A Revised and Improved Version of the Northern Wheatear (Oenanthe oenanthe) Transcriptome
Abstract
1. Introduction
Bird Migration
2. Materials and Methods
2.1. Sequencing and Transcriptome Assembly
2.2. De Novo Assembly and Post-Processing
2.3. Annotation
3. Results and Discussion
Transcriptome Completeness
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell; Taylor & Francis Group: Abingdon, UK, 2007. [Google Scholar]
- Lewin, B.; Krebs, J.; Goldstein, E.; Kilpatrick, S.T.; Goldstein, E.S. Lewin’s GENES X; Jones & Bartlett Learning: Burlington, MA, USA, 2011. [Google Scholar]
- Nelson, D.L.; Cox, M.M.; Lehninger, A.L. Lehninger Principles of Biochemistry; W.H. Freeman and Company: New York, NY, USA, 2013. [Google Scholar]
- Edfors, F.; Danielsson, F.; Hallström, B.M.; Käll, L.; Lundberg, E.; Pontén, F.; Forsström, B.; Uhlén, M. Gene-specific correlation of RNA and protein levels in human cells and tissues. Mol. Syst. Biol. 2016, 12, 883. [Google Scholar] [CrossRef] [PubMed]
- Jax, E.; Wink, M.; Kraus, R.H. Avian transcriptomics: Opportunities and challenges. J. Ornithol. 2018, 159, 599–629. [Google Scholar] [CrossRef]
- Frias-Soler, R.C.; Pildaín, L.V.; Pârâu, L.G.; Wink, M.; Bairlein, F. Transcriptome signatures in the brain of a migratory songbird. Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 34, 100681. [Google Scholar] [CrossRef]
- Alvarez, M.; Schrey, A.W.; Richards, C.L. Ten years of transcriptomics in wild populations: What have we learned about their ecology and evolution? Mol. Ecol. 2015, 24, 710–725. [Google Scholar] [CrossRef]
- Akman, M.; Carlson, J.E.; Holsinger, K.E.; Latimer, A.M. Transcriptome sequencing reveals population differentiation in gene expression linked to functional traits and environmental gradients in the South. African shrub Protea repens. New Phytol. 2016, 210, 295–309. [Google Scholar] [CrossRef]
- Watson, H.; Videvall, E.; Andersson, M.N.; Isaksson, C. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci. Rep. 2017, 7, 44180. [Google Scholar] [CrossRef]
- Hao, Y.; Xiong, Y.; Cheng, Y.; Song, G.; Jia, C.; Qu, Y.; Lei, F. Comparative transcriptomics of 3 high-altitude passerine birds and their low-altitude relatives. Proc. Nat. Acad. Sci. USA 2019, 116, 11851–11856. [Google Scholar] [CrossRef]
- Hartl, D.L.; Clark, A.G.S. Principles of Population Genetic, 3rd ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 1997; p. 682. [Google Scholar]
- Allendorf, F.W.; Luikart, G.H.; Aitken, S.N. Conservation and the Genetics of Populations, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2013; p. 624. [Google Scholar]
- Gerstein, M.B.; Rozowsky, J.; Yan, K.-K.; Wang, D.; Cheng, C.; Brown, J.B.; Davis, C.A.; Hillier, L.; Sisu, C.; Li, J.J.; et al. Comparative analysis of the transcriptome across distant species. Nature 2014, 512, 445–448. [Google Scholar] [CrossRef]
- Gaye, A.; Doumatey, A.P.; Davis, S.K.; Rotimi, C.N.; Gibbons, G.H. Whole-genome transcriptomic insights into protective molecular mechanisms in metabolically healthy obese African Americans. NPJ Genom. Med. 2018, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Guglielmo, C.G. Obese super athletes: Fat-fueled migration in birds and bats. J. Exp. Biol. 2018, 221, jeb165753. [Google Scholar] [CrossRef] [PubMed]
- McWilliams, S.R.; Guglielmo, C.; Pierce, B.; Klaassen, M. Flying, fasting, and feeding in birds during migration: A nutritional and physiological ecology perspective. J. Avian Biol. 2004, 35, 377–393. [Google Scholar] [CrossRef]
- Guglielmo, C.G. Move that fatty acid: Fuel selection and transport in migratory birds and bats. Integr. Comp. Biol. 2010, 50, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Pierce, B.J.; McWilliams, S.R. Seasonal changes in composition of lipid storages in migratory birds: Causes and consequences. Condor 2005, 107, 269–279. [Google Scholar] [CrossRef]
- Smith, S.B.; McWilliams, S.R.; Guglielmo, C.G. Effect of diet composition on plasma metabolite profiles in a migratory songbird. Condor 2007, 109, 48–58. [Google Scholar] [CrossRef]
- Maggini, I.; Bairlein, F. Endogenous rhythms of seasonal migratory body mass changes and nocturnal restlessness in different populations of Northern Wheatear Oenanthe oenanthe. J. Biol. Rhythms 2010, 25, 268–276. [Google Scholar] [CrossRef]
- Maggini, I.; Bulte, M.; Bairlein, F. Endogenous control of fuelling in a migratory songbird. Sci. Nat. 2017, 104, 93. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-cabrero, D.; Cervera, A.; McPherson, A.; Szcze, W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.A. survey of best practices for RNA-seq data analysis. Genome Biol. 2016, 17, 1–19. [Google Scholar] [CrossRef]
- Frias-Soler, R.C.; Villarín-Pildaín, L.; Hotz-Wagenblatt, A.; Kolibius, J.; Bairlein, F.; Wink, M. De novo annotation of the transcriptome of the Northern Wheatear (Oenanthe oenanthe). Peer J. 2018, 6, e5860. [Google Scholar] [CrossRef]
- Bairlein, F.; Eikenaar, C.; Schmaljohann, H. Routes to genes: Unravelling the control of avian migration—An integrated approach using Northern Wheatear. J. Ornithol. 2015, 156, 3–14. [Google Scholar] [CrossRef]
- Bulte, M.; Bairlein, F. Endogenous control of migratory behavior in Alaskan northern wheatears Oenanthe oenanthe. J. Ornithol. 2013, 154, 567–570. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989. [Google Scholar]
- Bolger, A.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Simao, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. Genome analysis BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef]
- Smith-Unna, R.; Boursnell, C.; Patro, R.; Hibberd, J.M.; Kelly, S. TransRate: Reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 2016, 26, 1134–1144. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997v2. [Google Scholar]
- R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; R-Core-Team: Vienna, Austria, 2020. [Google Scholar]
- Feng, S.; Stiller, J.; Deng, Y.; Armstrong, J.; Fang, Q.; Reeve, A.H.; Xie, D.; Chen, G.; Guo, C.; Faircloth, B.C.; et al. Dense sampling of bird diversity increases power of comparative genomics. Nature 2020, 587, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Opitz, C.A.; Kulke, M.; Leake, M.C.; Neagoe, C.; Hinssen, H.; Hajjar, R.J.; Linke, W.A. Damped elastic recoil of the titin spring in myofibrils of human myocardium. Proc. Nat. Acad. Sci. USA 2003, 100, 12688–12693. [Google Scholar] [CrossRef] [PubMed]

| Tissues | Sum Reads Per Tissue | No. Transcripts | OLD Version | New Version | Supplementary to Old Transcriptome | Supplementary to New Transcriptome |
|---|---|---|---|---|---|---|
| brain | 83,929,655 | 19,935 | 77.23% | 90.62% | 2.81 × 105 | 3.56 × 105 |
| fat | 85,778,304 | 20,021 | 78.40% | 90.44% | 2.38 × 105 | 3.19 × 105 |
| intestine | 90,430,088 | 19,886 | 83.42% | 93.89% | 2.03 × 105 | 2.75 × 105 |
| liver | 83,935,086 | 19,536 | 86.45% | 94.51% | 1.34 × 105 | 2.43 × 105 |
| muscle | 88,422,058 | 19,480 | 85.12% | 95.87% | 2.66 × 105 | 5.52 × 105 |
| skin | 92,282,993 | 20,061 | 79.13% | 91.48% | 2.24 × 105 | 3.30 × 105 |
| New Version | Old Version | |
|---|---|---|
| No. transcripts | 20,248 | 21,746 |
| Smallest tr. (bp) | 201 | 200 |
| Largest tr. (bp) | 19,635 | 14,979 |
| No. bases | 47,042,051 | 35,594,477 |
| Mean tr. Length | 2323 | 1637 |
| No tr. Over 1 kbp | 14,756 | 13,356 |
| No tr. Over 10 kbp | 74 | 8 |
| No tr. With ORF | 13,279 | 12,167 |
| ORF percentage | 47% | 45% |
| N90 | 1166 | 811 |
| N70 | 2296 | 1422 |
| N50 | 3284 | 2165 |
| N30 | 4519 | 3118 |
| N10 | 6855 | 4820 |
| GC content | 46.21% | 43.47% |
| Complete BUSCOs | Complete and Single-Copy | Complete and Duplicated | Fragmented | Missing | |
|---|---|---|---|---|---|
| New transcriptome | 75.3% | 70.8% | 4.6% | 5.1% | 19.6% |
| Old transcriptome | 48.1% | 40.7% | 7.4% | 12.5% | 39.4% |
| Isoforms | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 20 |
|---|---|---|---|---|---|---|---|---|---|---|
| Genes | 13,664 | 2064 | 498 | 127 | 49 | 18 | 7 | 2 | 2 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frias-Soler, R.C.; Villarín Pildaín, L.; Wink, M.; Bairlein, F. A Revised and Improved Version of the Northern Wheatear (Oenanthe oenanthe) Transcriptome. Diversity 2021, 13, 151. https://doi.org/10.3390/d13040151
Frias-Soler RC, Villarín Pildaín L, Wink M, Bairlein F. A Revised and Improved Version of the Northern Wheatear (Oenanthe oenanthe) Transcriptome. Diversity. 2021; 13(4):151. https://doi.org/10.3390/d13040151
Chicago/Turabian StyleFrias-Soler, Roberto Carlos, Lilian Villarín Pildaín, Michael Wink, and Franz Bairlein. 2021. "A Revised and Improved Version of the Northern Wheatear (Oenanthe oenanthe) Transcriptome" Diversity 13, no. 4: 151. https://doi.org/10.3390/d13040151
APA StyleFrias-Soler, R. C., Villarín Pildaín, L., Wink, M., & Bairlein, F. (2021). A Revised and Improved Version of the Northern Wheatear (Oenanthe oenanthe) Transcriptome. Diversity, 13(4), 151. https://doi.org/10.3390/d13040151

