Are Iron-Rich Calcareous Mine Sites Easily Invaded by Invasive Plant Species?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plant Diversity Survey and Soil Sample Collection
2.3. Statistical Analysis
3. Results
3.1. Abundance and Species Richness of Invasive Plants across Site Pairs
3.2. Diversity in Mine Sites Versus Reference Sites
3.3. Distribution and Abundance of Native and Invasive Species among Sites
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dawson, W.; Schrama, M.; Austin, A. Identifying the role of soil microbes in plant invasions. J. Ecol. 2016, 104, 1211–1218. [Google Scholar] [CrossRef] [Green Version]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Zhong, C.; Li, X.; Guo, Z.; Shi, S. Hybridization with natives augments the threats of introduced species in sonneratia mangroves. Aquat. Bot. 2019, 160, 103166. [Google Scholar] [CrossRef]
- Dai, Z.C.; Zhu, B.; Wan, J.S.H.; Rutherford, S. Editorial: Global Changes and Plant Invasions. Front. Ecol. 2022, 10, 845816. [Google Scholar] [CrossRef]
- Morris, T.L.; Esler, K.J.; Barger, N.N.; Jacobs, S.M.; Cramer, M.D. Ecophysiological traits associated with the competitive ability of invasive Australian acacias. Divers. Distrib. 2011, 17, 898–910. [Google Scholar] [CrossRef]
- Matzek, V. Superior performance and nutrient-use efficiency of invasive plants over non-invasive congeners in a resource-limited environment. Biol. Invasions 2011, 13, 3005–3014. [Google Scholar] [CrossRef]
- Firn, J.; Prober, S.M.; Buckley, Y.M. Plastic traits of an exotic grass con-tribute to its abundance but are not always favorable. PLoS ONE 2012, 7, e35870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funk, J.L. Differences in plasticity between invasive and native plants from a low resource environment. J. Ecol. 2008, 96, 1162–1174. [Google Scholar] [CrossRef]
- Lee, W.G.; Mark, A.F.; Wilson, J.B. Ecotypic differentiation in the ultramafic flora of the South Island, New Zealand. N. Z. J. Bot. 1983, 21, 141–156. [Google Scholar] [CrossRef] [Green Version]
- Gulezian, P.Z.; Jennifer, L.I.; Kelly, J.G. Establishment of an Invasive Plant Species (Conium maculatum) in Contaminated Roadside Soil in Cook County, Illinois. Am. Midl. Nat. 2012, 168, 375–395. [Google Scholar] [CrossRef]
- Prabakaran, K.; Li, J.; Anandkumar, A.; Leng, Z.; Zou, C.B.; Du, D. Managing environmental contamination through phytoremediation by invasive plants: A review. Ecol. Eng. 2019, 138, 28–37. [Google Scholar] [CrossRef]
- Gong, W.; Wang, Y.; Chen, C.; Xiong, Y.; Zhou, Y.; Xiao, F.; Li, B.; Wang, Y. The rapid evolution of an invasive plant due to increased selection pressures throughout its invasive history. Ecotoxicol Environ. Saf. 2022, 233, 113322. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Chao, C.; Yxa, B.; Yi, W.; Qla, B. Combination effects of heavy metal and inter-specific competition on the invasiveness of Alternanthera philoxeroides. Environ. Exp. Bot. 2021, 189, 104532. [Google Scholar]
- Cai, H.H. Effects of Heavy Metal cd on Alien Invasive Plants and Their Resistance to Disease. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2016. [Google Scholar]
- Dai, Z.C.; Cai, H.H.; Qi, S.S.; Li, J.; Du, D.L. Cadmium hyperaccumulation as an inexpensive metal armor against disease in Crofton weed. Environ. Pollut. 2020, 267, 115649. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.F. Effects of Cu, Zn, Cd, Pb on the Growth of Three Leguminous Plants and Their Adsorption Properties. Master’s Thesis, Northeastern University, Shenyang, China, 2008. [Google Scholar]
- Wang, H.; Jiao, Z.H.; Wu, H.; Wang, Y.G.; Wang, X.X.; Wang, L.S. Review on evaluation methods of heavy metal pollution in soil around lead zinc mine. J. Shenyang Univ. (Nat. Sci.) 2021, 33, 300–306. [Google Scholar]
- Chowdhury, A.; Maiti, S.K. Identification of metal tolerant plant species in mangrove ecosystem by using community study and multivariate analysis: A case study from Indian Sunderban. Environ. Earth Sci. 2016, 75, 744. [Google Scholar] [CrossRef]
- Tovar-Sánchez, E.; Hernández-Plata, I.; Martínez, M.S.; Valencia-Cuevas, L.; Galante, P.M. ‘Heavy Metal Pollution as a Biodiversity Threat’ in Heavy Metals; IntechOpen: London, UK, 2018. [Google Scholar]
- Jaffré, T.; Brooks, R.R.; Lee, J.; Reeves, R.D. Sebertia acuminata: A Hyperaccumulator of Nickel from New Caledonia. Science 1976, 193, 579–580. [Google Scholar] [CrossRef] [Green Version]
- Li, M.J.; Yu, F.X.; Ding, J.N.; Xiong, Z.T. Water Metabolism Changes of Metallophyte-Elsholtzia haichowensis Treated with Copper and Water Stress. Jiangxi Sci. 2014, 32, 46–50. [Google Scholar]
- Chen, C.; Zhang, H.X.; Wang, A.G.; Lu, M.; Shen, Z.G.; Lian, C.L. Phenotypic plasticity accounts for most of the variation in leaf manganese concentrations in Phytolacca americana growing in manganese-contaminated environments. Plant Soil 2015, 396, 215–227. [Google Scholar] [CrossRef]
- Chen, L.; Gao, J.; Zhu, Q.; Wang, Y.; Yang, Y. Accumulation and output of heavy metals by the invasive plant Spartina alterniflora in a coastal salt marsh. Pedosphere 2018, 28, 884–894. [Google Scholar] [CrossRef]
- Liu, X.W.; Qi, C.M.; Wang, Z.C.; Ouyang, C.B.; Li, Y.; Yan, D.D.; Wang, Q.X.; Guo, M.X.; Yuan, Z.H.; He, F.L. Biochemical and ultrastructural changes induced by lead and cadmium to Crofton weed (Eupatorium adenophorum Spreng.). Int. J. Environ. Res. 2018, 12, 597–607. [Google Scholar] [CrossRef]
- Dai, Z.C.; Wan, L.Y.; Qi, S.S.; Rutherford, S.; Du, D.L. Synergy among hypotheses in the invasion process of alien plants: A road map within a timeline. Perspect. Plant Ecol. 2020, 47, 125575. [Google Scholar] [CrossRef]
- Davidson, A.M.; Jennions, M.; Nicotra, A.B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 2015, 14, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.L.; Feng, Y.L.; Zhang, L.K.; Callaway, R.M.; Alfonso, V.B.; Luo, D.Q.; Liao, Z.Y.; Lei, Y.B.; Barclay, G.F.; Carlos, S.P. Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. New Phytol. 2015, 205, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
- Baker, H.G. The Evolution of weeds. Annu. Rev. Ecol. Evol. 1974, 5, 1–4. [Google Scholar] [CrossRef]
- Wang, M.N.; Dai, Z.C.; Qi, S.S.; Wang, X.Y.; Du, D.L. Main hypotheses and research progress of invasion mechanism of exotic plants. Jiangsu Agric. Sci. 2014, 42, 378–382. [Google Scholar]
- Hierro, J.L.; Callaway, M. A biogeographical approach to plant invasions: The importance of studying exotics in their introduced and native range. J. Ecol. 2005, 93, 5–15. [Google Scholar] [CrossRef]
- Harvey, K.J.; Nipperess, D.A.; Britton, D.R.; Hughes, L. Australian family ties: Does a lack of relatives help invasive plants escape natural enemies? Biol. Invasions 2012, 14, 2423–2434. [Google Scholar] [CrossRef]
- Green, P.T.; O’Dowd, D.J.; Abbott, K.L.; Jeffery, M.; Retallick, K.; Mac, N.R. Invasional meltdown: Invader-invader mutualism facilitates a secondary invasion. Ecology 2011, 92, 1758–1768. [Google Scholar] [CrossRef]
- Pitz, C.; Mahy, G.; Harzé, M.; Uyttenbroeck, R.; Monty, A. Comparison of mining spoils to determine the best substrate for rehabilitating limestone quarries by favoring native grassland species over invasive plants. Ecol. Eng. 2018, 127, 510–518. [Google Scholar] [CrossRef]
- Zefferman, E.; Stevens, J.; Charles, G.; Dunbar-Irwin, M.; Emam, T.; Fick, S.; Morales, L.V.; Wolf, K.M.; Young, D.J.; Young, T.P. Plant communities in harsh sites are less invaded: A summary of observations and proposed explanations. AoB Plants 2015, 7, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauman, J.M.; Cochran, C.; Chapman, J.; Gilland, K. Plant community development following restoration treatments on a legacy reclaimed mine site. Ecol. Eng. 2015, 83, 521–528. [Google Scholar] [CrossRef]
- Triin, R.; Aveliina, H.; Meelis, P.; Karin, B.; Pille, G.; Ejvind, R.; Krista, T.; Sergey, Z.; Honor, C.P. Determinants of fine-scale plant diversity in dry calcareous grasslands within the Baltic Sea region. Agric. Ecosyst. Environ. 2014, 182, 9–68. [Google Scholar]
- Franklin, J.A.; Zipper, C.E.; Burger, J.A.; Skousen, J.G.; Jacobs, D.F. Influence of herbaceous ground cover on forest restoration of eastern US coal surface mines. New For. 2012, 43, 905–924. [Google Scholar] [CrossRef]
- Aguiar, F.C.; Ferreira, M.T.; Albuquerque, A.; Moreira, I. Alien and endemic flora at reference and non-reference sites in Mediterranean-type streams in Portugal. Aquat. Conserv. 2010, 17, 335–347. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, Y.; Su, J.; Gao, Z.; Nan, Z. Temporal changes of metal bioavailability and extracellular enzyme activities in relation to afforestation of highly contaminated calcareous soil. Sci. Total Environ. 2018, 622, 1056–1066. [Google Scholar] [CrossRef]
- Moore, T.J.; Loeppert, R.H. Significance of potassium chloride pH of calcareous soils. Soil Sci. Soc. Am. J. 1987, 51, 908–912. [Google Scholar] [CrossRef]
- Johnson, C.D.; Skousen, J.G. Minesoil Properties of 15 Abandoned Mine Land Sites in West Virginia. J. Environ. Qual. 1995, 24, 635–643. [Google Scholar] [CrossRef]
- Maron, J.; Marler, M. Native plant diversity resists invasion at both low and high resource levels. Ecology 2007, 88, 2651–2661. [Google Scholar] [CrossRef]
- Hutcheson, K. A test for comparing diversities based on Shannon formula. J. Theor. Biol. 1970, 29, 151–154. [Google Scholar] [CrossRef]
- Hu, S.; Xiao, X.; Jia, H.S.; Zhou, J. Comparison and analysis on dust-retention ability of major deciduous greening species in Xuzhou. Chin. Agric. Sci. Bull. 2012, 28, 95–98. [Google Scholar]
- Piqueray, J.; Bottin, G.; Delescaille, L.M.; Bisteau, E.; Colinet, G.; Mahy, G. Rapid restoration of a species-rich ecosystem assessed from soil and vegetation indicators: The case of calcareous grasslands restored from forest stands. Ecol. Indic. 2011, 11, 724–733. [Google Scholar] [CrossRef] [Green Version]
- Bart, D.; Simon, M.; Carpenter, Q.; Graham, S. Historical Land Use and Plant-Community Variability in a Wisconsin Calcareous Fen. Rhodora 2011, 113, 160–186. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, R.; Tang, J.; Chen, X. Competitive interaction between the invasive Solidago canadensis and native Kummerowia striata in lead contaminated soil. Bot. Stud. 2008, 49, 385–391. [Google Scholar]
- Liu, X.P.; Zhang, W.J.; Yang, F.; Zhou, X.; Liu, Z.J.; Qu, F.; Lian, S.Q.; Wang, C.L.; Tang, X.G. Changes in vegetation–environment relationships over long-term natural restoration process in Middle Taihang Mountain of North China. Ecol. Eng. 2012, 49, 193–200. [Google Scholar] [CrossRef]
- Schweitzer, J.A.; Larson, K. Greater morphological plasticity of exotic honeysuckle species may make them better invaders than native species. Torrey Bot. Soc. 1999, 126, 15–23. [Google Scholar] [CrossRef]
- Geng, Y.P.; Pan, X.Y.; Xu, C.Y.; Zhang, W.J.; Li, B.; Chen, J.K.; Lu, B.R.; Song, Z.P. Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats. Biol. Invasions 2007, 9, 245–256. [Google Scholar] [CrossRef]
- Molina-Montenegro, M.A.; Palma-Rojas, C.; Alcayaga-Olivares, Y.; Oses, R.; Corcuera, L.J.; Cavieres, L.A.; Gianoli, E. Ecophysiological traits suggest local adaptation rather than plasticity in the invasive Taraxacum officinale (dandelion) from native and introduced habitat range. Plant Ecol. Divers. 2011, 4, 36–42. [Google Scholar]
- Molina-Montenegro, M.A.; Palma-Rojas, C.; Alcayaga-Olivares, Y.; Oses, R.; Corcuera, L.J.; Cavieres, L.A.; Gianoli, E. Ecophysiological plasticity and local differentiation help explain the invasion success of Taraxacum officinale (dandelion) in South America. Ecography 2012, 36, 718–730. [Google Scholar] [CrossRef]
- Molina-Montenegro, M.A.; Naya, D.E. Latitudinal patterns in phenotypic plasticity and fitness-related traits: Assessing the climatic variability hypothesis (CVH) with an invasive plant species. PLoS ONE 2012, 7, e47620. [Google Scholar] [CrossRef] [Green Version]
- Molina-Montenegro, M.A.; Peñuelas, J.; Munné-Bosch, S.; Sardans, J. Higher plasticity in ecophysiological traits enhances the performance and invasion success of Taraxacum officinale (dandelion) in alpine environments. Biol. Invasions 2012, 14, 21–33. [Google Scholar] [CrossRef]
- Han, F.; Li, C.R.; Sun, M.G.; Fan, Y.X.; Zhao, F.; Lu, S.S.; Fu, Y. Plant community structure at an early ecological restoration stage on an abandoned quarry in Sibao Mount. J. Cent. South Univ. 2008, 28, 35–39. [Google Scholar]
- Yang, S.X.; Li, M.S.; Li, Y.; Huang, H.R. Research status of ecological restoration and pollution of heavy metals by plants in Pingle manganese mine. Minging Saf. Environ. Prot. 2006, 33, 21–23. [Google Scholar]
- Luo, Y.P.; Li, M.S.; Zhang, X.H.; Liu, J.; Huang, H.T.; Cai, X.W. Characteristics of bioaccumulation of heavy metals by dominant plants in Lipu manganese mine, Guangxi. J. GuangXi Norm. Univ. 2005, 23, 89–93. [Google Scholar]
Location | Zn | Cr | Cu | Cd | Pb | Mn | Ca | Mg | Fe | C (g/kg) | N (g/kg) | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mine sites | ||||||||||||
GTS | 215 ± 15 a | 215 ± 26 a | 61 ± 2 a | 1.24 ± 0.87 a | 52 ± 7 a | 1210 ± 253 a | 214,219 ± 7837 a | 19,024 ± 2191 a | 57,294 ± 3398 ab | 8.73 | 0.68 | 8.13 |
LWS | 263 ± 37 a | 129 ± 12 a | 46 ± 2 a | 0.32 ± 0.05 a | 47 ± 10 a | 651 ± 267 a | 89,221 ± 58,662 ab | 80,848 ± 53,213 b | 63,587 ± 2924 ab | 5.94 | 0.77 | 7.65 |
MJS | 544 ± 251 a | 217 ± 100 a | 82 ± 34 a | 0.83 ± 0.31 a | 186 ± 67 b | 1383 ± 663 a | 89,199 ± 80,260 ab | 31,249 ± 14,924 ab | 85,181 ± 28,443 a | 7.84 | 0.81 | 8.06 |
XLS | 334 ± 17 a | 460 ± 253 a | 69 ± 4 a | 1.09 ± 0.21 a | 79 ± 9 a | 1089 ± 140 a | 213,298 ± 57,124 a | 19,206 ± 5678 a | 60,118 ± 9012 ab | 6.67 | 0.66 | 7.98 |
Reference sites | ||||||||||||
LWS | 355 ± 92 a | 314 ± 168 a | 66 ± 8 a | 0.62 ± 0.08 a | 93 ± 24 a | 916 ± 110 a | 37,863 ± 6863 b | 22,634 ± 919 a | 67,201 ± 10,723 ab | 19.22 | 1.80 | 7.81 |
XLS | 239 ± 28 a | 224 ± 67 a | 58 ± 12 a | 0.67 ± 0.30 a | 68 ± 7 a | 759 ± 147 a | 133,782 ± 114,978 ab | 13,859 ± 452 a | 68,089 ± 9087 ab | 11.07 | 1.00 | 7.56 |
GTS | 211 ± 31 a | 113 ± 11 a | 34 ± 3 a | 1.40 ± 0.47 a | 60 ± 5 a | 677 ± 27 a | 15,179 ± 4579 b | 9238 ± 1433 a | 45,059 ± 4892 ab | 20.82 | 1.93 | 6.72 |
MJS | 202 ± 15 a | 157 ± 14 a | 41 ± 15 a | 0.43 ± 0.07 a | 61 ± 3 a | 501 ± 62 a | 6383 ± 1085 b | 8309 ± 884 a | 50,129 ± 3318 ab | 20.83 | 1.46 | 5.84 |
(a) | ||||
---|---|---|---|---|
Reference | Calcareous | χ2 | p | |
Total number of individuals across all sites | ||||
Native | 1575 (34%) | 1997 (35%) | ||
Invasive | 3005 (66%) | 3667 (65%) | 48.88 | 0.36 |
(b) | ||||
Reference | Mine site | χ2 | p | |
Total number of individuals GTS | ||||
Native | 307 (40%) | 254 (21%) | ||
Invasive | 458 (60%) | 946 (79%) | 82.37 | <0.001 |
MJS | ||||
Native | 421 (30%) | 964 (39%) | ||
Invasive | 987 (70%) | 1504 (61%) | 32.76 | <0.001 |
XLS | ||||
Native | 586 (35%) | 664 (44%) | ||
Invasive | 1089 (65%) | 842 (56%) | 27.56 | <0.001 |
LWS | ||||
Native | 261 (36%) | 115 (23%) | ||
Invasive | 471 (64%) | 375 (77%) | 20.46 | <0.001 |
(a) | ||||
---|---|---|---|---|
Reference | Mine site | χ2 | p | |
Total number of species across all sites | ||||
Native | 77 (46%) | 64 (38%) | ||
Invasive | 88 (54%) | 106 (62%) | 71.14 | <0.001 |
(b) | ||||
Reference | Mine site | χ2 | p | |
Total number of species GTS | ||||
Native | 24 (52%) | 14 (29%) | ||
Invasive | 22 (48%) | 34 (71%) | 5.17 | < 0.05 |
MJS | ||||
Native | 21 (38%) | 21 (42%) | ||
Invasive | 34 (62%) | 29 (58%) | 0.16 | 0.69 |
XLS | ||||
Native | 27 (55%) | 25 (42%) | ||
Invasive | 22 (45%) | 34 (58%) | 1.74 | 0.19 |
LWS | ||||
Native | 5 (33%) | 4 (31%) | ||
Invasive | 10 (67%) | 9 (69%) | 0.02 | 0.88 |
Location | Mine Site total | Reference Total | Species in Common | Sørensen Index |
---|---|---|---|---|
GTS | 48 | 46 | 16 | 0.34 |
MJS | 50 | 55 | 19 | 0.36 |
XLS | 59 | 49 | 26 | 0.48 |
LWS | 13 | 15 | 10 | 0.71 |
Spring | Autumn | χ2 | p | |
---|---|---|---|---|
Number of species | ||||
Invasive | 54 (54%) | 52 (52%) | ||
Native | 46 (46%) | 47 (47%) | 0.04 | 0.83 |
Number of individuals | ||||
Invasive | 15,653 (69%) | 4367 (55%) | ||
Native | 7184 (31%) | 3569 (45%) | 473.17 | <0.001 |
Location | Site | H | t | df | p |
---|---|---|---|---|---|
Spring 2021 | |||||
GTS | Mine | 1.58 | 0.05 | 5.7 | 0.11 |
Reference | 1.58 | ||||
MJS | Mine | 1.57 | 0.03 | 5.7 | <0.05 |
Reference | 1.58 | ||||
XLS | Mine | 1.55 | 0.02 | 5.7 | <0.05 |
Reference | 1.57 | ||||
Autumn 2021 | |||||
GTS | Mine | 1.55 | 0.02 | 5.9 | <0.05 |
Reference | 1.57 | ||||
MJS | Mine | 1.57 | 0.01 | 5.9 | <0.05 |
Reference | 1.54 | ||||
XLS | Mine site | 1.58 | 0.18 | 5.9 | 0.36 |
Reference | 1.58 | ||||
Spring 2022 | |||||
LWS | Mine | 1.58 | 0.07 | 3.6 | 0.13 |
Reference | 1.58 | ||||
MJS | Mine | 1.56 | 0.03 | 3.6 | <0.05 |
Reference | 1.58 | ||||
XLS | Mine | 1.58 | 0.06 | 3.6 | 0.12 |
Reference | 1.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.-H.; Wan, J.S.H.; Rutherford, S.; Al-Namazi, A.; Liu, H.; Dai, Z.-C.; Sun, J.-F.; Sun, X.-Q.; Du, D.-L. Are Iron-Rich Calcareous Mine Sites Easily Invaded by Invasive Plant Species? Diversity 2022, 14, 986. https://doi.org/10.3390/d14110986
Liu J-H, Wan JSH, Rutherford S, Al-Namazi A, Liu H, Dai Z-C, Sun J-F, Sun X-Q, Du D-L. Are Iron-Rich Calcareous Mine Sites Easily Invaded by Invasive Plant Species? Diversity. 2022; 14(11):986. https://doi.org/10.3390/d14110986
Chicago/Turabian StyleLiu, Jin-Hui, Justin S. H. Wan, Susan Rutherford, Ali Al-Namazi, Hui Liu, Zhi-Cong Dai, Jian-Fan Sun, Xiao-Qin Sun, and Dao-Lin Du. 2022. "Are Iron-Rich Calcareous Mine Sites Easily Invaded by Invasive Plant Species?" Diversity 14, no. 11: 986. https://doi.org/10.3390/d14110986
APA StyleLiu, J. -H., Wan, J. S. H., Rutherford, S., Al-Namazi, A., Liu, H., Dai, Z. -C., Sun, J. -F., Sun, X. -Q., & Du, D. -L. (2022). Are Iron-Rich Calcareous Mine Sites Easily Invaded by Invasive Plant Species? Diversity, 14(11), 986. https://doi.org/10.3390/d14110986