A Revised and Improved Version of the Northern Wheatear (Oenanthe oenanthe) Transcriptome
Abstract
:1. Introduction
Bird Migration
2. Materials and Methods
2.1. Sequencing and Transcriptome Assembly
2.2. De Novo Assembly and Post-Processing
2.3. Annotation
3. Results and Discussion
Transcriptome Completeness
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell; Taylor & Francis Group: Abingdon, UK, 2007. [Google Scholar]
- Lewin, B.; Krebs, J.; Goldstein, E.; Kilpatrick, S.T.; Goldstein, E.S. Lewin’s GENES X; Jones & Bartlett Learning: Burlington, MA, USA, 2011. [Google Scholar]
- Nelson, D.L.; Cox, M.M.; Lehninger, A.L. Lehninger Principles of Biochemistry; W.H. Freeman and Company: New York, NY, USA, 2013. [Google Scholar]
- Edfors, F.; Danielsson, F.; Hallström, B.M.; Käll, L.; Lundberg, E.; Pontén, F.; Forsström, B.; Uhlén, M. Gene-specific correlation of RNA and protein levels in human cells and tissues. Mol. Syst. Biol. 2016, 12, 883. [Google Scholar] [CrossRef] [PubMed]
- Jax, E.; Wink, M.; Kraus, R.H. Avian transcriptomics: Opportunities and challenges. J. Ornithol. 2018, 159, 599–629. [Google Scholar] [CrossRef] [Green Version]
- Frias-Soler, R.C.; Pildaín, L.V.; Pârâu, L.G.; Wink, M.; Bairlein, F. Transcriptome signatures in the brain of a migratory songbird. Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 34, 100681. [Google Scholar] [CrossRef]
- Alvarez, M.; Schrey, A.W.; Richards, C.L. Ten years of transcriptomics in wild populations: What have we learned about their ecology and evolution? Mol. Ecol. 2015, 24, 710–725. [Google Scholar] [CrossRef]
- Akman, M.; Carlson, J.E.; Holsinger, K.E.; Latimer, A.M. Transcriptome sequencing reveals population differentiation in gene expression linked to functional traits and environmental gradients in the South. African shrub Protea repens. New Phytol. 2016, 210, 295–309. [Google Scholar] [CrossRef]
- Watson, H.; Videvall, E.; Andersson, M.N.; Isaksson, C. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci. Rep. 2017, 7, 44180. [Google Scholar] [CrossRef]
- Hao, Y.; Xiong, Y.; Cheng, Y.; Song, G.; Jia, C.; Qu, Y.; Lei, F. Comparative transcriptomics of 3 high-altitude passerine birds and their low-altitude relatives. Proc. Nat. Acad. Sci. USA 2019, 116, 11851–11856. [Google Scholar] [CrossRef] [Green Version]
- Hartl, D.L.; Clark, A.G.S. Principles of Population Genetic, 3rd ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 1997; p. 682. [Google Scholar]
- Allendorf, F.W.; Luikart, G.H.; Aitken, S.N. Conservation and the Genetics of Populations, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2013; p. 624. [Google Scholar]
- Gerstein, M.B.; Rozowsky, J.; Yan, K.-K.; Wang, D.; Cheng, C.; Brown, J.B.; Davis, C.A.; Hillier, L.; Sisu, C.; Li, J.J.; et al. Comparative analysis of the transcriptome across distant species. Nature 2014, 512, 445–448. [Google Scholar] [CrossRef]
- Gaye, A.; Doumatey, A.P.; Davis, S.K.; Rotimi, C.N.; Gibbons, G.H. Whole-genome transcriptomic insights into protective molecular mechanisms in metabolically healthy obese African Americans. NPJ Genom. Med. 2018, 3, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guglielmo, C.G. Obese super athletes: Fat-fueled migration in birds and bats. J. Exp. Biol. 2018, 221, jeb165753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McWilliams, S.R.; Guglielmo, C.; Pierce, B.; Klaassen, M. Flying, fasting, and feeding in birds during migration: A nutritional and physiological ecology perspective. J. Avian Biol. 2004, 35, 377–393. [Google Scholar] [CrossRef] [Green Version]
- Guglielmo, C.G. Move that fatty acid: Fuel selection and transport in migratory birds and bats. Integr. Comp. Biol. 2010, 50, 336–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, B.J.; McWilliams, S.R. Seasonal changes in composition of lipid storages in migratory birds: Causes and consequences. Condor 2005, 107, 269–279. [Google Scholar] [CrossRef]
- Smith, S.B.; McWilliams, S.R.; Guglielmo, C.G. Effect of diet composition on plasma metabolite profiles in a migratory songbird. Condor 2007, 109, 48–58. [Google Scholar] [CrossRef]
- Maggini, I.; Bairlein, F. Endogenous rhythms of seasonal migratory body mass changes and nocturnal restlessness in different populations of Northern Wheatear Oenanthe oenanthe. J. Biol. Rhythms 2010, 25, 268–276. [Google Scholar] [CrossRef]
- Maggini, I.; Bulte, M.; Bairlein, F. Endogenous control of fuelling in a migratory songbird. Sci. Nat. 2017, 104, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-cabrero, D.; Cervera, A.; McPherson, A.; Szcze, W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.A. survey of best practices for RNA-seq data analysis. Genome Biol. 2016, 17, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Frias-Soler, R.C.; Villarín-Pildaín, L.; Hotz-Wagenblatt, A.; Kolibius, J.; Bairlein, F.; Wink, M. De novo annotation of the transcriptome of the Northern Wheatear (Oenanthe oenanthe). Peer J. 2018, 6, e5860. [Google Scholar] [CrossRef]
- Bairlein, F.; Eikenaar, C.; Schmaljohann, H. Routes to genes: Unravelling the control of avian migration—An integrated approach using Northern Wheatear. J. Ornithol. 2015, 156, 3–14. [Google Scholar] [CrossRef]
- Bulte, M.; Bairlein, F. Endogenous control of migratory behavior in Alaskan northern wheatears Oenanthe oenanthe. J. Ornithol. 2013, 154, 567–570. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989. [Google Scholar]
- Bolger, A.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Simao, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. Genome analysis BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [Green Version]
- Smith-Unna, R.; Boursnell, C.; Patro, R.; Hibberd, J.M.; Kelly, S. TransRate: Reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 2016, 26, 1134–1144. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997v2. [Google Scholar]
- R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; R-Core-Team: Vienna, Austria, 2020. [Google Scholar]
- Feng, S.; Stiller, J.; Deng, Y.; Armstrong, J.; Fang, Q.; Reeve, A.H.; Xie, D.; Chen, G.; Guo, C.; Faircloth, B.C.; et al. Dense sampling of bird diversity increases power of comparative genomics. Nature 2020, 587, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Opitz, C.A.; Kulke, M.; Leake, M.C.; Neagoe, C.; Hinssen, H.; Hajjar, R.J.; Linke, W.A. Damped elastic recoil of the titin spring in myofibrils of human myocardium. Proc. Nat. Acad. Sci. USA 2003, 100, 12688–12693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tissues | Sum Reads Per Tissue | No. Transcripts | OLD Version | New Version | Supplementary to Old Transcriptome | Supplementary to New Transcriptome |
---|---|---|---|---|---|---|
brain | 83,929,655 | 19,935 | 77.23% | 90.62% | 2.81 × 105 | 3.56 × 105 |
fat | 85,778,304 | 20,021 | 78.40% | 90.44% | 2.38 × 105 | 3.19 × 105 |
intestine | 90,430,088 | 19,886 | 83.42% | 93.89% | 2.03 × 105 | 2.75 × 105 |
liver | 83,935,086 | 19,536 | 86.45% | 94.51% | 1.34 × 105 | 2.43 × 105 |
muscle | 88,422,058 | 19,480 | 85.12% | 95.87% | 2.66 × 105 | 5.52 × 105 |
skin | 92,282,993 | 20,061 | 79.13% | 91.48% | 2.24 × 105 | 3.30 × 105 |
New Version | Old Version | |
---|---|---|
No. transcripts | 20,248 | 21,746 |
Smallest tr. (bp) | 201 | 200 |
Largest tr. (bp) | 19,635 | 14,979 |
No. bases | 47,042,051 | 35,594,477 |
Mean tr. Length | 2323 | 1637 |
No tr. Over 1 kbp | 14,756 | 13,356 |
No tr. Over 10 kbp | 74 | 8 |
No tr. With ORF | 13,279 | 12,167 |
ORF percentage | 47% | 45% |
N90 | 1166 | 811 |
N70 | 2296 | 1422 |
N50 | 3284 | 2165 |
N30 | 4519 | 3118 |
N10 | 6855 | 4820 |
GC content | 46.21% | 43.47% |
Complete BUSCOs | Complete and Single-Copy | Complete and Duplicated | Fragmented | Missing | |
---|---|---|---|---|---|
New transcriptome | 75.3% | 70.8% | 4.6% | 5.1% | 19.6% |
Old transcriptome | 48.1% | 40.7% | 7.4% | 12.5% | 39.4% |
Isoforms | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 20 |
---|---|---|---|---|---|---|---|---|---|---|
Genes | 13,664 | 2064 | 498 | 127 | 49 | 18 | 7 | 2 | 2 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frias-Soler, R.C.; Villarín Pildaín, L.; Wink, M.; Bairlein, F. A Revised and Improved Version of the Northern Wheatear (Oenanthe oenanthe) Transcriptome. Diversity 2021, 13, 151. https://doi.org/10.3390/d13040151
Frias-Soler RC, Villarín Pildaín L, Wink M, Bairlein F. A Revised and Improved Version of the Northern Wheatear (Oenanthe oenanthe) Transcriptome. Diversity. 2021; 13(4):151. https://doi.org/10.3390/d13040151
Chicago/Turabian StyleFrias-Soler, Roberto Carlos, Lilian Villarín Pildaín, Michael Wink, and Franz Bairlein. 2021. "A Revised and Improved Version of the Northern Wheatear (Oenanthe oenanthe) Transcriptome" Diversity 13, no. 4: 151. https://doi.org/10.3390/d13040151
APA StyleFrias-Soler, R. C., Villarín Pildaín, L., Wink, M., & Bairlein, F. (2021). A Revised and Improved Version of the Northern Wheatear (Oenanthe oenanthe) Transcriptome. Diversity, 13(4), 151. https://doi.org/10.3390/d13040151