Passive Acoustic Monitoring and Automatic Detection of Diel Patterns and Acoustic Structure of Howler Monkey Roars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Groups
2.2. Passive Acoustic Monitoring Protocol
2.3. Automatic Detection and Diel Vocal Behavior
2.4. Acoustic Parameter Extraction Protocol
2.5. Statistics
3. Results
3.1. Automatic Detection and Diel Vocal Behavior
3.2. Differences between Diurnal and Nocturnal Howling Bouts
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Da Cunha, R.G.T.; de Oliveira, D.A.G.; Holzmann, I.; Kitchen, D.M. Production of Loud and Quiet Calls in Howler Monkeys. In Howler Monkeys; Springer: New York, NY, USA, 2015; pp. 337–368. [Google Scholar] [CrossRef]
- Kitchen, D.M.; da Cunha, R.G.T.; Holzmann, I.; de Oliveira, D.A.G. Function of Loud Calls in Howler Monkeys. In Howler Monkeys; Springer: New York, NY, USA, 2015; pp. 369–399. [Google Scholar] [CrossRef]
- Gil-da-Costa, R.; Palleroni, A.; Hauser, M.D.; Touchton, J.; Kelley, J.P. Rapid Acquisition of an Alarm Response by a Neotropical Primate to a Newly Introduced Avian Predator. Proc. Biol. Sci. 2003, 270, 605–610. [Google Scholar] [CrossRef] [Green Version]
- Steinmetz, S. Vocalizações de Longo Alcance Como Comunicação Intra-Grupal Nos Bugios (Alouatta guariba). Neotrop. Primates 2005, 13, 11. [Google Scholar] [CrossRef]
- Pérez-Granados, C.; Schuchmann, K.-L. Passive Acoustic Monitoring of the Diel and Annual Vocal Behavior of the Black and Gold Howler Monkey. Am. J. Primatol. 2021, 83, e23241. [Google Scholar] [CrossRef] [PubMed]
- Bergman, T.J.; Cortés-Ortiz, L.; Dias, P.A.D.; Ho, L.; Adams, D.; Canales-Espinosa, D.; Kitchen, D.M. Striking Differences in the Loud Calls of Howler Monkey Sister Species (Alouatta pigra and A. palliata). Am. J. Primatol. 2016, 78, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Briseño-Jaramillo, M.; Biquand, V.; Estrada, A.; Lemasson, A. Vocal Repertoire of Free-Ranging Black Howler Monkeys’ (Alouatta pigra): Call Types, Contexts, and Sex-Related Contributions. Am. J. Primatol. 2017, 79, e22630. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.J. Nighttime Ecology: The “Nocturnal Problem” Revisited. Am. Nat. 2019, 193, 481–502. [Google Scholar] [CrossRef]
- Cox, D.T.C.; Gardner, A.S.; Gaston, K.J. Diel Niche Variation in Mammals Associated with Expanded Trait Space. Nat. Commun. 2021, 12, 1753. [Google Scholar] [CrossRef]
- Ankel-Simons, F.; Rasmussen, D.T. Diurnality, Nocturnality, and the Evolution of Primate Visual Systems. Am. J. Phys. Anthropol. 2008, 137 (Suppl. S47), 100–117. [Google Scholar] [CrossRef]
- Parga, J.A. Nocturnal Ranging by a Diurnal Primate: Are Ring-Tailed Lemurs (Lemur catta) Cathemeral? Primates 2011, 52, 201–205. [Google Scholar] [CrossRef]
- La, V.T. Diurnal and Nocturnal Birds Vocalize at Night: A Review. Condor 2012, 114, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.L.; Yang, Y.; Niu, K. Into the Night: Camera Traps Reveal Nocturnal Activity in a Presumptive Diurnal Primate, Rhinopithecus brelichi. Primates 2013, 54, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Piel, A.K. Temporal Patterns of Chimpanzee Loud Calls in the Issa Valley, Tanzania: Evidence of Nocturnal Acoustic Behavior in Wild Chimpanzees. Am. J. Phys. Anthropol. 2018, 166, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Vercauteren Drubbel, V.; Gautier, J.P. On the Occurrence of Nocturnal and Diurnal Loud Calls, Differing in Structure and Duration, in Red Howlers (Alouatta seniculus) of French Guyana. Folia Primatol. 1993, 60, 195–209. [Google Scholar] [CrossRef]
- Tagg, N.; McCarthy, M.; Dieguez, P.; Bocksberger, G.; Willie, J.; Mundry, R.; Stewart, F.; Arandjelovic, M.; Widness, J.; Landsmann, A.; et al. Nocturnal Activity in Wild Chimpanzees (Pan troglodytes): Evidence for Flexible Sleeping Patterns and Insights into Human Evolution. Am. J. Phys. Anthropol. 2018, 166, 510–529. [Google Scholar] [CrossRef]
- Chivers, D.J. On the Daily Behaviour and Spacing of Howling Monkey Groups. Folia Primatol. 1969, 10, 48–102. [Google Scholar] [CrossRef] [PubMed]
- Sekulic, R. Daily and Seasonal Patterns of Roaring and Spacing in Four Red Howler Alouatta seniculus Troops. Folia Primatol. 1982, 39, 22–48. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, J.M. Vocally Mediated Reciprocity between Neighbouring Groups of Mantled Howling Monkeys, Alouatta palliata Palliata. Anim. Behav. 1987, 35, 1615–1627. [Google Scholar] [CrossRef]
- Kalan, A.K.; Mundry, R.; Wagner, O.J.J.; Heinicke, S.; Boesch, C.; Kühl, H.S. Towards the Automated Detection and Occupancy Estimation of Primates Using Passive Acoustic Monitoring. Ecol. Indic. 2015, 54, 217–226. [Google Scholar] [CrossRef]
- Sugai, L.S.M.; Silva, T.S.F.; Ribeiro, J.W., Jr.; Llusia, D. Terrestrial Passive Acoustic Monitoring: Review and Perspectives. Bioscience 2019, 69, 15–25. [Google Scholar] [CrossRef]
- Clink, D.J.; Klinck, H. Unsupervised Acoustic Classification of Individual Gibbon Females and the Implications for Passive Acoustic Monitoring. Methods Ecol. Evol. 2021, 12, 328–341. [Google Scholar] [CrossRef]
- Deichmann, J.L.; Acevedo-Charry, O.; Barclay, L.; Burivalova, Z.; Campos-Cerqueira, M.; d’Horta, F.; Game, E.T.; Gottesman, B.L.; Hart, P.J.; Kalan, A.K.; et al. It’s Time to Listen: There Is Much to Be Learned from the Sounds of Tropical Ecosystems. Biotropica 2018, 50, 713–718. [Google Scholar] [CrossRef] [Green Version]
- Darras, K.; Batáry, P.; Furnas, B.J.; Grass, I.; Mulyani, Y.A.; Tscharntke, T. Autonomous Sound Recording Outperforms Human Observation for Sampling Birds: A Systematic Map and User Guide. Ecol. Appl. 2019, 29, e01954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do Nascimento, L.A.; Campos-Cerqueira, M.; Beard, K.H. Acoustic Metrics Predict Habitat Type and Vegetation Structure in the Amazon. Ecol. Indic. 2020, 117, 106679. [Google Scholar] [CrossRef]
- Aide, T.M.; Corrada-Bravo, C.; Campos-Cerqueira, M.; Milan, C.; Vega, G.; Alvarez, R. Real-Time Bioacoustics Monitoring and Automated Species Identification. PeerJ 2013, 1, e103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ICMBio. Instituto Chico Mendes de Conservação da Biodiversidade. Plano de Manejo do Parque Nacional do Viruá. ICMBio, Boa Vista, Roraima. Available online: http://www.icmbio.gov.br/portal/images/stories/docs-planos-de-manejo/parna_virua_pm_diag1.pdf (accessed on 10 January 2020).
- Campos-Cerqueira, M.; Aide, T.M. Improving Distribution Data of Threatened Species by Combining Acoustic Monitoring and Occupancy Modelling. Methods Ecol. Evol. 2016, 7, 1340–1348. [Google Scholar] [CrossRef]
- Audacity Team. Audacity Software 2.4.1; Audacity Team: Pittsburg, PA, USA, 2019. [Google Scholar]
- Hafner, S.; Katz, J. monitoR: Acoustic Template Detection in R. Available online: http://www.uvm.edu/rsenr/vtcfwru/R/?Page=monitoR/monitoR.htm (accessed on 20 March 2019).
- Katz, J.; Hafner, S.D.; Donovan, T. Tools for Automated Acoustic Monitoring within the R Package MonitoR. Bioacoustics 2016, 25, 197–210. [Google Scholar] [CrossRef]
- Ducrettet, M.; Forget, P.M.; Ulloa, J.S.; Yguel, B.; Gaucher, P.; Princé, K.; Haupert, S.; Sueur, J. Monitoring Canopy Bird Activity in Disturbed Landscapes with Automatic Recorders: A Case Study in the Tropics. Biol. Conserv. 2020, 245, 108574. [Google Scholar] [CrossRef]
- Mellinger, D.K.; Clark, C.W. Methods for Automatic Detection of Mysticete Sounds. Mar. Freshw. Behav. Physiol. 1997, 29, 163–181. [Google Scholar] [CrossRef]
- Priyadarshani, N.; Marsland, S.; Castro, I. Automated Birdsong Recognition in Complex Acoustic Environments: A Review. J. Avian Biol. 2018, 49, jav-01447. [Google Scholar] [CrossRef] [Green Version]
- Le Tallec, T.; Perret, M.; Théry, M. Light Pollution Modifies the Expression of Daily Rhythms and Behavior Patterns in a Nocturnal Primate. PLoS ONE 2013, 8, e79250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foote, J.R.; Nanni, L.K.; Schroeder, R. Seasonal Patterns of Nocturnal Singing by Ovenbirds and White-Throated Sparrows. Behaviour 2017, 154, 1275–1295. [Google Scholar] [CrossRef]
- Sueur, J.; Aubin, T.; Simonis, C. Seewave, a Free Modular Tool for Sound Analysis and Synthesis. Bioacoustics 2008, 18, 213–226. [Google Scholar] [CrossRef]
- Tokuda, I.; Riede, T.; Neubauer, J.; Owren, M.J.; Herzel, H. Nonlinear Analysis of Irregular Animal Vocalizations. J. Acoust. Soc. Am. 2002, 111, 2908–2919. [Google Scholar] [CrossRef] [Green Version]
- Boersma, P.; Weenink, D. Praat Software; Praat: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Dunn, J.C.; Halenar, L.B.; Davies, T.G.; Cristobal-Azkarate, J.; Reby, D.; Sykes, D.; Dengg, S.; Fitch, W.T.; Knapp, L.A. Evolutionary Trade-off between Vocal Tract and Testes Dimensions in Howler Monkeys. Curr. Biol. 2015, 25, 2839–2844. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Team, R.C. Nlme: Linear and Nonlinear Mixed Effects Models. Available online: https://svn.r-project.org/R-packages/trunk/nlme (accessed on 20 March 2020).
- Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science. Available online: https://strengejacke.github.io/sjPlot/ (accessed on 20 March 2020).
- Holm, S. Simple sequentially rejective multiple test procedure. Scand. Stat. Theory Appl. 1979, 6, 65–70. Available online: https://www.jstor.org/stable/4615733 (accessed on 20 February 2020).
- Heinicke, S.; Kalan, A.K.; Wagner, O.J.; Mundry, R.; Lukashevich, H.; Kühl, H.S. Assessing the performance of a semi-automated acoustic monitoring system for primates. Methods Ecol. Evol. 2015, 6, 753–763. [Google Scholar] [CrossRef]
- Enari, H.; Enari, H.S.; Okuda, K.; Maruyama, T.; Okuda, K.N. An Evaluation of the Efficiency of Passive Acoustic Monitoring in Detecting Deer and Primates in Comparison with Camera Traps. Ecol. Indic. 2019, 98, 753–762. [Google Scholar] [CrossRef]
- Boubli, J.P.; Urbani, B. Alouatta macconnelli. The IUCN Red List of Threatened Species 2021: E.T198622924A198669499. Available online: https://www.iucnredlist.org/species/198622924/198669499 (accessed on 23 April 2021).
- Chiarello, A.G. Role of Loud Calls in Brown Howlers, Alouatta fusca. Am. J. Primatol. 1995, 36, 213–222. [Google Scholar] [CrossRef]
- Da Cunha, R.G.T.; Byrne, R.W. Roars of Black Howler Monkeys (Alouatta caraya): Evidence for a Function in Inter-Group Spacing. Behaviour 2006, 143, 1169–1199. [Google Scholar] [CrossRef]
- Van Belle, S.; Estrada, A.; Garber, P.A. Spatial and Diurnal Distribution of Loud Calling in Black Howlers (Alouatta pigra). Int. J. Primatol. 2013, 34, 1209–1224. [Google Scholar] [CrossRef]
- Balantic, C.; Donovan, T. Dynamic Wildlife Occupancy Models Using Automated Acoustic Monitoring Data. Ecol. Appl. 2019, 29, e01854. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.; Kitchen, D.M.; Seyfarth, R.M.; Cheney, D.L. Baboon Loud Calls Advertise Male Quality: Acoustic Features and Their Relation to Rank, Age, and Exhaustion. Behav. Ecol. Sociobiol. 2004, 56, 140–148. [Google Scholar] [CrossRef]
- Vannoni, E.; McElligott, A.G. Fallow Bucks Get Hoarse: Vocal Fatigue as a Possible Signal to Conspecifics. Anim. Behav. 2009, 78, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Van Belle, S.; Estrada, A. The Influence of Loud Calls on Intergroup Spacing Mechanism in Black Howler Monkeys (Alouatta pigra). Int. J. Primatol. 2020, 41, 265–286. [Google Scholar] [CrossRef]
- Kitchen, D.M. Alpha Male Black Howler Monkey Responses to Loud Calls: Effect of Numeric Odds, Male Companion Behaviour and Reproductive Investment. Anim. Behav. 2004, 67, 125–139. [Google Scholar] [CrossRef]
- Kitchen, D.M.; Seyfarth, R.M.; Fischer, J.; Cheney, D.L. Loud Calls as Indicators of Dominance in Male Baboons (Papio cynocephalus ursinus). Behav. Ecol. 2013, 53, 374–384. [Google Scholar] [CrossRef]
- Morton, E.S. On the Occurrence and Significance of Motivation-Structural Rules in Some Bird and Mammal Sounds. Am. Nat. 1977, 111, 855–869. [Google Scholar] [CrossRef]
- Demartsev, V.; Bar Ziv, E.; Shani, U.; Goll, Y.; Koren, L.; Geffen, E. Harsh Vocal Elements Affect Counter-Singing Dynamics in Male Rock Hyrax. Behav. Ecol. 2016, 27, 1397–1404. [Google Scholar] [CrossRef]
- Garcia, M.; Wyman, M.T.; Charlton, B.D.; Fitch, W.T.; Reby, D. Response of Red Deer Stags (Cervus elaphus) to Playback of Harsh versus Common Roars. Sci. Nat. 2014, 101, 851–854. [Google Scholar] [CrossRef]
- Townsend, S.W.; Manser, M.B. The Function of Nonlinear Phenomena in Meerkat Alarm Calls. Biol. Lett. 2011, 7, 47–49. [Google Scholar] [CrossRef] [Green Version]
- Riede, T.; Arcadi, A.C.; Owren, M.J. Nonlinear Acoustics in the Pant Hoots of Common Chimpanzees (Pan troglodytes): Vocalizing at the Edge. J. Acoust. Soc. Am. 2007, 121, 1758–1767. [Google Scholar] [CrossRef]
- Reby, D.; McComb, K. Anatomical Constraints Generate Honesty: Acoustic Cues to Age and Weight in the Roars of Red Deer Stags. Anim. Behav. 2003, 65, 519–530. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez-Gómez, J.D.; Dunn, J.C.; Arroyo-Rodríguez, V.; Méndez-Cárdenas, M.G.; Márquez-Arias, A.; Santillán-Doherty, A.M. Role of Emitter and Severity of Aggression Influence the Agonistic Vocalizations of Geoffroy’s Spider Monkeys (Ateles geoffroyi). Int. J. Primatol. 2015, 36, 429–440. [Google Scholar] [CrossRef]
- Mercier, S.; Déaux, E.C.; van de Waal, E.; Bono, A.E.J.; Zuberbühler, K. Correlates of Social Role and Conflict Severity in Wild Vervet Monkey Agonistic Screams. PLoS ONE 2019, 14, e0214640. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, J.M. Acoustic Correlates of Social Contexts and Inferred Internal States in Howling Monkeys (Alouatta palliata). J. Acoust. Soc. Am. 1992, 91, 2465. [Google Scholar] [CrossRef]
- Kitchen, D.M.; Bergman, T.J.; Dias, P.A.D.; Ho, L.; Canales-Espinosa, D.; Cortés-Ortiz, L. Temporal but Not Acoustic Plasticity in Hybrid Howler Monkey (Alouatta palliata × A. pigra) Loud Calls. Int. J. Primatol. 2019, 40, 132–152. [Google Scholar] [CrossRef]
Group Name | Adult Male | Adult Female | Male Subadult | Infant | Total | Occupied Area (ha) |
---|---|---|---|---|---|---|
Calados | 1 | 4 | 1 | 1 | 7 | 0.66 |
Pequi | 1 | 3 | 1 | 1 | 6 | 0.93 |
Viruá | 1 | 3 | 1 | 1 | 6 | 3.35 |
True Positive | True Negative | False Positive | False Negative | |
---|---|---|---|---|
Detections | 61 | 2039 | 0 | 85 |
Acoustic Parameter | Description |
---|---|
Mean frequency (Hz) | Mean spectral frequency of call |
Median frequency (Hz) | Median spectral frequency of call |
Dominant frequency (Hz) | Frequency with highest energy in the call |
Skewness | Spectral symmetry of call |
Kurtosis | Spectral tailedness of call |
First formant (Hz) | First peak of energy in the call spectrum |
Highest frequency (Hz) | Upper frequency bound of the call |
Harmonic-to-noise ratio (dB) | Relative energy given to tonal versus atonal noise |
Duration (s) | Duration of continuous loud calling |
Acoustic Parameter | Diurnal (N = 51) | Nocturnal (N = 51) | t | pa | α b |
---|---|---|---|---|---|
Mean frequency (Hz) | 1063 ± 126 | 1023 ± 89 | −1.77 | 0.070 | 0.630 |
Median frequency (Hz) | 920 ± 125 | 895 ± 89 | −1.03 | 0.300 | 1 |
Dominant frequency (Hz) | 696 ± 264 | 730 ± 277 | 0.11 | 0.900 | 1 |
Skewness | 4.0 ± 0.4 | 4.3 ± 0.4 | 3.05 | 0.002 | 0.018 |
Kurtosis | 20 ± 4.5 | 23 ± 5 | 3.06 | 0.003 | 0.027 |
First formant (Hz) | 457 ± 27 | 494 ± 19 | 7.57 | <0.001 | <0.001 |
Highest frequency (Hz) | 2495 ± 68 | 2569 ± 37 | 6.82 | <0.001 | <0.001 |
Harmonic-to-noise ratio (dB) | 1.16 ± 0.3 | 2.01 ± 0.4 | 11.2 | <0.001 | <0.001 |
Duration (s) | 327 ± 93 | 258 ± 83 | −3.81 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do Nascimento, L.A.; Pérez-Granados, C.; Beard, K.H. Passive Acoustic Monitoring and Automatic Detection of Diel Patterns and Acoustic Structure of Howler Monkey Roars. Diversity 2021, 13, 566. https://doi.org/10.3390/d13110566
Do Nascimento LA, Pérez-Granados C, Beard KH. Passive Acoustic Monitoring and Automatic Detection of Diel Patterns and Acoustic Structure of Howler Monkey Roars. Diversity. 2021; 13(11):566. https://doi.org/10.3390/d13110566
Chicago/Turabian StyleDo Nascimento, Leandro A., Cristian Pérez-Granados, and Karen H. Beard. 2021. "Passive Acoustic Monitoring and Automatic Detection of Diel Patterns and Acoustic Structure of Howler Monkey Roars" Diversity 13, no. 11: 566. https://doi.org/10.3390/d13110566
APA StyleDo Nascimento, L. A., Pérez-Granados, C., & Beard, K. H. (2021). Passive Acoustic Monitoring and Automatic Detection of Diel Patterns and Acoustic Structure of Howler Monkey Roars. Diversity, 13(11), 566. https://doi.org/10.3390/d13110566