Cultural Practices and Mechanical Weed Control for the Management of a Low-Diversity Weed Community in Spinach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Setup
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Weed Biomass
3.2. Spinach Biomass
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morelock, T.E.; Correll, J.C. Spinach. In Vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae, 1st ed.; Prohens, J., Nuez, F., Eds.; Springer: New York, NY, USA, 2008; Volume 1, pp. 189–218. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT. Available online: http://faostat.fao.org (accessed on 14 October 2021).
- Roberts, J.L.; Moreau, R. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food Funct. 2016, 7, 3337–3353. [Google Scholar] [CrossRef]
- Bunea, A.; Andjelkovic, M.; Socaciu, C.; Bobis, O.; Neacsu, M.; Verhé, R.; Van Camp, J. Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chem. 2008, 108, 649–656. [Google Scholar] [CrossRef]
- Cocetta, G.; Baldassarre, V.; Spinardi, A.; Ferrante, A. Effect of cutting on ascorbic acid oxidation and recycling in fresh-cut baby spinach (Spinacia oleracea L.) leaves. Postharvest Biol. Technol. 2014, 88, 8–16. [Google Scholar] [CrossRef]
- Gil, M.I.; Garrido, Y. Leafy vegetables: Fresh and fresh-cut mature spinach. In Controlled and Modified Atmospheres for Fresh and Fresh-Cut Produce; Gil, M.I., Beaudry, R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 551–555. [Google Scholar] [CrossRef]
- Ribera, A.; Bai, Y.; Wolters, A.M.A.; van Treuren, R.; Kik, C. A review on the genetic resources, domestication and breeding history of spinach (Spinacia oleracea L.). Euphytica 2020, 216, 48. [Google Scholar] [CrossRef] [Green Version]
- Van der Vossen, H.A.M. Spinacia oleracea. In Plant Resources of Tropical Africa 2: Vegetables; Grubben, G.J.H., Denton, O.A., Eds.; Backhuys Publishers: Wageningen, The Netherlands, 2004; pp. 513–515. Available online: https://edepot.wur.nl/417517 (accessed on 14 October 2021).
- De Cauwer, B.; Delanote, L.; Devos, M.; De Ryck, S.; Reheul, D. Optimisation of weed control in organic processing spinach (Spinacia oleracea L.): Impacts of cultivar, seeding rate, plant spacing and integrated weed management strategy. Agronomy 2021, 11, 53. [Google Scholar] [CrossRef]
- Lati, R.N.; Rachuy, J.S.; Fennimore, S.A. Weed management in fresh market spinach (Spinacia oleracea) with phenmedipham and cycloate. Weed Technol. 2015, 29, 101–107. [Google Scholar] [CrossRef]
- Wallace, R.W.; Phillips, A.L.; Hodges, J.C. Processing Spinach Response to selected herbicides for weed control, crop injury, and yield. Weed Technol. 2007, 21, 714–718. [Google Scholar] [CrossRef]
- Légére, A.; Stevenson, F.C.; Benoit, D.L. Diversity and assembly of weed communities: Contrasting responses across cropping systems. Weed Res. 2005, 45, 303–315. [Google Scholar] [CrossRef]
- Storkey, J.; Neve, P. What good is weed diversity? Weed Res. 2018, 58, 239–243. [Google Scholar] [CrossRef]
- Travlos, I.S.; Cheimona, N.; Roussis, I.; Bilalis, D.J. Weed-species abundance and diversity indices in relation to tillage systems and fertilization. Front. Environ. Sci. 2018, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Neve, P.; Busi, R.; Renton, M.; Vila-Aiub, M.M. Expanding the eco-evolutionary context of herbicide resistance research. Pest Manag. Sci. 2014, 70, 1385–1393. [Google Scholar] [CrossRef]
- Perrino, E.V.; Calabrese, G. Endangered segetal species in southern Italy: Distribution, conservation status, trends, actions and ethnobotanical notes. Genet. Resour. Crop Evol. 2018, 65, 2107–2134. [Google Scholar] [CrossRef]
- Wallace, R.W.; Miller, T.W.; Masabni, J.G. Sustainable weed control in vegetables. In Weed Control, 1st ed.; Korres, N.E., Burgos, N.R., Duke, S.O., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 404–424. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781315155913-21/sustainable-weed-control-vegetables-russell-wallace-timothy-miller-joseph-masabni (accessed on 13 November 2021).
- Foppa Pedretti, E.; Boakye-Yiadom, K.A.; Valentini, E.; Ilari, A.; Duca, D. Life Cycle Assessment of spinach produced in Central and Southern Italy. Sustainability 2021, 13, 10001. [Google Scholar] [CrossRef]
- Grigg, S. Spinach—A Global Expedition to Understand the Prevalence of Damping off and Practical Management Techniques. 2015. Available online: https://www.issinstitute.org.au/wp-content/uploads/2015/04/Report-Grigg-FINAL-LowRes.pdf (accessed on 14 November 2021).
- Savvas, D.; Akoumianakis, K.; Karapanos, I.; Kontopoulou, C.K.; Ntatsi, G.; Liontakis, A.; Sintori, A.; Ropokis, A.; Akoumianakis, A. Recharging Greek Youth to Revitalize the Agriculture and Food Sector of the Greek Economy. Final Report—Sectoral Study 5. Vegetables: Open-Field and Greenhouse Production. 2015. Available online: https://www.generationag.org/assets/site/public/nodes/1019/1055-Vegetables_Open-Field_and_Greenhouse_Production.pdf (accessed on 14 November 2021).
- Commission Implementing Regulation (EU) 2021/1449 of 3 September 2021 Amending Implementing Regulation (EU) No 540/2011 as Regards the Extension of the Approval Periods of the Active Substances 2-Phenylphenol (Including its Salts Such as the Sodium Salt), 8-Hydroxyquinoline, Amidosulfuron, Bifenox, Chlormequat, Chlorotoluron, Clofentezine, Clomazone, Cypermethrin, Daminozide, Deltamethrin, Dicamba, Difenoconazole, Diflufenican, Dimethachlor, Etofenprox, Fenoxaprop-P, Fenpropidin, Fludioxonil, Flufenacet, Fosthiazate, Indoxacarb, Lenacil, MCPA, MCPB, Nicosulfuron, Paraffin Oils, Paraffin Oil, Penconazole, Picloram, Propaquizafop, Prosulfocarb, Quizalofop-P-Ethyl, Quizalofop-P-Tefuryl, Sulphur, Tetraconazole, Tri-Allate, Triflusulfuron and Tritosulfuron (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R1449&from=EN (accessed on 14 November 2021).
- Lewis, K.A.; Tzilivakis, J.; Warner, D.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 2016, 22, 1050–1064. [Google Scholar] [CrossRef] [Green Version]
- Lati, R.N.; Mou, B.; Rachuy, J.S.; Fennimore, S.A. Light intensity is a main factor affecting fresh market spinach tolerance for phenmedipham. Weed Sci. 2016, 64, 146–153. [Google Scholar] [CrossRef]
- Lati, R.N.; Mou, B.; Rachuy, J.S.; Fennimore, S.A. Evaluation of cycloate followed by evening two-leaf-stage phenmedipham application in fresh market spinach. Weed Technol. 2016, 30, 464–471. [Google Scholar] [CrossRef]
- Heap, I. The International Herbicide-Resistant Weed Database. Available online: www.weedscience.org (accessed on 16 November 2021).
- Pannacci, E.; Lattanzi, B.; Tei, F. Non-chemical weed management strategies in minor crops: A review. Crop Prot. 2017, 96, 44–58. [Google Scholar] [CrossRef]
- Korres, N.E. Agronomic weed control: A trustworthy approach for sustainable weed management. In Non-Chemical Weed Control; Jabar, K., Chauhan, B.S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 97–114. [Google Scholar] [CrossRef]
- Alba, O.S.; Syrovy, L.D.; Duddu, H.S.; Shirtliffe, S.J. Increased seeding rate and multiple methods of mechanical weed control reduce weed biomass in a poorly competitive organic crop. Field Crops Res. 2020, 245, 107648. [Google Scholar] [CrossRef]
- Kanatas, P.J.; Gazoulis, I. The integration of increased seeding rates, mechanical weed control and herbicide application for weed management in chickpea (Cicer arietinum L.). Phytoparasitica 2021, in press. [Google Scholar] [CrossRef]
- Benaragama, D.; Shirtliffe, S.J. Integrating cultural and mechanical methods for additive weed control in organic systems. Agron. J. 2013, 105, 1728–1734. [Google Scholar] [CrossRef]
- Peruzzi, A.; Ginanni, M.; Raffaelli, M.; Borelli, M. Physical weed control in organic spinach production. In Proceedings of the 6th EWRS Workshop on Physical and Cultural Weed Control, Lillehammer, Norway, 8–10 March 2004; Cloutier, D.C., Ascard, J., Eds.; pp. 15–23. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.622.7735&rep=rep1&type=pdf#page=22 (accessed on 9 October 2021).
- Tei, F.; Stagnari, F.; Granier, A. Preliminary results on physical weed control in processing spinach. In Proceedings of the 5th EWRS Workshop on Physical and Cultural Weed Control, Pisa, Italy, 11–13 March 2002; Cloutier, D.C., Ed.; pp. 164–171. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.5384&rep=rep1&type=pdf#page=171 (accessed on 9 October 2021).
- Cloutier, D.C.; Van der Weide, R.Y.; Peruzzi, A.; Leblanc, M.L. Mechanical weed management. In Nonchemical Weed Management: Principles, Concepts and Technology; Upadhyaya, M.K., Blackshaw, R.E., Eds.; CAB International: Wallingford, UK, 2007; pp. 111–134. Available online: https://edepot.wur.nl/116036 (accessed on 10 October 2021).
- DiTomaso, J.M. Approaches for improving crop competitiveness through the manipulation of fertilization strategies. Weed Sci. 1995, 43, 491–497. [Google Scholar] [CrossRef]
- Little, N.G.; DiTommaso, A.; Westbrook, A.S.; Ketterings, Q.M.; Mohler, C.L. Effects of fertility amendments on weed growth and weed-crop competition: A review. Weed Sci. 2021, 69, 132–146. [Google Scholar] [CrossRef]
- Santos, B.M.; Dusky, J.A.; Stall, W.M.; Gilreath, J.P. Effects of phosphorus fertilization on common lambsquarters (Chenopodium album) duration of interference in lettuce (Lactuca sativa). Weed Technol. 2004, 18, 152–156. [Google Scholar] [CrossRef]
- Santos, B.M.; Dusky, J.A.; Stall, W.M.; Gilreath, J.P. Influence of common lambsquarters (Chenopodium album) densities and phosphorus fertilization on lettuce. Crop Prot. 2004, 23, 173–176. [Google Scholar] [CrossRef]
- Su, W.; Liu, B.; Liu, X.; Li, X.; Ren, T.; Cong, R.; Lu, J. Effect of depth of fertilizer banded-placement on growth, nutrient uptake and yield of oilseed rape (Brassica napus L.). Eur. J. Agron. 2015, 62, 38–45. [Google Scholar] [CrossRef]
- Grouner. Grouner—Dischargers of Artificial Rain, Thessaloniki, Greece. 1938. Available online: http://www.grouner.gr/en/products.php?cat=8 (accessed on 15 November 2021).
- Blackshaw, R.E.; Molnar, L.J.; Janzen, H.H. Nitrogen fertilizer timing and application method affect weed growth and competition with spring wheat. Weed Sci. 2004, 52, 614–622. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, R.; Chauhan, B.S. Understanding crop-weed-fertilizer-water interactions and their implications for weed management in agricultural systems. Crop Prot. 2018, 103, 65–72. [Google Scholar] [CrossRef]
- Kanatas, P.; Antonopoulos, N.; Gazoulis, I.; Travlos, I.S. Screening glyphosate-alternative weed control options in important perennial crops. Weed Sci. 2021, 69, 704–718. [Google Scholar] [CrossRef]
- Kanatas, P.; Gazoulis, I.; Travlos, I. Irrigation timing as a practice of effective weed management in established alfalfa (Medicago sativa L.) crop. Agronomy 2021, 11, 550. [Google Scholar] [CrossRef]
- Travlos, I.; Tsekoura, A.; Antonopoulos, N.; Kanatas, P.; Gazoulis, I. Novel sensor-based method (quick test) for the in-season rapid evaluation of herbicide efficacy under real field conditions in durum wheat. Weed Sci. 2021, 69, 147–160. [Google Scholar] [CrossRef]
- Moss, S.R.; Storkey, J.; Cussans, J.W.; Perryman, S.A.M.; Hewitt, M.V. The Broadbalk long-term experiment at Rothamsted: What has it told us about weeds? Weed Sci. 2004, 52, 864–873. [Google Scholar] [CrossRef]
- Pollnac, F.W.; Maxwell, B.D.; Menalled, F.D. Weed community characteristics and crop performance: A neighbourhood approach. Weed Res. 2009, 49, 242–250. [Google Scholar] [CrossRef]
- Borgy, B.; Gaba, S.; Petit, S.; Reboud, X. Non-random distribution of weed species abundance in arable fields. Weed Res. 2012, 52, 383–389. [Google Scholar] [CrossRef]
- Smith, R.G.; Mortensen, D.A.; Ryan, M.R. A new hypothesis for the functional role of diversity in mediating resource pools and weed-crop competition in agroecosystems. Weed Res. 2010, 50, 37–48. [Google Scholar] [CrossRef]
- Adeux, G.; Vieren, E.; Carlesi, S.; Bàrberi, P.; Munier-Jolain, N.; Cordeau, S. Mitigating crop yield losses through weed diversity. Nat. Sustain. 2019, 2, 1018–1026. [Google Scholar] [CrossRef]
- Cierjacks, A.; Pommeranz, M.; Schulz, K.; Almeida-Cortez, J. Is crop yield related to weed species diversity and biomass in coconut and banana fields of northeastern Brazil? Agric. Ecosyst. Environ. 2016, 220, 175–183. [Google Scholar] [CrossRef]
- Ferrero, R.; Lima, M.; Davis, A.S.; Gonzalez-Andujar, J.L. Weed diversity affects soybean and maize yield in a long term experiment in Michigan, USA. Front. Plant Sci. 2017, 8, 236. [Google Scholar] [CrossRef] [Green Version]
- Harker, K.N.; Clayton, G.W.; O’Donovan, J.T. Reducing agroecosystem vulnerability to weed invasion. In Invasive Plants: Ecological and Agricultural Aspects; Inderjit, S., Ed.; Birkhäuser: Basel, Switzerland, 2005; pp. 195–207. [Google Scholar]
- Tracy, B.F.; Renne, I.J.; Gerrish, J.; Sanderson, M.A. Effects of plant diversity on invasion of weed species in experimental pasture communities. Basic Appl. Ecol. 2004, 5, 543–550. [Google Scholar] [CrossRef]
- Wu, H.; Carrillo, J.; Ding, J. Invasion by alligator weed, Alternanthera philoxeroides, is associated with decreased species diversity across the latitudinal gradient in China. J. Plant Ecol. 2016, 9, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Canali, S.; Diacono, M.; Ciaccia, C.; Masetti, O.; Tittarelli, F.; Montemurro, F. Alternative strategies for nitrogen fertilization of overwinter processing spinach (Spinacia oleracea L.) in Southern Italy. Eur. J. Agron. 2014, 54, 47–53. [Google Scholar] [CrossRef]
Month | Weather Parameter | |||||||
---|---|---|---|---|---|---|---|---|
Mean Temperature (°C) | Mean Maximum Temperature (°C) | Mean Minimum Temperature (°C) | Total Precipitation (mm) | |||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
March | 12.7 | 11.2 | 18.1 | 16.1 | 7.3 | 6.3 | 53.0 | 69.8 |
April | 14.8 | 15.1 | 20.7 | 20.7 | 8.9 | 9.5 | 39.8 | 10.2 |
May | 21.0 | 21.2 | 27.3 | 27.4 | 14.7 | 15.0 | 48.8 | 2.8 |
June | 23.2 | 25.0 | 29.1 | 31.6 | 17.3 | 18.4 | 25.6 | 20.6 |
Source | Df 1 | p-Value | |||||
---|---|---|---|---|---|---|---|
S. viridis Biomass | C. album Biomass | Total Weed Biomass | |||||
Eval 2 1 | Eval 2 | Eval 1 | Eval 2 | Eval 1 | Eval 2 | ||
Fertilization (F) | 1 | * 4 | ** | 0.7824 | 0.7506 | * | * |
Error 3 (a) | 3 | ||||||
Intra-Row Spacing (IRS) | 2 | *** | *** | *** | *** | *** | *** |
F × IRS | 2 | 0.9945 | 0.9369 | 0.6569 | 0.5715 | 0.8732 | 0.8519 |
Error (b) | 12 | ||||||
Mechanical Weed Control (MWC) | 2 | *** | *** | *** | *** | *** | *** |
F × WC | 2 | 0.5870 | 0.2438 | 0.9723 | 0.9776 | 0.8794 | 0.8717 |
IRS × WC | 4 | 0.6166 | 0.5279 | 0.5493 | 0.4948 | 0.7835 | 0.8216 |
F × IRS × MWC | 4 | 0.8795 | 0.7829 | 0.9946 | 0.9955 | 0.9996 | 0.9989 |
Error (c) | 36 | ||||||
Total | 71 |
Factors | Weed Biomass | |||||
---|---|---|---|---|---|---|
S. viridis Biomass (g m−2) | C. album Biomass (g m−2) | Total Weed Biomass (g m−2) | ||||
Eval 1 1 | Eval 2 | Eval 1 | Eval 2 | Eval 1 | Eval 2 | |
Fertilization (F) | ||||||
Broadcast | 97.9 a 2 | 164.9 a | 62.0 a | 109.3 a | 164.2 a | 283.4 a |
Banded | 82.9 b | 133.6 b | 61.1 a | 105.2 a | 146.9 b | 246.7 b |
LSDF | 8.58 | 13.63 | 10.24 | 18.45 | 16.23 | 29.40 |
Intra-Row Spacing (IRS) | ||||||
15 cm | 114.3 a | 182.2 a | 85.5 a | 150.7 a | 204.1 a | 343.5 a |
11 cm | 87.8 b | 151.1 b | 60.9 b | 103.9 b | 151.9 b | 262.7 b |
7 cm | 69.2 c | 114.5 c | 38.3 c | 67.1 c | 110.6 c | 188.9 c |
LSDIRS | 15.01 | 24.87 | 12.35 | 21.78 | 26.71 | 47.94 |
Mechanical Weed Control (MWC) | ||||||
Untreated (Control) | 171.9 a | 279.7 a | 105.2 a | 180.6 a | 282.2 a | 472.8 a |
One Treatment (1×) | 65.4 b | 110.4 b | 53.6 b | 95.3 b | 122.1 b | 213.0 b |
Two Treatments (2×) | 34.6 c | 57.7 c | 25.9 c | 45.9 c | 62.4 c | 109.3 c |
LSDMWC | 12.94 | 21.54 | 24.22 | 42.32 | 33.62 | 60.89 |
Source | Df 1 | Spinach Biomass | ||||
---|---|---|---|---|---|---|
p-Value | ||||||
Total Spinach Biomass | Commercial Spinach Biomass | Spinach Waste Proportion | Weed Biomass Proportion | Nitrogen Use Efficiency | ||
Fertilization (F) | 1 | ** 3 | ** | * | * | *** |
Error 2 (a) | 3 | |||||
Intra-Row Spacing (IRS) | 2 | *** | *** | * | *** | *** |
F × IRS | 2 | 0.8985 | 0.9598 | 0.8510 | 0.7064 | 0.1362 |
Error (b) | 12 | |||||
Mechanical Weed Control (MWC) | 2 | *** | *** | *** | *** | *** |
F × MWC | 2 | 0.8704 | 0.7157 | 0.7317 | 0.4892 | 0.1495 |
IRS × MWC | 4 | 0.9944 | 0.9402 | 0.4851 | * | 0.8715 |
F × IRS × MWC | 4 | 0.9996 | 0.9998 | 0.7078 | 0.9732 | 0.9967 |
Error (c) | 36 | |||||
Total | 71 |
Factors | Spinach Biomass | ||||
---|---|---|---|---|---|
Total Spinach Biomass (t ha−1) | Commercial Spinach Biomass (t ha−1) | Spinach Waste Proportion (%) | Weed Biomass Proportion (%) | Nitrogen Use Efficiency (kg kg−1) | |
Fertilization (F) | |||||
Broadcast | 24.1 b 1 | 19.4 b | 20.1 a | 17.6 a | 12.2 b |
Banded | 27.0 a | 22.1 a | 18.6 b | 13.8 b | 19.7 a |
LSDF | 1.19 | 1.22 | 0.71 | 2.48 | 0.77 |
Intra-Row Spacing (IRS) | |||||
15 cm | 21.8 c | 17.4 b | 20.6 a | 22.9 a | 13.7 c |
11 cm | 26.2 b | 21.5 a | 18.5 b | 14.2 b | 16.3 b |
7 cm | 28.6 a | 23.2 a | 19.0 b | 10.1 c | 17.9 a |
LSDIRS | 1.50 | 1.34 | 1.02 | 3.56 | 0.86 |
Mechanical Weed Control (MWC) | |||||
Untreated (Control) | 21.1 c | 16.5 a | 22.0 a | 30.1 a | 13.1 c |
One Treatment (1×) | 26.3 b | 21.4 b | 18.8 b | 11.5 b | 16.4 b |
Two Treatments (2×) | 29.2 a | 24.2 a | 17.3 c | 5.6 c | 18.3 a |
LSDMWC | 1.96 | 1.57 | 1.00 | 3.79 | 1.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gazoulis, I.; Kanatas, P.; Antonopoulos, N. Cultural Practices and Mechanical Weed Control for the Management of a Low-Diversity Weed Community in Spinach. Diversity 2021, 13, 616. https://doi.org/10.3390/d13120616
Gazoulis I, Kanatas P, Antonopoulos N. Cultural Practices and Mechanical Weed Control for the Management of a Low-Diversity Weed Community in Spinach. Diversity. 2021; 13(12):616. https://doi.org/10.3390/d13120616
Chicago/Turabian StyleGazoulis, Ioannis, Panagiotis Kanatas, and Nikolaos Antonopoulos. 2021. "Cultural Practices and Mechanical Weed Control for the Management of a Low-Diversity Weed Community in Spinach" Diversity 13, no. 12: 616. https://doi.org/10.3390/d13120616
APA StyleGazoulis, I., Kanatas, P., & Antonopoulos, N. (2021). Cultural Practices and Mechanical Weed Control for the Management of a Low-Diversity Weed Community in Spinach. Diversity, 13(12), 616. https://doi.org/10.3390/d13120616