A Simple Conservation Tool to Aid Restoration of Amphibians following High-Severity Wildfires: Use of PVC Pipes by Green Tree Frogs (Hyla cinerea) in Central Texas, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Focal Species
2.2. Study Area
2.3. Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halliday, T. Why amphibians are important. Int. Zoo Yearb. 2008, 42, 7–14. [Google Scholar] [CrossRef]
- Ficetola, G.F.; De Bernardi, F. Amphibians in a human-dominated landscape: The community structure is related to habitat features and isolation. Biol. Conserv. 2004, 119, 219–230. [Google Scholar] [CrossRef]
- Regester, K.J.; Lips, K.R.; Whiles, M.R. Energy flow and subsidies associated with the complex life cycle of ambystomatid salamanders in ponds and adjacent forest in southern Illinois. Oecologia 2006, 147, 303–314. [Google Scholar] [CrossRef]
- Beard, K.H.; Vogt, K.A.; Kulmatiski, A. Top-down effects of a terrestrial frog on forest nutrient dynamics. Oecologia 2002, 133, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Monastersky, R. Biodiversity: Life—A status report. Nat. News 2014, 516, 158. [Google Scholar] [CrossRef] [PubMed]
- Longcore, J.E.; Pessier, A.P.; Nichols, D.K. Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 1999, 91, 219–227. [Google Scholar] [CrossRef]
- Berger, L.; Speare, R.; Daszak, P.; Green, D.E.; Cunningham, A.A.; Goggin, C.L.; Slocombe, R.; Ragan, M.A.; Hyatt, A.D.; McDonald, K.R.; et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. USA 1998, 95, 9031–9036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, P.T.; Chase, J.M. Parasites in the food web: Linking amphibian malformations and aquatic eutrophication. Ecol. Lett. 2004, 7, 521–526. [Google Scholar] [CrossRef]
- Blaustein, A.R.; Romansic, J.M.; Kiesecker, J.M.; Hatch, A.C. Ultraviolet radiation, toxic chemicals and amphibian population declines. Divers. Distrib. 2003, 9, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Araújo, M.B.; Thuiller, W.; Pearson, R.G. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 2006, 33, 1712–1728. [Google Scholar] [CrossRef]
- McMenamin, S.K.; Hadly, E.A.; Wright, C.K. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc. Natl. Acad. Sci. USA 2008, 105, 16988–16993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cushman, S.A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Conserv. 2006, 128, 231–240. [Google Scholar] [CrossRef]
- Dodd, C.K. Amphibian Ecology and Conservation: A Handbook of Techniques; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Park, I.-K.; Park, D.; Borzée, A. Defining conservation requirements for the Suweon treefrog (Dryophytes suweonensis) using species distribution models. Diversity 2021, 13, 69. [Google Scholar] [CrossRef]
- Zacharow, M.; Barichivich, W.J.; Dodd, C.K., Jr. Using ground-placed PVC pipes to monitor hylid treefrogs: Capture biases. Southeast. Nat. 2003, 2, 575–590. [Google Scholar] [CrossRef]
- Pereira-Ribeiro, J.; Ferreguetti, Á.C.; Bergallo, H.G.; Rocha, C.F.D. Use of polyvinyl chloride pipes (PVC) as potential artificial shelters for amphibians in a coastal plain forest of southeastern Brazil. J. Coast. Conserv. 2017, 21, 327–331. [Google Scholar] [CrossRef]
- Whittaker, L.; Whitworth, A.; Fowler, A.; Brent-Smith, M.; Beirne, C.; Villacampa, J. Bamboo traps as refugia for Pristimantis olivaceus (Anura: Craugastoridae) and as breeding site for Osteocephalus castaneicola (Anura: Hylidae). Phyllomedusa J. Herpetol. 2015, 14, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Pittman, S.E.; Dorcas, M.E. Catawba River corridor coverboard program: A citizen science approach to amphibian and reptile inventory. J. N. C. Acad. Sci. 2006, 122, 142–151. [Google Scholar]
- Bilan, M.V.; Hogan, C.T.; Carter, H.B. Stomatal opening, transpiration, and needle moisture in loblolly pine seedlings from two Texas seed sources. For. Sci. 1977, 23, 457–462. [Google Scholar]
- Brown, D.J.; Swannack, T.M.; Dixon, J.R.; Forstner, M.R. Herpetofaunal survey of the Griffith League Ranch in the lost pines ecoregion of Texas. Tex. J. Sci. 2011, 63, 101–112. [Google Scholar]
- Brown, D.J.; Duarte, A.; Mali, I.; Jones, M.C.; Forstner, M.R. Potential impacts of a high severity wildfire on abundance, movement, and diversity of herpetofauna in the Lost Pines ecoregion of Texas. Herpetol. Conserv. Biol. 2014, 9, 192–205. [Google Scholar]
- Justice, C.J. The effect of prescribed burns and wildfire on vegetation in Bastrop State Park, TX. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 15–19 December 2014; p. 0537. [Google Scholar]
- Lee, R.J.; Chow, T.E. Post-wildfire assessment of vegetation regeneration in Bastrop, Texas, using Landsat imagery. GIScience Remote Sens. 2015, 52, 609–626. [Google Scholar] [CrossRef]
- Spencer, C.N.; Gabel, K.O.; Hauer, F.R. Wildfire effects on stream food webs and nutrient dynamics in Glacier National Park, USA. For. Ecol. Manag. 2003, 178, 141–153. [Google Scholar] [CrossRef]
- Alfaro-Sánchez, R.; Camarero, J.J.; López-Serrano, F.R.; Sánchez-Salguero, R.; Moya, D.; De Las Heras, J. Positive coupling between growth and reproduction in young post-fire Aleppo pines depends on climate and site conditions. Int. J. Wildland Fire 2015, 24, 507–517. [Google Scholar] [CrossRef] [Green Version]
- Schurbon, J.M.; Fauth, J.E. Effects of prescribed burning on amphibian diversity in a southeastern US national forest. Conserv. Biol. 2003, 17, 1338–1349. [Google Scholar] [CrossRef]
- Moulton, C.; Fleming, W.; Nerney, B. The use of PVC pipes to capture hylid frogs. Herpetol. Rev. 1996, 27, 186–187. [Google Scholar]
- Borg, C.K.; Hoss, S.K.; Smith, L.L.; Conner, L.M. A method for preventing flying squirrel mortality in PVC pipe treefrog refugia. Wildl. Soc. Bull. 2004, 32, 1313–1315. [Google Scholar] [CrossRef]
- Campbell, K.R.; Campbell, T.S.; Johnson, S.A. The use of PVC pipe refugia to evaluate spatial and temporal distributions of native and introduced treefrogs. Fla. Sci. 2010, 73, 78–88. [Google Scholar]
- Elston, L.M.; Waddle, J.H.; Rice, K.G.; Percival, H.F. Co-occurrence of invasive Cuban treefrogs and native treefrogs in PVC pipe refugia. Herpetol. Rev. 2013, 44, 406–409. [Google Scholar]
- Moseley, K.R.; Castleberry, S.B.; Schweitzer, S.H. Effects of prescribed fire on herpetofauna in bottomland hardwood forests. Southeast. Nat. 2003, 2, 475–486. [Google Scholar] [CrossRef]
- Langford, G.J.; Borden, J.A.; Major, C.S.; Nelson, D.H. Southern Mississippi pine savanna. Herpetol. Conserv. Biol. 2007, 2, 135–143. [Google Scholar]
- Stambaugh, M.C.; Creacy, G.; Sparks, J.; Rooney, M. Three centuries of fire and forest vegetation transitions preceding Texas’ most destructive wildfire: Lost Pines or lost oaks? For. Ecol. Manag. 2017, 396, 91–101. [Google Scholar] [CrossRef]
- Corbett, L.; Andersen, A.; Müller, W. Terrestrial vertebrates. Fire Trop. Savannas 2003, 169, 126–152. [Google Scholar]
- Pham, L.; Boudreaux, S.; Karhbet, S.; Price, B.; Ackleh, A.S.; Carter, J.; Pal, N. Population estimates of Hyla cinerea (Schneider) (Green Tree Frog) in an urban environment. Southeast. Nat. 2007, 6, 203–216. [Google Scholar] [CrossRef]
- Horn, S.; Hanula, J.L.; Ulyshen, M.D.; Kilgo, J.C. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest. Am. Midl. Nat. 2005, 153, 321–326. [Google Scholar] [CrossRef]
- Conant, R.; Collins, J.T. A Field Guide to Reptiles & Amphibians: Eastern and Central North America; Houghton Mifflin Harcourt: Boston, MA, USA, 1998; Volume 12. [Google Scholar]
- Semlitsch, R.D. Differentiating migration and dispersal processes for pond-breeding amphibians. J. Wildl. Manag. 2008, 72, 260–267. [Google Scholar] [CrossRef]
- Garton, J.S.; Brandon, R.A. Reproductive ecology of the green treefrog, Hyla cinerea, in southern Illinois (Anura: Hylidae). Herpetologica 1975, 31, 150–161. [Google Scholar]
- Ritchie, S.A.; Montague, C.L. Simulated populations of the black salt march mosquito (Aedes taeniorhynchus) in a Florida mangrove forest. Ecol. Model. 1995, 77, 123–141. [Google Scholar] [CrossRef]
- Villamizar-Gomez, A.; Forstner, M.R.; Suriyamongkol, T.; Forks, K.N.; Grant, W.E.; Wang, H.-H.; Mali, I. Prevalence of Batrachochytrium dendrobatidis in two sympatric treefrog species, Hyla cinerea and Hyla versicolor. Herpetol. Rev. 2016, 47, 601–605. [Google Scholar]
- Villamizar-Gomez, A.; Wang, H.-H.; Peterson, M.R.; Grant, W.E.; Forstner, M.R. Environmental determinants of Batrachochytrium dendrobatidis and the likelihood of further dispersion in the face of climate change in Texas, USA. Dis. Aquat. Org. 2021, 146, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.; Noste, N. Evaluating prescribed fires. In Proceedings of the Symposium and Workshop on Wilderness Fire, Missoula, MT, USA, 15–18 November 1983; pp. 230–238. [Google Scholar]
- Turner, M.G.; Hargrove, W.W.; Gardner, R.H.; Romme, W.H. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J. Veg. Sci. 1994, 5, 731–742. [Google Scholar] [CrossRef] [Green Version]
- Ryan, K.C. Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva. Fenn. 2002, 36, 13–39. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.J.; Ferrato, J.R.; White, C.J.; Mali, I.; Forstner, M.R.J.; Simpson, T.R. Short-term changes in summer and winter resident bird communities following a high severity wildfire in a southern USA mixed pine/hardwood forest. For. Ecol. Manag. 2015, 350, 13–21. [Google Scholar] [CrossRef]
- Boughton, R.G.; Staiger, J.; Franz, R. Use of PVC pipe refugia as a sampling technique for hylid treefrogs. Am. Midl. Nat. 2000, 144, 168–177. [Google Scholar] [CrossRef]
- Morrison, D.A.; Morris, E.C. Pseudoreplication in experimental designs for the manipulation of seed germination treatments. Austral Ecol. 2000, 25, 292–296. [Google Scholar] [CrossRef]
- R-Core-Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Fire Executive Council. Guidance for Implementation of Federal Wildland Management Policy; US Department of Agriculture and US Department of Interior: Washington, DC, USA, 2009.
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.R.; Delogu, G.M.; Fernandes, P.M.; Ferreira, C.; McCaffrey, S.; McGee, T.K.; et al. Defining Extreme Wildfire Events: Difficulties, Challenges, and Impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Hunter, M.E.; Robles, M.D. Tamm review: The effects of prescribed fire on wildfire regimes and impacts: A framework for comparison. For. Ecol. Manag. 2020, 475, 118435. [Google Scholar] [CrossRef]
- CIFFC Glossary Task Team and Training Working Group. Canadian Wildland Fire Management Glossary; Canadian Interagency Forest Fire Centre: Winnipeg, MB, Canada, 2017. [Google Scholar]
- Pilliod, D.S.; Bury, R.B.; Hyde, E.J.; Pearl, C.A.; Corn, P.S. Fire and amphibians in North America. For. Ecol. Manag. 2003, 178, 163–181. [Google Scholar] [CrossRef]
- Greenberg, C.H.; Waldrop, T.A. Short-term response of reptiles and amphibians to prescribed fire and mechanical fuel reduction in a southern Appalachian upland hardwood forest. For. Ecol. Manag. 2008, 255, 2883–2893. [Google Scholar] [CrossRef]
- Hromada, S.J.; Howey, C.A.F.; Dickinson, M.B.; Perry, R.W.; Roosenburg, W.M.; Gienger, C.M. Response of reptile and amphibian communities to the reintroduction of fire in an oak/hickory forest. For. Ecol. Manag. 2018, 428, 1–13. [Google Scholar] [CrossRef]
- Hossack, B.R.; Lowe, W.H.; Corn, P.S. Rapid increases and time-lagged declines in amphibian occupancy after wildfire. Conserv. Biol. 2013, 27, 219–228. [Google Scholar] [CrossRef]
- Rochester, C.J.; Brehme, C.S.; Clark, D.R.; Stokes, D.C.; Hathaway, S.A.; Fisher, R.N. Reptile and amphibian responses to large-scale wildfires in southern California. J. Herpetol. 2010, 44, 333–351. [Google Scholar] [CrossRef]
- Brown, D.J.; Nowlin, W.H.; Ozel, E.; Mali, I.; Episcopo, D.; Jones, M.C.; Forstner, M.R. Comparison of short term low, moderate, and high severity fire impacts to aquatic and terrestrial ecosystem components of a southern USA mixed pine/hardwood forest. For. Ecol. Manag. 2014, 312, 179–192. [Google Scholar] [CrossRef]
- Hill, I.D.C.; Dong, B.; Barnes, W.J.P.; Ji, A.; Endlein, T. The biomechanics of tree frogs climbing curved surfaces: A gripping problem. J. Exp. Biol. 2018, 221, jeb168179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langowski, J.K.A.; Rummenie, A.; Pieters, R.P.M.; Kovalev, A.; Gorb, S.N.; van Leeuwen, J.L. Estimating the maximum attachment performance of tree frogs on rough substrates. Bioinspir. Biomim. 2019, 14, 025001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endlein, T.; Barnes, W.J.P.; Samuel, D.S.; Crawford, N.A.; Biaw, A.B.; Grafe, U. Sticking under wet conditions: The remarkable attachment abilities of the Torrent frog, Staurois guttatus. PLoS ONE 2013, 8, e73810. [Google Scholar] [CrossRef] [Green Version]
- Hossack, B.R.; Pilliod, D.S. Amphibian responses to wildfire in the western United States: Emerging patterns from short-term studies. Fire Ecol. 2011, 7, 129–144. [Google Scholar] [CrossRef]
- Borzée, A.; Choi, Y.; Kim, Y.E.; Jablonski, P.G.; Jang, Y. Interspecific variation in seasonal migration and brumation behavior in two closely related species of treefrogs. Front. Ecol. Evol. 2019, 7, 55. [Google Scholar] [CrossRef] [Green Version]
- Brattstrom, B.H. Wildlife mortalities in PVC claim posts. Wildl. Soc. Bull. 1995, 23, 765–766. [Google Scholar]
Mean (±SE) Snout to Urostyle Length (mm) | Mean Weight (g) | |
---|---|---|
Burned areas | 28.62 (±1.23) | 2.37 (±0.30) |
Unburned areas | 35.32 (±0.99) | 3.41 (±0.26) |
Adults | Juveniles | |
---|---|---|
Burned areas | 13 | 76 |
Unburned areas | 52 | 62 |
Adults | Juveniles | |
---|---|---|
38.1-mm diameter | 31 | 65 |
50.8-mm diameter | 32 | 75 |
Adults | Juveniles | |
---|---|---|
Adjacent to ponds | 33 | 93 |
5 m from ponds | 30 | 47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suriyamongkol, T.; Forks, K.; Villamizar-Gomez, A.; Wang, H.-H.; Grant, W.E.; Forstner, M.R.J.; Mali, I. A Simple Conservation Tool to Aid Restoration of Amphibians following High-Severity Wildfires: Use of PVC Pipes by Green Tree Frogs (Hyla cinerea) in Central Texas, USA. Diversity 2021, 13, 649. https://doi.org/10.3390/d13120649
Suriyamongkol T, Forks K, Villamizar-Gomez A, Wang H-H, Grant WE, Forstner MRJ, Mali I. A Simple Conservation Tool to Aid Restoration of Amphibians following High-Severity Wildfires: Use of PVC Pipes by Green Tree Frogs (Hyla cinerea) in Central Texas, USA. Diversity. 2021; 13(12):649. https://doi.org/10.3390/d13120649
Chicago/Turabian StyleSuriyamongkol, Thanchira, Kaitlyn Forks, Andrea Villamizar-Gomez, Hsiao-Hsuan Wang, William E. Grant, Michael R. J. Forstner, and Ivana Mali. 2021. "A Simple Conservation Tool to Aid Restoration of Amphibians following High-Severity Wildfires: Use of PVC Pipes by Green Tree Frogs (Hyla cinerea) in Central Texas, USA" Diversity 13, no. 12: 649. https://doi.org/10.3390/d13120649