; Barbosa, J.A.; dos Anjos, L.R.B.; da Silva Santos, R. The feasibility of molecular markers in animal production. Multi.-Sci. J. 2018, 1, 57–60. [Google Scholar] [CrossRef]
- Altıntaş, S.; Toklu, F.A.R.U.K.; Kafkas, S.A.L.İ.H.; Kilian, B.; Brandolini, A.; Özkan, H. Estimating genetic diversity in durum and bread wheat cultivars from Turkey using AFLP and SAMPL markers. Plant Breed. 2008, 127, 9–14. [Google Scholar] [CrossRef]
- Ahmed, S.S. DNA barcoding in plants and animals: A critical review. Plant Sci. 2022, 2022, 2022010310. [Google Scholar] [CrossRef]
- Senthil Kumar, R.; Parthiban, K.T.; Govinda Rao, M. Molecular characterization of Jatropha genetic resources through inter-simple sequence repeat (ISSR) markers. Mol. Biol. Rep. 2009, 36, 1951–1956. [Google Scholar] [CrossRef]
- Yang, W.; Kang, X.; Yang, Q.; Lin, Y.; Fang, M. Review on the development of genotyping methods for assessing farm animal diversity. J. Anim. Sci. Biotechnol. 2013, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Govindaraj, M.; Vetriventhan, M.; Srinivasan, M. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genet. Res. Int. 2015, 2015, 431487. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Sharma, M.; Dhawale, K.; Singal, G. Identification of dog breeds using deep learning. In Proceedings of the 2019 IEEE 9th International Conference on Advanced Computing (IACC), Tiruchirappalli, India, 13–14 December 2019; pp. 193–198. [Google Scholar]
- Vieira, M.L.C.; Santini, L.; Diniz, A.L.; Munhoz, C.D.F. Microsatellite markers: What they mean and why they are so useful. Genet. Mol. Biol. 2016, 39, 312–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathema, V.B.; Nakeesathit, S.; Pagornrat, W.; Smithuis, F.; White, N.J.; Dondorp, A.M.; Imwong, M. Polymorphic markers for identification of parasite population in Plasmodium malariae. Malar. J. 2020, 19, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teama, S. DNA polymorphisms: DNA-based molecular markers and their application in medicine. Genet. Divers. Dis. Susceptibility 2018, 25, 76–80. [Google Scholar]
- Tahir, M.S.; Hussain, T.; Babar, M.E.; Nadeem, A.; Naseer, M.; Ullah, Z.; Intizar, M.; Hussain, S.M. A panel of microsatellite markers for genetic diversity and parentage analysis of dog breeds in Pakistan. JAPS J. Anim. Plant Sci. 2015, 25, 351–356. [Google Scholar]
- Teneva, A. Molecular markers in animal genome analysis. Biotechnol. Anim. Husb. 2009, 25, 1267–1284. [Google Scholar]
- Miller-Butterworth, C.M.; Vacco, K.; Russell, A.L.; Gaspard, J.C., III. Genetic Diversity and Relatedness among Captive African Painted Dogs in North America. Genes 2021, 12, 1463. [Google Scholar] [CrossRef] [PubMed]
- Mellanby, R.J.; Ogden, R.; Clements, D.N.; French, A.T.; Gow, A.G.; Powell, R.; Corcoran, B.; Schoeman, J.P.; Summers, K.M. Population structure and genetic heterogeneity in popular dog breeds in the UK. Vet. J. 2013, 196, 92–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, N.C.; Pooch, A.S.; Liu, H. A genetic assessment of the English bulldog. Canine Genet. Epidemiol. 2016, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Pallotti, S.; La Terza, A.; De Cosmo, A.; Pediconi, D.; Pazzaglia, I.; Nocelli, C.; Renieri, C. Genetic variability of the short-haired and rough-haired Segugio Italiano dog breeds and their genetic distance from the other related Segugio breeds. Ital. J. Anim. Sci. 2017, 16, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Radko, A.; Rubiś, D.; Szumiec, A. Analysis of microsatellite DNA polymorphism in the Tatra Shepherd Dog. J. Appl. Anim. Res. 2018, 46, 254–256. [Google Scholar] [CrossRef] [Green Version]
- Neradilová, S.; Connell, L.; Hulva, P.; Černá Bolfíková, B. Tracing genetic resurrection of pointing dog breeds: Cesky Fousek as both survivor and rescuer. PLoS ONE 2019, 14, e0221418. [Google Scholar] [CrossRef] [Green Version]
- Dimitrijević, V.; Savić, M.; Tarić, E.; Stanišić, L.; Stanimirović, Z.; Tabaković, A.; Aleksić, M.J. Genetic Characterization of the Yugoslavian Shepherd Dog—Sharplanina, a Livestock Guard Dog from the Western Balkans. Acta Vet. Brno 2020, 70, 329–345. [Google Scholar] [CrossRef]
- García, L.S.A.; Vergara, A.M.C.; Herrera, P.Z.; Puente, J.M.A.; Barro, Á.L.P.; Dunner, S.; Marques, C.S.J.; Bermejo, J.V.D.; Martínez, A.M. Genetic Structure of the Ca Rater Mallorquí Dog Breed Inferred by Microsatellite Markers. Animals 2022, 12, 2733. [Google Scholar] [CrossRef]
- Nicholson, G.; Smith, A.V.; Jónsson, F.; Gústafsson, Ó.; Stefánsson, K.; Donnelly, P. Assessing population differentiation and isolation from single-nucleotide polymorphism data. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2002, 64, 695–715. [Google Scholar] [CrossRef]
- Monga, I.; Qureshi, A.; Thakur, N.; Gupta, A.K.; Kumar, M. ASPsiRNA: A resource of ASP-siRNAs having therapeutic potential for human genetic disorders and algorithm for prediction of their inhibitory efficacy. G3 Genes Genomes Genet. 2017, 7, 2931–2943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouillette, R.T.; Morielli, A.; Leimanis, A.; Waters, K.A.; Luciano, R.; Ducharme, F.M. Nocturnal pulse oximetry as an abbreviated testing modality for pediatric obstructive sleep apnea. Pediatrics 2000, 105, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Aranzana, M.J.; Kim, S.; Zhao, K.; Bakker, E.; Horton, M.; Jakob, K.; Lister, C.; Molitor, J.; Shindo, C.; Tang, C.; et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet. 2005, 1, e60. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.D.; Han, X.; Chew, J.L.; Liu, J.; Chiu, K.P.; Choo, A.; Orlov, Y.L.; Sung, W.K.; Shahab, A.; Kuznetsov, V.A.; et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 2007, 1, 286–298. [Google Scholar] [CrossRef] [Green Version]
- Brumfield, R.T.; Beerli, P.; Nickerson, D.A.; Edwards, S.V. The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol. Evol. 2003, 18, 249–256. [Google Scholar] [CrossRef]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Habier, D.; Fernando, R.L.; Dekkers, J.C. Genomic selection using low-density marker panels. Genetics 2009, 182, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Raoul, J.; Swan, A.A.; Elsen, J.M. Using a very low-density SNP panel for genomic selection in a breeding program for sheep. Genet. Sel. Evol. 2017, 49, 76. [Google Scholar] [CrossRef]
- Jeong, H.; Choi, B.H.; Eo, J.; Kwon, Y.J.; Lee, H.E.; Choi, Y.; Gim, J.A.; Kim, T.H.; Seong, H.H.; Lee, D.H.; et al. Statistical analysis and genetic diversity of three dog breeds using simple sequence repeats. Genes Genom. 2014, 36, 883–889. [Google Scholar] [CrossRef]
- Letko, A.; Minor, K.M.; Jagannathan, V.; Seefried, F.R.; Mickelson, J.R.; Oliehoek, P.; Drögemüller, C. Genomic diversity and population structure of the Leonberger dog breed. Genet. Sel. Evol. 2020, 52, 61. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, H.; Ye, J.; Liu, C.; Wei, R.; Chen, C.; Huang, L. Genetic diversity and signatures of selection in 15 Chinese indigenous dog breeds revealed by genome-wide SNPs. Front. Genet. 2019, 10, 1174. [Google Scholar] [CrossRef] [Green Version]
- Kropatsch, R.; Melis, C.; Stronen, A.V.; Jensen, H.; Epplen, J.T. Molecular genetics of sex identification, breed ancestry and polydactyly in the Norwegian Lundehund breed. J. Hered. 2015, 106, 403–406. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.H.; Wijayananda, H.I.; Lee, S.H.; Lee, D.H.; Kim, J.S.; Oh, S.I.; Park, E.W.; Lee, C.K.; Lee, S.H. Genome-wide analysis of the diversity and ancestry of Korean dogs. PLoS ONE 2017, 12, e0188676. [Google Scholar] [CrossRef] [Green Version]
- Djurkin Kušec, I.; Bošković, I.; Zorc, M.; Gvozdanović, K.; Škorput, D.; Dovč, P.; Kušec, G. Genomic Characterization of the Istrian Shorthaired Hound. Animals 2020, 10, 2013. [Google Scholar] [CrossRef]
- Mostert, B.E.; van Marle-Köster, E.; Visser, C.; Oosthuizen, M. Genetic analysis of pre-weaning survival and inbreeding in the Boxer dog breed of South Africa. S. Afr. J. Anim. Sci. 2015, 45, 476–484. [Google Scholar] [CrossRef] [Green Version]
- Shariflou, M.R.; James, J.W.; Nicholas, F.W.; Wade, C.M. A genealogical survey of Australian registered dog breeds. Vet. J. 2011, 189, 203–210. [Google Scholar] [CrossRef]
- Núñez-Domínguez, R.; Martínez-Rocha, R.E.; Hidalgo-Moreno, J.A.; Ramírez-Valverde, R.; García-Muñiz, J.G. Evaluation of the Romosinuano cattle population structure in Mexico using pedigree analysis. Rev. Colomb. Cienc. Pecu. 2020, 33, 44–59. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.; Meuwissen, T.H.E.; Toro, M.A.; Mäki-Tanila, A. Management of genetic diversity in small farm animal populations. Animal 2011, 5, 1684–1698. [Google Scholar] [CrossRef]
- Duru, S.E.R.D.A.R. Pedigree analysis of the Turkish Arab horse population: Structure, inbreeding and genetic variability. Animal 2017, 11, 1449–1456. [Google Scholar] [CrossRef]
- Husemann, M.; Zachos, F.E.; Paxton, R.J.; Habel, J.C. Effective population size in ecology and evolution. Heredity 2016, 117, 191–192. [Google Scholar] [CrossRef] [Green Version]
- Bannasch, D.L.; Kaelin, C.B.; Letko, A.; Loechel, R.; Hug, P.; Jagannathan, V.; Henkel, J.; Roosje, P.; Hytönen, M.K.; Lohi, H.; et al. Dog colour patterns explained by modular promoters of ancient canid origin. Nat. Ecol. Evol. 2021, 5, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Lewis, T.W.; Abhayaratne, B.M.; Blott, S.C. Trends in genetic diversity for all Kennel Club registered pedigree dog breeds. Canine Genet. Epidemiol. 2015, 2, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sovic, M.; Fries, A.; Martin, S.A.; Lisle Gibbs, H. Genetic signatures of small effective population sizes and demographic declines in an endangered rattlesnake, Sistrurus catenatus. Evol. Appl. 2019, 12, 664–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmack, J.M.; Brenton-Rule, E.C.; Veldtman, R.; Wenseleers, T.; Beggs, J.R.; Lester, P.J.; Bulgarella, M. Lack of genetic structuring, low effective population sizes and major bottlenecks characterise common and German wasps in New Zealand. Biol. Invasions 2019, 21, 3185–3201. [Google Scholar] [CrossRef]
- Willi, Y.; Kristensen, T.N.; Sgrò, C.M.; Weeks, A.R.; Ørsted, M.; Hoffmann, A.A. Conservation genetics as a management tool: The five best-supported paradigms to assist the management of threatened species. Proc. Natl. Acad. Sci. USA 2022, 119, e2105076119. [Google Scholar] [CrossRef]
- Ghafouri-Kesbi, F. Using pedigree information to study genetic diversity and re-evaluating a selection program in an experimental flock of Afshari sheep. Arch. Anim. Breed. 2012, 55, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Mariani, E.; Summer, A.; Ablondi, M.; Sabbioni, A. Genetic variability and management in Nero di Parma swine breed to preserve local diversity. Animals 2020, 10, 538. [Google Scholar] [CrossRef] [Green Version]
- Vostrá-Vydrová, H.; Vostrý, L.; Hofmanová, B.; Krupa, E.; Zavadilová, L. Pedigree analysis of the endangered Old Kladruber horse population. Livest. Sci. 2016, 185, 17–23. [Google Scholar] [CrossRef]
- Kania-Gierdziewicz, J.; Pałka, S. Effect of inbreeding on fertility traits in five dog breeds. Czech J. Anim. Sci. 2019, 64, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Kania-Gierdziewicz, J.; Gierdziewicz, M. Genetic structure analysis of Tatra Shepherd dog population from Silesian Voivodeship. Rocz. Nauk. Pol. Tow. Zootech. 2013, 9, 9–19. [Google Scholar]
- Hedhammar, Å.A.; Malm, S.; Bonnett, B. International and collaborative strategies to enhance genetic health in purebred dogs. Vet. J. 2011, 189, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Fleming, J.M.; Creevy, K.E.; Promislow, D.E.L. Mortality in North American dogs from 1984 to 2004: An investigation into age-, size-, and breed-related causes of death. J. Vet. Intern. Med. 2011, 25, 187–198. [Google Scholar] [CrossRef]
- Olsson, M.; Meadows, J.R.; Truvé, K.; Rosengren Pielberg, G.; Puppo, F.; Mauceli, E.; Quilez, J.; Tonomura, N.; Zanna, G.; Docampo, M.J.; et al. A novel unstable duplication upstream of HAS2 predisposes to a breed-defining skin phenotype and a periodic fever syndrome in Chinese Shar-Pei dogs. PLoS Genet. 2011, 7, e1001332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ólafsdóttir, G.Á.; Kristjánsson, T. Correlated pedigree and molecular estimates of inbreeding and their ability to detect inbreeding depression in the Icelandic sheepdog, a recently bottlenecked population of domestic dogs. Conserv. Genet. 2008, 9, 1639–1641. [Google Scholar] [CrossRef]
- Kardos, M.; Luikart, G.; Allendorf, F.W. Measuring individual inbreeding in the age of genomics: Marker-based measures are better than pedigrees. Heredity 2015, 115, 63–72. [Google Scholar] [CrossRef]
- Dreger, D.L.; Rimbault, M.; Davis, B.W.; Bhatnagar, A.; Parker, H.G.; Ostrander, E.A. Whole-genome sequence, SNP chips and pedigree structure: Building demographic profiles in domestic dog breeds to optimize genetic-trait mapping. Dis. Model. Mech. 2016, 9, 1445–1460. [Google Scholar] [CrossRef] [Green Version]
- Bussiman, F.D.O.; Perez, B.C.; Ventura, R.V.; Peixoto, M.G.C.D.; Curi, R.A.; Balieiro, J.D.C. Pedigree analysis and inbreeding effects over morphological traits in Campolina horse population. Animal 2018, 12, 2246–2255. [Google Scholar] [CrossRef] [Green Version]
- Initiative for Domestic Animal Diversity. Secondary Guidelines for Development of National Farm Animal Genetic Resources Management Plans: Management of Small Populations at Risk; FAO: Rome, Italy, 1998. [Google Scholar]
- Lochner, D. Phenotypic and Genetic Characterization of South African Boran Cattle. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2018. [Google Scholar]
- Ralls, K.; Ballou, J.D.; Frankham, R. Inbreeding and outbreeding. Encycl. Biodivers. 2001, 245–252. [Google Scholar] [CrossRef]
- Frankham, R.; Ballou, J.D.; Ralls, K.; Eldridge, M.D.; Dudash, M.R.; Fenster, C.B.; Lacy, R.C.; Sunnucks, P. Inbreeding and loss of genetic diversity increase extinction risk. In A Practical Guide for Genetic Management of Fragmented Animal and Plant Populations; Oxford University Press: Oxford, UK, 2019; pp. 31–48. [Google Scholar]
- Pekkala, N.; Knott, K.E.; Kotiaho, J.S.; Nissinen, K.; Puurtinen, M. The effect of inbreeding rate on fitness, inbreeding depression and heterosis over a range of inbreeding coefficients. Evol. Appl. 2014, 7, 1107–1119. [Google Scholar] [CrossRef]
- Doekes, H. Pedigree Analysis and Optimisation of the Breeding Programme of the Markiesje and the Stabyhoun: Aiming to Improve Health and Welfare and Maintain Genetic Diversity; WUR: Wageningen, The Netherlands, 2016. [Google Scholar]
- Frankham, R.; Bradshaw, C.J.; Brook, B.W. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 2014, 170, 56–63. [Google Scholar] [CrossRef]
Breed | Country | HE | HO | FIS | STR Panel | References |
---|---|---|---|---|---|---|
Jack Russell terrier | United Kingdom | 0.76 | 0.75 | 0.016 | 15-STR | [130] |
Gyeongju Donggyeong | Republic of Korea | 0.7266 | 0.7657 | - | 10-STR | [5] |
German Shepherd | Pakistan | - | 0.7420 | −0.5864 | 15-STR | [127] |
Labrador retriever | Pakistan | - | 0.6754 | −0.50 | 15-STR | [127] |
Oropa Shepherd | Italy | 0.62 | 0.70 | −0.14 | 18-STR | [49] |
Maremma Sheepdog | Italy | 0.77 | 0.69 | 0.11 | 18-STR | [49] |
Bouvier des Ardennes | Belgium | 0.668 | 0.714 | −0.040 | 19-STR | [23] |
Rottweiler | Belgium | 0.534 | 0.536 | −0.004 | 19-STR | [23] |
English bulldogs | United States of America | 0.575 | 0.573 | 0.007 | 33-STR | [131] |
Rough-haired Segugio Italiano | Italy | 0.722 | 0.680 | 0.056 | 21-STR | [132] |
Short-haired Segugio Italiano | Italy | 0.716 | 0.689 | 0.036 | 21-STR | [132] |
Tatra Shepherd | Poland | 0.643 | 0.645 | −0.0046 | 18-STR | [133] |
Polish Hunting | Poland | 0.6050 | 0.6142 | −0.012 | 21-STR | [104] |
Cesky Fousek | Czech Republic | 0.673 | 0.669 | 0.005 | 18-STR | [134] |
Yugoslavian Shepherd | Serbia | 0.728 | 0.696 | 0.041 | 9-STR | [135] |
African painted dogs | United States of America | 0.746 | 0.816 | −0.108 | 14-STR | [129] |
Polish Greyhound | Poland | 0.38 | 0.37 | −0.018 | 21-STR | [81] |
Yorkshire Terrier | Poland | 0.698 | 0.662 | 0.0533 | 21-STR | [34] |
Irish Wolfhound | Poland | 0.474 | 0.491 | −0.0373 | 21-STR | [34] |
Ca Rater Mallorquí | Spain | 0.685 | 0.655 | 0.044 | 33-STR | [136] |
Breed | Country | HE | HO | FROH | FIS | SNP Panel | References |
---|---|---|---|---|---|---|---|
Norwegian Lundehund | Norway | 0.035 | 0.038 | - | - | 170K SNP chip | [149] |
Korean Jindo White | Republic of Korea | 0.32 | 0.4 | - | −0.22 | 173,662K SNP chip | [150] |
Braque Français, type Pyrénées | Italy | 0.359 | 0.371 | 0.112 | −0.127, 0.172 | 170K SNP chip | [1] |
Mongolia Xi | China | 0.38 | 0.4 | 0.08 | - | 170K SNP chip | [148] |
Shanxi Xi | China | 0.30 | 0.31 | 0.28 | - | 170K SNP chip | [148] |
Sapsaree | Republic of Korea | - | 0.342 | - | - | 20K SNP chip | [2] |
Old English Sheepdog | Republic of Korea | - | 0.179 | - | - | 170K SNP chip | [2] |
Istrian shorthaired hound | Republic of Croatia | 0.311 | 0.317 | 0.123 | −0.006 | 220K SNP chip | [151] |
Bracco Italiano | Republic of Croatia | 0.253 | 0.268 | 0.248 | −0.001 | 220K SNP chip | [151] |
Border Collie | Australia | 0.328 | 0.309 | 0.037 | - | 170K and 220K SNP chips | [89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabunda, R.S.; Makgahlela, M.L.; Nephawe, K.A.; Mtileni, B. Evaluation of Genetic Diversity in Dog Breeds Using Pedigree and Molecular Analysis: A Review. Diversity 2022, 14, 1054. https://doi.org/10.3390/d14121054
Mabunda RS, Makgahlela ML, Nephawe KA, Mtileni B. Evaluation of Genetic Diversity in Dog Breeds Using Pedigree and Molecular Analysis: A Review. Diversity. 2022; 14(12):1054. https://doi.org/10.3390/d14121054
Chicago/Turabian StyleMabunda, Ripfumelo Success, Mahlako Linah Makgahlela, Khathutshelo Agree Nephawe, and Bohani Mtileni. 2022. "Evaluation of Genetic Diversity in Dog Breeds Using Pedigree and Molecular Analysis: A Review" Diversity 14, no. 12: 1054. https://doi.org/10.3390/d14121054
APA StyleMabunda, R. S., Makgahlela, M. L., Nephawe, K. A., & Mtileni, B. (2022). Evaluation of Genetic Diversity in Dog Breeds Using Pedigree and Molecular Analysis: A Review. Diversity, 14(12), 1054. https://doi.org/10.3390/d14121054