Effects of Habitat Loss on the Ecology of Pachyphytum caesium (Crassulaceae), a Specialized Cliff-Dwelling Endemic Species in Central Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Species Description
2.3. Land-Use and Land-Cover Classification (Lulc), Sampling Procedures and Deforestation Rate
2.4. Fragmentation Metrics
2.5. Ecological Distribution, Abundance, and Size Structure
2.6. Environmental Characterization of Sites and Soil Analysis
3. Results
3.1. LULC Sampling Procedures and Deforestation Rate
3.2. Fragmentation Metrics
3.3. Ecological Distribution, Abundance, and Size Structure
3.4. Environmental Characterization of Sites and Soil Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hampe, A. Bioclimate envelope models: What they detect and what they hide. Glob. Ecol. Biogeogr. 2004, 13, 469–476. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.C.; Dye, S.R.; Fernandes, J.A.; Frölicher, T.L.; Pinnegar, J.K.; Warren, R.; Cheung, W.W. Predicting the impact of climate change on threatened species in UK waters. PLoS ONE 2013, 8, e54216. [Google Scholar]
- Alfonso-Corrado, C.; Naranjo-Luna, F.; Clark-Tapia, R.; Campos, J.E.; Rojas-Soto, O.R.; Luna-Krauletz, M.D.; Bodenhorn, B.; Gorgonio-Ramírez, M.; Pacheco-Cruz, N. Effects of Environmental changes on the occurrence of Oreomunnea mexicana (Juglandaceae) in a biodiversity hotspot cloud forest. Forest 2017, 8, 261. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, Q.; Lu, H.; Liu, H.; Guo, Q.; Wang, J.; Jian, S. Wild plant species with extremely small populations require conservation and reintroduction in China. Ambio 2012, 41, 913–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.P.; Chen, G.; Grumbine, R.E.; Dao, Z.; Sun, W.; Guo, H. Conserving plant species with extremely small populations (PSESP) in China. Biodiv. Cons. 2013, 22, 803–809. [Google Scholar] [CrossRef]
- Wade, E.M.; Nadarajan, J.; Yang, X.; Ballesteros, D.; Sun, W.; Pritchard, H.W. Plant species with extremely small populations (PSESP) in China: A seed and spore biology perspective. Plant Divers. 2016, 38, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Gao, Z.; Sun, W.; Zhang, C. High regional genetic differentiation of an endangered relict plant Craigia yunnanensis and implications for its conservation. Plant Divers. 2016, 38, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Qu, H.; Wang, C.-J.; Zhang, Z.-X. Planning priority conservation areas under climate change for six plant species with extremely small populations in China. Nat. Conserv. 2018, 25, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Cai, L.; Liu, D.; Chen, G.; Gratzfeld, J.; Sun, W. China’s conservation program on plant species with extremely small populations (PSESP): Progress and perspectives. Biol. Conserv. 2020, 244, 108535. [Google Scholar] [CrossRef]
- Primack, R.B. A Primer of Conservation Biology; Sinauer Associates Inc.: Sunderland, MA, USA, 2012. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 22, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Nieder, R.; Benbi, D.K. Carbon and Nitrogen in the Terrestrial Environment; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Larson, D.W.; Matthes, U.; Kelly, P.E. Cliff Ecology; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Sims, J.T.; Simard, R.R.; Joern, B.C. Phosphorus loss in agricultural: Historical perspective and current research. J. Environ. Qual. 1998, 27, 277–293. [Google Scholar] [CrossRef] [Green Version]
- Rusterholz, H.P.; Müller, S.W.; Baur, B. Effects of rock climbing on plant communities on exposed limestone cliffs in the Swiss Jura mountains. Appl. Veg. Sci. 2004, 7, 35–40. [Google Scholar] [CrossRef]
- Adams, M.D.; Zanieswki, K. Effects of recreational rock climbing and environmental variation on a sandstone cliff-face lichen community. Botany 2012, 90, 253–259. [Google Scholar] [CrossRef]
- Kimnach, M.; Moran, R. Pachyphytum caesium a new species from Aguascalientes México. Cactus Succul. J. 1993, 65, 59–62. [Google Scholar]
- Etter, J.; Kristen, M. Mexican Cliff-dwellers. Cactus Succul. J. 2006, 78, 251–260. [Google Scholar] [CrossRef]
- Pérez-Calix, E. Crassulaceae Flora de Bajío y de Regiones Adyacentes; Instituto de Ecología A.C.: Michoacán, México, 2008. [Google Scholar]
- Miles, L.; Newton, A.C.; DeFries, R.S.; Ravilious, C.; May, I.; Blyth, S.; Kapos, V.; Gordon, J.E. A global overview of the conservation status of tropical dry forests. J. Biogeog. 2006, 33, 491–505. [Google Scholar] [CrossRef]
- Janzen, D.H. Management of habitat fragments in a tropical dry forest: Growth. Ann. Missouri Bot. Gard. 1988, 78, 105–116. [Google Scholar] [CrossRef]
- Siqueiros-Delgado, M.E.; Rodríguez-Avalos, J.A.; Martínez-Ramírez, J.; Sierra-Muñoz, J.C. Situación actual de la vegetación del estado de Aguascalientes México. Bot. Sci. 2016, 94, 455–470. [Google Scholar] [CrossRef] [Green Version]
- CONABIO. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Portal de Geoinformación Sistema Nacional de Información Sobre Biodiversidad. 2014. Available online: http://www.conabio.gob.mx/informacion/gis/ (accessed on 15 July 2019).
- INEGI. Instituto Nacional de Estadística, Geografía e Informática. Continuo de Elevaciones Mexicano (CEM). 2014. Available online: https://wwwinegiorgmx/app/geo2/elevacionesmex/ (accessed on 1 July 2019).
- Meyrán-García, J.; López-Chávez, L. Las Crasuláceas de México; Sociedad Mexicana de Cactología A.C.: Mexico City, Mexico, 2003. [Google Scholar]
- Parra, V.; Vargas, C.F.; Eguiarte, L.E. Reproductive biology, pollen and seed dispersal, and neighborhood size in the hummingbird-pollinated Echeveria gibbiflora (Crassulaceae). Am. J. Bot. 1993, 80, 153–159. [Google Scholar] [CrossRef]
- Vázquez-Cotero, C.; Sosa, V.; Carrillo-Reyes, P. Phylogenetic position of Echeveria heterosepala (Crassulaceae): A rare species with diagnostic characters of Pachyphytum. Bot. Sci. 2017, 95, 515–526. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rojas, T.J.; Andrade-Rodríguez, M.; Canul-Ku, J.; Castillo-Gutiérrez, A.; Martínez-Fernández, E.; Guillén-Sánchez, D. Viabilidad de polen, receptividad del estigma y tipo de polinización en cinco especies Echeveria en condiciones de invernadero. Rev. Mex. Cienc. Agrícolas 2015, 6, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed 711 Data: Principles and Practices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Pasher, J.; Mitchell, S.W.; King, D.J.; Fahrig, L.; Smith, A.C.; Lindsay, K.E. Optimizing landscape selection for estimating relative effects of landscape variables on ecological responses. Landsc. Ecol. 2013, 28, 371–383. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. 2012. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats (accessed on 5 January 2021).
- FAO. Food & Agriculture Organization. Forest Resources Assessment. Survey of Tropical Forest Cover and Study of Change Processes. Number 130, Roma. 1996. Available online: http://www.fao.org/3/w0015e/w0015e00.htm (accessed on 5 January 2021).
- Profillidis, V.A.; Botzoris, G.N. Modeling of Transport Demand: Analyzing, Calculating and Forecasting Transport Demand; Elsevier: Amsterdam, The Netherlands, 2019; pp. 271–350. [Google Scholar]
- Rosa, I.M.; Gabriel, C.; Carreiras, J.M. Spatial and temporal dimensions of landscape fragmentation across the Brazilian Amazon. Reg. Environ. Chang. 2017, 17, 1687–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurance, W.F.; Vasconcelos, H.L.; Lovejoy, T.E. Forest loss and fragmentation in the Amazon: Implications for wildlife conservation. Oryx 2000, 34, 39–45. [Google Scholar] [CrossRef]
- Midha, N.; Mathur, P.K. Assessment of forest fragmentation in the conservation priority Dudhwa landscape, India using FRAGSTATS computed class level metrics. J. Indian Soc. Remote Sens. 2010, 38, 487–500. [Google Scholar] [CrossRef]
- Thijs, S.; Op De Beeck, M.; Beckers, B.; Truyens, S.; Stevens, V.; Van Hamme, J.D.; Weyens, N.; Vangronsveld, J. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front. Microbiol. 2017, 8, 494. [Google Scholar] [CrossRef]
- R Core Team. R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014; Available online: http://www.R-project.org/ (accessed on 25 July 2019).
- Rhoades, J.D.; Manteghi, N.A.; Shouse, P.J.; Alves, W.J. Estimating soil salinity from saturated soil-paste electrical conductivity. Soil Sci. Soc. Am. J. 1989, 53, 428. [Google Scholar] [CrossRef] [Green Version]
- Black, C. Chemical and Microbiological Properties Methods of Soil Analysis Part 3; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Akoglu, H. User’s guide to correlation coefficients. Turkish J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological Statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Challenger, A. Utilización y Conservación de los Ecosistemas Terrestres de México: Pasado Presente y Futuro; CONABIO: Mexico City, México, 1998. [Google Scholar]
- García-Ruiz, I. Relaciones Especificas Interespecíficas del Género Pachyphytum (Crassulaceae) Empleando Marcadores Genéticos AFLP. Master’s Thesis, University of Colima, Colima, México, 2003. [Google Scholar]
- Clark-Tapia, R.; Quintero, D.G.E. Modificación y pérdida del hábitat. In La Biodiversidad en Aguascalientes: Estudio de Estado; CONABIO: Mexico City, México; Gobierno del Estado de Aguascalientes: Aguascalientes, México, 2008; pp. 148–161. [Google Scholar]
- Ulrey, C.; Quintana-Ascencio, P.F.; Kauffman, G.; Smith, A.B.; Menges, E.S. Life at the top: Long-term demography microclimatic refugia and responses to climate change for a high-elevation southern Appalachian endemic plant. Biol. Conserv. 2016, 200, 80–92. [Google Scholar] [CrossRef]
- García, M.B.; Domingo, D.; Pizarro, M.; Font, X.; Gómez, D.; Ehrlén, J. Rocky habitats as microclimatic refuges for biodiversity A close-up thermal approach. Environ. Exp. Bot. 2020, 170, 103886. [Google Scholar] [CrossRef]
- Diekmann, L.O.; Lawrence, D.; Okin, G.S. Changes in the spatial variation of soils properties following shifting cultivation in a Mexican tropical dry forest. Biogeochemistry 2007, 84, 99–113. [Google Scholar] [CrossRef]
- Powers, J.S. Martın-Spiotta, E. Ecosystem processes and biogeochemical cycles in secondary tropical forest succession. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 497–519. [Google Scholar] [CrossRef]
- da Silva Fraga, V.; Salcedo, I.H. Declines of organic nutrient pools in tropical semi-arid soils under subsistence farming. Soil Sci. Soc. Am. J. 2004, 68, 215–224. [Google Scholar] [CrossRef]
- Matthes-Sears, U.; Larson, D.W. Limitations to seedling growth and survival by the quantity and quality of rooting space: Implications for the establishment of Thuja occidentalis on cliff faces. Intern. J. Plant Sci. 1999, 160, 122–128. [Google Scholar] [CrossRef]
- Kuntz, K.L.; Larson, D.W. Influences of microhabitat constraints and rock-climbing disturbance on cliff-face vegetation communities. Conserv. Biol. 2006, 20, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.W.; Rusterholz, H.P.; Baur, B. Rock climbing alters the vegetation of limestone cliffs in the northern Swiss Jura Mountains. Can. J. Bot. 2004, 82, 862–870. [Google Scholar] [CrossRef]
- Vogler, F.; Reisch, C. Genetic variation on the rocks—The impact of climbing on the population ecology of a typical cliff plant. J. Appl. Ecol. 2011, 48, 899–905. [Google Scholar] [CrossRef]
- Holzschuh, A. Does rock climbing threaten cliff biodiversity?—A critical review. Biol. Conserv. 2016, 204, 153–162. [Google Scholar] [CrossRef]
- Álvarez-Yépiz, J.; Dovčiak, M.; Búrquez, A. Persistence of a rare ancient cycad: Effects of environment and demography. Biol. Conserv. 2011, 144, 122–130. [Google Scholar] [CrossRef]
- Picó, F.X.; Riba, M. Regional-scale demography of Ramonda myconi: Remnant population dynamics in a preglacial relict species. Plant Ecol. 2002, 161, 1–13. [Google Scholar] [CrossRef]
- Silva, J.L.; Mejías, J.A.; García, M.B. Demographic vulnerability in cliff-dwelling Sonchus species endemic to the western Mediterranean. Basic Appl. Ecol. 2015, 16, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Colas, B.; Olivieri, I.; Riba, M. Centaurea corymbosa a cliff-dwelling species tottering on the brink of extinction: A demographic and genetic study. Proc. Natl. Acad. Sci. USA 1997, 94, 3471–3476. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Pascual, E.; Pérez-Arcoiza, A.; Prieto, J.A.; Díaz, T.E. Environmental filtering drives the shape and breadth of the seed germination niche in coastal plant communities. Ann. Bot. 2017, 119, 1169–1177. [Google Scholar] [CrossRef]
- Aronne, G.; Arena, C.; De Micco, V.; Giovanetti, M.; Bounanno, M. Full light and soil drought constrain plant growth in Mediterranean cliffs: The case of Primula palinuri Petanga. Plant Byosyst. 2018, 152, 863–872. [Google Scholar] [CrossRef]
- Cooper, A. Plant species coexistence in cliff habitats. J. Biogeogr. 1997, 24, 483–494. [Google Scholar] [CrossRef]
- Croteau, E.; Mott, C.L. Saving endangered species: A case study using global amphibian declines. Nat. Educ. Knowl. 2013, 4, 9. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clark-Tapia, R.; González-Adame, G.; Campos, J.E.; Aguirre-Hidalgo, V.; Pacheco-Cruz, N.; Von Thaden Ugalde, J.J.; Campista-León, S.; Peinado-Guevara, L.I.; Alfonso-Corrado, C. Effects of Habitat Loss on the Ecology of Pachyphytum caesium (Crassulaceae), a Specialized Cliff-Dwelling Endemic Species in Central Mexico. Diversity 2021, 13, 421. https://doi.org/10.3390/d13090421
Clark-Tapia R, González-Adame G, Campos JE, Aguirre-Hidalgo V, Pacheco-Cruz N, Von Thaden Ugalde JJ, Campista-León S, Peinado-Guevara LI, Alfonso-Corrado C. Effects of Habitat Loss on the Ecology of Pachyphytum caesium (Crassulaceae), a Specialized Cliff-Dwelling Endemic Species in Central Mexico. Diversity. 2021; 13(9):421. https://doi.org/10.3390/d13090421
Chicago/Turabian StyleClark-Tapia, Ricardo, Gabriel González-Adame, Jorge E. Campos, Victor Aguirre-Hidalgo, Nelly Pacheco-Cruz, Juan José Von Thaden Ugalde, Samuel Campista-León, Luz Isela Peinado-Guevara, and Cecilia Alfonso-Corrado. 2021. "Effects of Habitat Loss on the Ecology of Pachyphytum caesium (Crassulaceae), a Specialized Cliff-Dwelling Endemic Species in Central Mexico" Diversity 13, no. 9: 421. https://doi.org/10.3390/d13090421
APA StyleClark-Tapia, R., González-Adame, G., Campos, J. E., Aguirre-Hidalgo, V., Pacheco-Cruz, N., Von Thaden Ugalde, J. J., Campista-León, S., Peinado-Guevara, L. I., & Alfonso-Corrado, C. (2021). Effects of Habitat Loss on the Ecology of Pachyphytum caesium (Crassulaceae), a Specialized Cliff-Dwelling Endemic Species in Central Mexico. Diversity, 13(9), 421. https://doi.org/10.3390/d13090421