Dispersal and Space Use of Captive-Reared and Wild-Rehabilitated Harpy Eagles Released in Central American Landscapes: Implications for Reintroduction and Reinforcement Management
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Harpy Eagle Data
2.3. Movement Data
2.4. Release Methods
2.5. Dispersal
2.6. Home Range
2.7. Landscape Metrics
2.8. Data Analysis
3. Ethical Statement
4. Results
5. Discussion
Implications for Conservation
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarasola, J.H.; Grande, J.M.; Negro, J.J. Birds of Prey: Biology and Conservation in the XXI Century; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Schwartz, M.W. Choosing the appropriate scale of reserves for conservation. Annu. Rev. Ecol. Syst 1999, 30, 83–108. [Google Scholar] [CrossRef] [Green Version]
- Allen, A.M.; Singh, N.J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 2016, 3, 155. [Google Scholar] [CrossRef] [Green Version]
- Bildstein, K.L. Raptors: The Curious Nature of Diurnal Birds of Prey; Comstock Publishing Associates, a Division of Cornell University Press: Ithaca, NY, USA, 2017. [Google Scholar]
- Morrison, J.L.; Wood, P.B. Broadening our Approaches to Studying Dispersal in Raptors. J. Raptor Res. 1999, 43, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Serrano, D. Dispersal in Raptors. In Birds of Prey: Biology and Conservation in the XXI Century; Sarasola, J.H., Grande, J.M., Negro, J.J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 95–121. [Google Scholar]
- Newton, I. Population Ecology of Raptors. Buteo Books, Vermillion, South Dakota; The Wilson Society: Ann Arbor, MI, USA, 1979. [Google Scholar]
- Peery, M.Z. Factors affecting interspecies variation in home-range size of raptors. Auk 2000, 117, 511–517. [Google Scholar] [CrossRef]
- Abaño, T.R.C.; Tampos, G.G.; Taraya, R.L.; Salvador, D.J.I.; Ibañez, J.C. Dispersal of Philippine Eagles released in the Forests of Mindanao, Philippines. J. Raptor Res. 2015, 49, 506–512. [Google Scholar] [CrossRef]
- van Eeden, R.; Whitfield, D.P.; Botha, A.; Amar, A. Ranging behaviour and habitat preferences of the Martial Eagle: Implications for the conservation of a declining apex predator. PLoS ONE 2017, 12, e0173956. [Google Scholar] [CrossRef] [Green Version]
- Ferguson-Lees, J.; Christie, D.A. Raptors of the World; Houghton Mifflin: New York, NY, USA, 2001. [Google Scholar]
- Bird Life International. Harpia harpyja. The IUCN Red List of Threatened Species 2021: E.T22695998A197957213. Available online: https://www.iucnredlist.org/species/22695998/197957213 (accessed on 8 August 2022).
- Watson, R.T.; McClure, C.J.W.; Vargas, F.H.; Jenny, J.P. Trial restoration of the Harpy Eagle, a large, long-lived, tropical forest raptor, in Panama and Belize. J. Raptor Res. 2016, 50, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Touchton, J.; Hsu, Y.; Palleroni, A. Foraging ecology of reintroduced captive-bred subadult Harpy Eagles on Barro Colorado Island, Panama. Ornitol. Neotrop. 2002, 13, 365–380. [Google Scholar]
- Campbell-Thompson, E.; Vargas, F.H.; Watson, R.T.; Muela, A.; Cáceres, N.C. Effect of sex and age at release on the independence of hacked Harpy Eagles. J. Raptor Res. 2012, 46, 158–167. [Google Scholar] [CrossRef] [Green Version]
- Miranda, E.B.P.; Campbell-Thompson, E.; Muela, A.; Vargas, F.H. Sex and breeding status affect prey composition of Harpy Eagles Harpia harpyja. J. Ornithol. 2018, 159, 141–150. [Google Scholar] [CrossRef]
- Blanco, A. Programa de conservación del Aguila Harpía. Rio Verde 2015, 16, 76–80. [Google Scholar]
- Aguiar-Silva, F.H. Uso E Seleção De Recursos Por Harpia Em Múltiplas Escalas Espaciais: Persistência E Vulnerabilidade. Ph.D. Thesis, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil, 2016. [Google Scholar]
- Muñiz-López, R.; Limiñana, R.; Cortés, G.D.; Urios, V. Movements of Harpy Eagles Harpia harpyja during their first two years after hatching. Bird Study 2012, 59, 509–514. [Google Scholar] [CrossRef]
- Rotenberg, J.A.; Marlin, J.A.; Pop, L.; Garcia, W. First record of a Harpy Eagle (Harpia harpyja) nest in Belize. Wilson J. Ornithol. 2012, 124, 292–297. [Google Scholar] [CrossRef]
- Urios, V.; Muñiz-López, R.; Vidal-Mateo, J. Juvenile dispersal of Harpy Eagles (Harpia harpyja) in Ecuador. J. Raptor Res. 2017, 51, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Mittermeier, R.A.; van Roosmalen, M.G.M. Preliminary Observations on Habitat Utilization and Diet in Eight Surinam Monkeys. Folia Primatol. 1981, 36, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Stotz, D.F.; International, C.; Fitzpatrick, J.W.; Parker, T.A.; History, F.M.o.N.; Moskovits, D.K. Neotropical Birds: Ecology and Conservation; University of Chicago Press: Chicago, IL, USA, 1996. [Google Scholar]
- Muela, A.; Watson, R.; Mutch, B.D.; Heinrich, W.R.; Jenny, J.P.; Curti, M. The Harpy Eagle: Biology, Restoration and Hacking Procedures; The Peregrine Fund: Boise, ID, USA, 2003. [Google Scholar]
- Cadahía, L.; López-López, P.; Urios, V.; Negro, J.J. Estimating the onset of dispersal in endangered Bonelli’s Eagle Hieraaetus fasciatus tracked by satellite telemetry: A comparison among methods. Ibis 2008, 150, 416–420. [Google Scholar] [CrossRef] [Green Version]
- Signer, J.; Fieberg, J.; Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 2019, 9, 880–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas-González, J.d.J.; Vargas, F.H. Nesting density of Harpy Eagles in Darien with population size estimates for Panama. J. Raptor Res. 2011, 45, 199–210. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Calabrese, J.M.; Fleming, C.H.; Gurarie, E. ctmm: An R package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 2016, 7, 1124–1132. [Google Scholar] [CrossRef]
- Fleming, C.H.; Fagan, W.F.; Mueller, T.; Olson, K.A.; Leimgruber, P.; Calabrese, J.M. Rigorous home range estimation with movement data: A new autocorrelated kernel density estimator. Ecology 2015, 96, 1182–1188. [Google Scholar] [CrossRef] [Green Version]
- Fleming, C.H.; Calabrese, J.M. Ctmm: Continuous-Time Movement Modeling. R Package Version 0.5.7. Available online: https://github.com/ctmm-initiative/ctmm (accessed on 13 July 2019).
- Fleming, C.H.; Calabrese, J.M. A new kernel density estimator for accurate home-range and species-range area estimation. Methods Ecol. Evol. 2017, 8, 571–579. [Google Scholar] [CrossRef]
- Fleming, C.H.; Sheldon, D.; Fagan, W.F.; Leimgruber, P.; Mueller, T.; Nandintsetseg, D.; Noonan, M.J.; Olson, K.A.; Setyawan, E.; Sianipar, A.; et al. Correcting for missing and irregular data in home-range estimation. Ecol. Appl. 2018, 28, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. 2015. Available online: https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 25 January 2019).
- Turner, M.G.; Gardner, R.H. Landscape Ecology in Theory and Practice: Pattern and Process; Springer: New York, NY, USA, 2002. [Google Scholar]
- With, K.A. Essentials of Landscape Ecology; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. 2012. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 12 February 2019).
- O’Neill, R.V.; Hunsaker, C.T.; Timmins, S.P.; Jackson, B.L.; Jones, K.B.; Riitters, K.H.; Wickham, J.D. Scale problems in reporting landscape pattern at the regional scale. Landscape Ecol. 1996, 11, 169–180. [Google Scholar] [CrossRef]
- Canty, A.; Ripley, B. Boot: Bootstrap R (S-Plus) Functions. R Package Version 1.3-23. 2019. Available online: https://cran.r-project.org/web/packages/boot/index.html (accessed on 17 January 2020).
- Scott, J.M.; Davis, F.; Csuti, B.; Noss, R.; Butterfield, B.; Groves, C.; Anderson, H.; Caicco, S.; D’Erchia, F.; Edwards, T.C.; et al. Gap Analysis: A Geographic Approach to Protection of Biological Diversity. Wildl. Monogr. 1993, 123, 3–41. [Google Scholar]
- ESRI. ArcGIS Desktop; Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- IUCN-ORMACC. Map of the Indigenous Peoples, Protected Areas and Natural Ecosystem of Central America. IUCN-ORMACC. 2016. Available online: https://iucn.cr/arcgis/home (accessed on 6 June 2019).
- Pearce, J.L.; Kirk, D.A.; Lane, C.P.; Mahr, M.H.; Walmsley, J.; Casey, D.; Muir, J.E.; Hannon, S.; Hansen, A.; Jones, K. Prioritizing avian conservation areas for the Yellowstone to Yukon Region of North America. Biol. Conserv. 2008, 141, 908–924. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Tolhurst, B.; Grogan, A.; Hughes, H.; Scott, D. Effects of temporary captivity on ranging behaviour in urban Red Foxes (Vulpes vulpes). Appl. Anim. Behav. Sci. 2016, 181, 182–190. [Google Scholar] [CrossRef] [Green Version]
- Whitfield, D.P.; Douse, A.; Evans, R.J.; Grant, J.; Love, J.; McLeod, D.R.A.; Reid, R.; Wilson, J.D. Natal and breeding dispersal in a reintroduced population of White-tailed Eagles Haliaeetus albicilla. Bird Study 2009, 56, 177–186. [Google Scholar] [CrossRef]
- McDougall, P.T.; Réale, D.; Sol, D.; Reader, S.M. Wildlife conservation and animal temperament: Causes and consequences of evolutionary change for captive, reintroduced, and wild populations. Anim. Conserv. 2006, 9, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Shier, D. Manipulating animal behavior to ensure reintroduction success. In Conservation Behavior: Applying Behavioral Ecology to Wildlife Conservation and Management; Saltz, D., Berger-Tal, O., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 275–304. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Alvarez-Cordero, E. Biology and Conservation of the Harpy Eagle in Venezuela and Panama. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 1996. [Google Scholar]
- Merrick, M.J.; Koprowski, J.L. Should we consider individual behavior differences in applied wildlife conservation studies? Biol. Conserv. 2017, 209, 34–44. [Google Scholar] [CrossRef]
- Whitacre, D.; Jenny, J.P. Neotropical Birds of Prey: Biology and Ecology of A Forest Raptor Community; Cornell University Press: Ithaca, NY, USA, 2013. [Google Scholar]
- Walther, B.A.; Chou, T.-C.; Lee, P.-F. Population density, home range, and habitat use of Crested Serpent-Eagles (Spilornis cheela hoya) in Southern Taiwan: Using distance-based analysis and compositional analysis at different spatial scales. J. Raptor Res. 2014, 48, 195–209. [Google Scholar] [CrossRef]
- Penteriani, V.; Delgado, M.M. The Eagle Owl; Bloomsbury Publishing: London, UK, 2019. [Google Scholar]
- Arroyo-Rodríguez, V.; Mandujano, S. Forest fragmentation modifies habitat quality for Alouatta palliata. Int. J. Primatol. 2006, 27, 1079–1096. [Google Scholar] [CrossRef]
- Aguiar-Silva, F.H.; Sanaiotti, T.M.; Luz, B.B. Food habits of the Harpy Eagle, a top predator from the Amazonian rainforest canopy. J. Raptor Res. 2014, 48, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, J.E.; Peery, M.Z.; Gutiérrez, G.A.; Herrera, G.; Pauli, J.N. Resource use by the two-toed sloth (Choloepus hoffmanni) and the three-toed sloth (Bradypus variegatus) differs in a shade-grown agro-ecosystem. J. Trop. Ecol. 2014, 31, 49–55. [Google Scholar] [CrossRef]
- Santos, P.M.; Chiarello, A.G.; Ribeiro, M.C.; Ribeiro, J.W.; Paglia, A.P. Local and landscape influences on the habitat occupancy of the endangered maned sloth Bradypus torquatus within fragmented landscapes. Mamm. Biol. 2016, 81, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Bednarz, J.C.; Dinsmore, J.J. Nest-sites and habitat of Red-Shouldered and Red-Tailed Hawks in Iowa. Wilson Bull. 1982, 94, 31–45. [Google Scholar]
- Sergio, F.; Scandolara, C.; Marchesi, L.; Pedrini, P.; Penteriani, V. Effect of agro-forestry and landscape changes on Common Buzzards (Buteo buteo) in the Alps: Implications for conservation. Anim. Conserv. 2005, 8, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Youtz, J.A.; Graham, R.T.; Reynolds, R.T.; Simon, J. In Implementing northern goshawk habitat management in southwestern forests: A template for restoring fire-adapted forest ecosystems. In Integrated Restoration of Forested Ecosystems to Achieve Multiresource Benefits, Proceedings of the 2007 National Silviculture Workshop; Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2008; pp. 173–191. [Google Scholar]
- Thiollay, J.-M. Area requirements for the conservation of rain forest raptors and game birds in French Guiana. Conserv. Biol. 1989, 3, 128–137. [Google Scholar] [CrossRef]
- Robinson, S.K. Habitat selection and foraging ecology of raptors in Amazonian Peru. Biotropica 1994, 26, 443–458. [Google Scholar] [CrossRef]
- Luz, B.B. Características De Árvores Ultilizadas Por Gavião-Real (Harpia harpyja) Para A Reprodução Na Amazônia Brasileira. Master’s Thesis, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil, 2005. [Google Scholar]
- Vaughn, N.R.; Asner, G.P.; Giardina, C.P. Centennial impacts of fragmentation on the canopy structure of tropical montane forest. Ecol. Appl. 2014, 24, 1638–1650. [Google Scholar] [CrossRef] [PubMed]
- Almeida, D.R.A.; Stark, S.C.; Schietti, J.; Camargo, J.L.C.; Amazonas, N.T.; Gorgens, E.B.; Rosa, D.M.; Smith, M.N.; Valbuena, R.; Saleska, S.; et al. Persistent effects of fragmentation on tropical rainforest canopy structure after 20 yr of isolation. Ecol. Appl. 2019, 29, e01952. [Google Scholar] [CrossRef] [PubMed]
- Cullen, L.; Uezu, A.; Martins, C.S.; Padua, C.B. The use of selected species in landscape planning and restoration of the Atlantic Forest, Brazil. In Tropical Conservation: Perspectives on Local and Global Priorities; Aguirre, A.A., Sukumar, R., Eds.; Oxford University Press: New York, NY, USA, 2017; pp. 40–55. [Google Scholar]
Models | K | AICc | ΔAICc | AICc wi | ModelLik |
---|---|---|---|---|---|
RM*PR + RM*PD + RM*ED + RM*Con | 12 | 139.9 | 0.0 | 0.999 | 1.0000 |
Age*PR + Age*PD + Age*ED + Age*Con | 12 | 154.3 | 14.4 | 0.001 | 0.0008 |
Sex + Age + AR + RM + PR + PD + ED + Con | 13 | 165.3 | 25.4 | 0.000 | 0.0000 |
PR + PD + ED + Con | 7 | 165.7 | 25.8 | 0.000 | 0.0000 |
Sex*PR + Sex*PD + Sex*ED + Sex*Con | 12 | 166.5 | 26.6 | 0.000 | 0.0000 |
AR*PR + AR*PD + AR*ED + AR*Con | 22 | 183.3 | 43.4 | 0.000 | 0.0000 |
RM | 4 | 231.1 | 91.2 | 0.000 | 0.0000 |
Age | 4 | 232.1 | 92.2 | 0.000 | 0.0000 |
Sex | 4 | 244.5 | 104.6 | 0.000 | 0.0000 |
Null | 3 | 245.1 | 105.2 | 0.000 | 0.0000 |
Age at Release | 6 | 245.3 | 105.4 | 0.000 | 0.0000 |
Home Range~Release Method*Landscape Metrics | Estimate | CI |
---|---|---|
Hard-released | 5.14 | 4.71, 5.57 |
Soft-released | −0.94 | −1.49, −0.40 |
Hard-released:Patch richness | 2.25 | 1.71, 2.80 |
Hard-released:Patch density | −0.97 | −2.78, 0.84 |
Hard-released:Edge density | −1.48 | −3.43, 0.47 |
Hard-released:Contagion | −0.21 | −2.28, 1.85 |
Soft-released:Patch richness | −0.3 | −0.98, 0.37 |
Soft-released:Patch density | 0.44 | −1.38, 2.26 |
Soft-released:Edge density | 0.71 | −1.36, 2.77 |
Soft-released:Contagion | −0.78 | −3.00, 1.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naveda-Rodríguez, A.; Campbell-Thompson, E.; Watson, R.T.; McCabe, J.; Vargas, F.H. Dispersal and Space Use of Captive-Reared and Wild-Rehabilitated Harpy Eagles Released in Central American Landscapes: Implications for Reintroduction and Reinforcement Management. Diversity 2022, 14, 886. https://doi.org/10.3390/d14100886
Naveda-Rodríguez A, Campbell-Thompson E, Watson RT, McCabe J, Vargas FH. Dispersal and Space Use of Captive-Reared and Wild-Rehabilitated Harpy Eagles Released in Central American Landscapes: Implications for Reintroduction and Reinforcement Management. Diversity. 2022; 14(10):886. https://doi.org/10.3390/d14100886
Chicago/Turabian StyleNaveda-Rodríguez, Adrián, Edwin Campbell-Thompson, Richard T. Watson, Jennifer McCabe, and Félix Hernán Vargas. 2022. "Dispersal and Space Use of Captive-Reared and Wild-Rehabilitated Harpy Eagles Released in Central American Landscapes: Implications for Reintroduction and Reinforcement Management" Diversity 14, no. 10: 886. https://doi.org/10.3390/d14100886
APA StyleNaveda-Rodríguez, A., Campbell-Thompson, E., Watson, R. T., McCabe, J., & Vargas, F. H. (2022). Dispersal and Space Use of Captive-Reared and Wild-Rehabilitated Harpy Eagles Released in Central American Landscapes: Implications for Reintroduction and Reinforcement Management. Diversity, 14(10), 886. https://doi.org/10.3390/d14100886