Is Morphometry an Indicator of the Number of Sexy Syllables in the Song of Yellow-Fronted Canary (Serinus mozambicus)?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Zone
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Effect of Agroecological Zone
3.2. Effect of Morphological Characters on the Number of Syllables in a Song of the Yellow-Fronted Canary
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hausberger, M. L’apprentissage du chant chez les oiseaux: L’importance des influences sociales. In Parole et Musique Aux Origines du Dialogue Humain; Odile Jacob: Paris, France, 2008; pp. 235–251. [Google Scholar]
- Bi, T.M.K.; Yaokokore-Beibro, H.K.; Konan, E.M.; Odoukpe, S.G.K.; Kouassi, K.P. Oiseaux comme outils d’initiation à la connaissance de la faune et du développement de la personnalité chez les Gouro de la Marahoué, centre ouest de la Cote d’Ivoire. J. Appl. Biosc. 2015, 89, 8337–8347. [Google Scholar]
- Lougbegnon, O.T.; Codjia, J.T.C.; Liboi, M.R. Biodiversité et distribution écologique de l’avifaune des plantations du Sud du Bénin. In Actes du 1er Colloque de l’UAC des Sciences Cultures et Technologies, Agronomie; Cotonou: Cotonou, Benin, 2007; pp. 47–67. [Google Scholar]
- Liu, J.P.; Ma, L.K.; Zhang, Z.Q.; Gu, D.H.; Wang, J.J.; Li, J.J.; Gao, L.J.; Hou, J.H. Aximum frequency of songs reflects body size among male dusky warblers Phylloscopus fuscatus (Passeriformes: Phylloscopidae). Eur. Zool. J. 2017, 84, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Catchpole, C.K.; Slater, P.J.B. Bird Song: Biological Themes and Variations; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Markowitz, J.E.; Ivie, E.; Kligler, L.; Timothy, J. Long-range Order in Canary Song. PLoS Comput. Biol. 2013, 9, e1003052. [Google Scholar] [CrossRef] [Green Version]
- Cynx, J. Experimental determination of a unit of song production in the zebra finch (Taeniopygia guttata). J. Comp. Psychol. 1990, 104, 3–10. [Google Scholar] [CrossRef]
- Aubin, T.; Rybak, F.; Courvoisier, H. Le chant des oiseaux: Un mode de communication sophistiqué. Acou. Tech. 2010, 61, 12–15. [Google Scholar]
- Cazala, A. Codage Neuronal de L’ordre des Signaux Acoustiques Dans les Chants des Oiseaux. Doctoral Dissertation, Université Paris Saclay, Gif-sur-Yvette, France, 2019. [Google Scholar]
- Suthers, R.A.; Vallet, E.; Kreutzer, M. Bilateral coordination and the motor basis of female preference for sexual signals in canary song. J. Exp. Biol. 2012, 215, 2950–2959. [Google Scholar]
- Vallet, E. Communication Inter-Sexuelle Chez un Modèle D’oiseau Chanteur: Le Canari. Doctoral Dissertation, Université Paris Nanterre, Nanterre, France, 1998. [Google Scholar]
- Kreutzer, M.; Vallet, E.; Nagle, L. Female canaries display to songs of early isolated males. Experientia 1996, 52, 277–280. [Google Scholar] [CrossRef]
- Amy, M.; Salvin, P.; Naguib, M.; Leboucher, G. Female signalling to male song in the domestic canary (Serinus canaria). R. Soc. Open Sci. 2015, 2, 140–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monbureau, M.; Barker, J.M.; Leboucher, G.; Balthazart, J. Male song quality modulates c-Fos expression in the auditory forebrain of the female canary. Physiol. Behav. 2015, 147, 7–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasteau, M.; Nagle, L.; Kreutzer, M. Preferences and predispositions for intra-syllabic diversity in female canaries (Serinus canaria). Behaviour 2004, 5, 571–583. [Google Scholar]
- Garcia-Fernandez, V. Qualité du Partenaire et Qualité de L’œuf Chez les Oiseaux. Ph.D. Thesis, Université Paris Ouest La Défense, Nanterre, France, 2009. [Google Scholar]
- Bortolotti, G.R.; Blas, J.; Negro, J.J.; Tella, J.L. A complex plumage pattern as an honest social signal. Anim. Behav. 2006, 72, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Soma, M.; Takahasi, M.; Hasegawa, T.; Okanoya, K. Trade-off s and correlations among multiple song features in the Bengalese finch. Ornithol. Sci. 2016, 5, 77–84. [Google Scholar] [CrossRef]
- Spencer, K.A.; Buchanan, K.L.; Goldsmith, A.R.; Catchpole, C.K. Song as an honest signal of developmental stress in the zebra finch (Taeniopygia guttata). Horm. Behav. 2003, 44, 132–139. [Google Scholar] [CrossRef]
- Nowicki, S.; Searcy, W.A.; Peters, S. Brain development, song learning and mate choice in birds: A review and experimental test of the “nutritional stress hypothesis”. J. Comp. Physiol. A 2002, 188, 1003–1014. [Google Scholar]
- Schmidt, K.L.; Moore, S.D.; MacDougall-Shackleton, E.A.; MacDougall-Shackleton, S.A. Early-life stress affects song complexity, song learning and volume of the brain nucleus RA in adult male song sparrows. Anim. Behav. 2013, 86, 25–35. [Google Scholar] [CrossRef]
- Buchanan, K.L.; Spencer, K.A.; Goldsmith, A.R.; Catchpole, C.K. Song as an honest signal of past developmental stress in the European starling (Sturnus vulgaris). Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 1149–1156. [Google Scholar] [CrossRef] [Green Version]
- Podos, J. Correlated evolution of morphology and vocal signal structure in Darwin’s finches. Nature 2001, 409, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Danchin, E.; Giraldeau, L.-A.; Cézilly, F. Ecologie Comportementale: Cours et Question de Réflexion; Dunod, Collection Sciences Sup: Paris, France, 2005. [Google Scholar]
- Podos, J.; Nowicki, S. Performance limits on birdsong. In Nature’s Music: The Science of Birdsong; Marler, P., Slabbekoorn, H., Eds.; Elsevier/Academic: Amsterdam, The Netherlands, 2004; pp. 318–342. [Google Scholar]
- Ota, N.; Soma, M. Age-dependent song changes in a closed-ended vocal learner: Elevation of song performance after song crystallization. J. Avian Biol. 2014, 45, 566–573. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.L.; Kingma, S.A.; Peters, A. Male songbird indicates body size with low-pitched advertising songs. PLoS ONE 2013, 8, e56717. [Google Scholar] [CrossRef]
- Price, J.J.; Crawford, C.L. Use and characteristics of two singing modes in Pine Warblers. Wilson J. Ornith. 2013, 125, 552–561. [Google Scholar] [CrossRef]
- Holveck, M.-J.; Riebel, K. Preferred songs predict preferred males: Consistency and repeatability of zebra finch females across three test contexts. Anim. Behav. 2007, 74, 297–309. [Google Scholar] [CrossRef]
- Soma, M.; Garamszegi, L.Z. Rethinking birdsong evolution: Meta-analysis of the relationship between song complexity and reproductive success. Behav. Ecol. 2011, 22, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Hesler, N.; Mundry, R.; Sacher, T.; Coppack, T.; Bairlein, F.; Dabelsteen, T. Song repertoire size correlates with measures of body size in Eurasian blackbirds. Behaviour 2012, 149, 645–665. [Google Scholar] [CrossRef]
- Kagawa, H.; Soma, M. Song performance and elaboration as potential indicators of male quality in Java sparrows. Behav. Process. 2013, 99, 138–144. [Google Scholar] [CrossRef]
- Poesel, A.; Kunc, H.P.; Foerster, K.; Johnsen, A.; Kempenaers, B. Early birds are sexy: Male age, dawn song and extrapair paternity in blue tits, Cyanistes (formerly Parus) caeruleus. Anim. Behav. 2006, 72, 531–538. [Google Scholar] [CrossRef]
- Brumm, H. Song amplitude and body size in birds. Behav. Ecol. Sociobiol. 2009, 63, 1157–1165. [Google Scholar] [CrossRef] [Green Version]
- Schuchmann, M.; Siemers, B.M. Variability in echolocation call intensity in a community of horseshoe bats: A role for resource partitioning or communication? PLoS ONE 2010, 5, e12842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, M.J.; Brenowitz, E.A. The role of body size, phylogeny, and ambient noise in the evolution of bird song. Am. Nat. 1985, 126, 87–100. [Google Scholar] [CrossRef]
- Tubaro, P.L.; Mahler, B. Acoustic frequencies and body mass in New World doves. Condor 1998, 100, 54–61. [Google Scholar] [CrossRef]
- Laiolo, P.; Rolando, A.; Delestrade, A.; De Sanctis, A. Vocalizations and morphology: Interpreting the divergence among populations of Chough Pyrrhocorax pyrrhocorax and Alpine Chough P. graculus. Bird Study 2004, 51, 248–255. [Google Scholar] [CrossRef]
- Koetz, A.H.; Westcott, D.A.; Congdon, B.C. Geographical variation in song frequency and structure: The effects of vicariant isolation, habitat type and body size. Anim. Behav. 2007, 74, 1573–1583. [Google Scholar] [CrossRef]
- Potvin, D.A. Larger body size on islands affects silvereye Zosterops lateralis song and call frequency. J. Avian Biol. 2013, 44, 221–225. [Google Scholar] [CrossRef]
- Linhart, P.; Fuchs, R. Song pitch indicates body size and correlates with males response to playback in a songbird. Anim. Behav. 2015, 103, 91–98. [Google Scholar] [CrossRef]
- Mason, N.A.; Burns, K.J. The effect of habitat and body size on the evolution of vocal displays in Thraupidae (tanagers), the largest family of songbirds. Biol. J. Linn. Soc. 2015, 114, 538–551. [Google Scholar] [CrossRef] [Green Version]
- Geberzahn, N.; Goymann, W.; Muck, C.; Cate, C.T. Females alter their song when challenged in a sex-role reversed bird species. Behav. Ecol. Sociobiol. 2009, 64, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, A.; Kizaki, H.; Sekimizu, K.; Kaito, C. No effect of body size on the frequency of calling and courtship song in the two-spotted Cricket, Gryllus bimaculatus. PLoS ONE 2016, 11, e0146999. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.-L.; Mazurek, H. Etude des variations géographiques de la morphologie d’un passereau, Parus caeruleus. Mappemonde Montp. 1986, 3, 22–25. Available online: www.mgm.fr/PUB/Mappemonde/M386/p22-25.pdf (accessed on 12 June 2021).
- Suthers, R.A.; Margoliash, D. Motor control of birdsong. Curr. Opin. Neurobiol. 2002, 12, 684–690. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; p. 201. Available online: www.R-project.org/ (accessed on 13 February 2021).
- Gideon, S. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory; Akademiai Kiado: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Grant, P.R.; Grant, B.R. Predicting microevolutionary responses to directional selection on heritable variation. Evolution 1995, 49, 241–251. [Google Scholar] [CrossRef]
- Grant, P.R.; Grant, B.R. Adaptive radiation of Darwin’s finches. Am. Sci. 2002, 90, 130–139. [Google Scholar] [CrossRef]
- Grant, P.R. Ecology and Evolution of Darwin’s Finches; Princeton University Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Schluter, D.; Price, T.D.; Grant, P.R. Ecological character displacement in Darwins finches. Science 1985, 227, 1056–1059. [Google Scholar] [CrossRef]
- Bowman, R.I. Morphological differentiation and adaptation in the Galápagos finches. Univ. Calif. Publ. Zool. 1961, 58, 1–302. [Google Scholar]
- Lack, D. Darwin’s Finches; Cambridge University Press: Cambridge, UK, 1947. [Google Scholar]
- Dao, B. Caractérisation Phénotypique et Moléculaire des Populations Locales de poules du Togo; Rapport Technique; ITRA/MAEH: Lomé, Togo, 2015. [Google Scholar]
- Assefa, H.; Melesse, A. Morphological and morphometric characterization of indigenous chicken populations in Sheka Zone, South Western Ethiopia. Poult. Fish. Wildl. Sci. 2018, 6, 2. [Google Scholar] [CrossRef]
- Boudjenah, S. Etude des hémoparasites des oiseaux dans la région de Guelma: Cas du Moineau domestique Passer domesticus. Master’s Thesis, Université 8 Mai 1945, Guelma, Algeria, 2015. [Google Scholar]
- Lerch, A.; Nagle, L. Chants et préférences sexuelles chez les oiseaux chanteurs. Acous. Tech. 2010, 61, 16–19. [Google Scholar]
- Rehsteiner, U.; Geisser, H.; Reyer, H.U. Singing and mating success in water pipits: One specific song element makes all the difference. Anim. Behav. 1998, 55, 1471–1481. [Google Scholar] [CrossRef] [Green Version]
- Kipper, S.; Kiefer, S.; Bartsch, C.; Weiss, M. Female calling? Song responses to conspecific call playbacks in nightingales, Luscinia megarhynchos. Anim. Behav. 2015, 100, 60–66. [Google Scholar] [CrossRef]
- Ballentine, B. The ability to perform physically challenging songs predicts age and size in male swamp sparrows, Melospiza georgiana. Anim. Behav. 2009, 77, 973–978. [Google Scholar] [CrossRef]
- Chayet, D. Des oiseaux migrateurs rétrécissent pour s’adapter au changement climatique. Ecol. Lett. 2019. Available online: www.lefigaro.fr/sciences/des-oiseaux-migrateurs-retrecissent-pour-s-adapter-au-changement-climatique-20191206 (accessed on 22 April 2021).
- Dietzen, C.; Voigt, C.; Gahr, M.W.M.; Leitner, S. Phylogeography of island canary (Serinus canaria) populations. J. Ornithol. 2006, 147, 485–494. [Google Scholar] [CrossRef]
- Wei, C.; Price, T.D.; Liu, J.; Alström, P.; Zhang, Y. The evolutionary origin of variation in song length and frequency in the avian family Cettiidae. J. Avian Biol. 2017, 48, 1295–1300. [Google Scholar] [CrossRef]
- Plummer, E.M.; Goller, F. Singing with reduced air sac volume causes uniform decrease in airflow and sound amplitude in the zebra finch. J. Exp. Biol. 2008, 211, 66–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallet, E. Séduire à Coup Sûr: Ce Que Nous Apprennent les Chants des Canaris; Université Paris Nanterre: Nanterre, France, 2016. [Google Scholar]
Afon | Bembèrèkè | Bouca | Djougou | Kandi | N’dali | Nikki | Tamarou | Tchaourou | |
---|---|---|---|---|---|---|---|---|---|
Bembèrèkè | 172 | - | |||||||
Bouca | 171 | 155 | - | ||||||
Djougou | 49 | 173 | 232 | - | |||||
Kandi | 283 | 207 | 357 | 375 | - | ||||
N’dali | 124 | 48 | 107 | 125 | 159 | - | |||
Nikki | 179 | 108 | 47 | 180 | 214 | 55 | - | ||
Tamarou | 139 | 63 | 122 | 140 | 174 | 15 | 70 | - | |
Tchaourou | 236 | 163 | 227 | 189 | 276 | 105 | 185 | 100 | - |
Parakou | 179 | 103 | 162 | 135 | 216 | 55 | 115 | 40 | 60 |
Parameter | Acronym | Definition |
---|---|---|
Total or body length | LongTo | Distance between the tip of the upper mandible and that of the tail (without feather) |
Chest length or chest girth | LongPo | Circumference of the chest taken below the wings and at the level of the protruding region of the keel |
Wing length | LongAi | Length of the wing extended from the junction of the humerus at the spine to the tip of the wing (without feather) |
Spout length | LongBe | Distance between the tip of the upper mandible and the commissure of both mandibles |
Tarsal length | LongTa | Distance between the calcaneus and the ankle (part of the bird’s leg located after the thigh) |
Head length | LongTe | Length between nostrils and neck |
Head width | LargTe | Distance between the two eyebrows |
Tail length | LongQu | Length of central rectrix |
Wing length in flight | LongAV | Distance between the primary flight feathers at the end of the two wings, spreading them apart to mimic bird flight |
Abdomen length | LongAb | Distance between wishbone and cloaca |
Abdomen width | LargAb | Rib cage width |
Thigh length | LongCu | Upper part of the bird’s leg |
Spout height | HautBe | Distance between the lower part of the mandible and the upper part of the mandible (at the base of the beak where plumage begins) |
Spout length | LongBe | Distance from the tip of the beak to the base of the skull |
Variables | Parameters | Agroecological Zone | |||
---|---|---|---|---|---|
AEZ II (n = 48) | AEZ III (n = 66) | AEZ IV (n = 26) | AEZ V (n = 30) | ||
Weight | Mean | 17.38 a | 16.71 c | 17.12 ab | 16.72 c |
CV (%) | 4.78 | 4.70 | 3.12 | 3.22 | |
LongTo | Mean | 12.74 a | 12.35 cd | 12.53 b | 12.28 d |
CV (%) | 0.60 | 2.47 | 1.21 | 1.37 | |
LongBe | Mean | 0.83 c | 0.96 b | 1.12 a | 1.00 b |
CV (%) | 9.24 | 14.11 | 8.94 | 11.55 | |
HautBe | Mean | 0.32 c | 0.39 b | 0.43 a | 0.46 a |
CV (%) | 13.42 | 15.53 | 10.95 | 10.85 | |
IFB | Mean | 6.08 a | 4.88 b | 4.71 b | 4.37 c |
CV (%) | 11.00 | 18.21 | 10.99 | 11.64 | |
LongTe | Mean | 3.17 a | 3.17 a | 3.10 b | 3.14 a |
CV (%) | 2.34 | 2.47 | 2.45 | 2.68 | |
LargTe | Mean | 1.76 a | 1.68 b | 1.62 cd | 1.60 d |
CV (%) | 7.31 | 6.34 | 6.69 | 5.48 | |
LongPo | Mean | 3.07 a | 2.78 b | 2.69 b | 2.76 b |
CV (%) | 3.68 | 9.88 | 4.42 | 6.37 | |
LongAb | Mean | 3.61 a | 3.56 b | 3.55 b | 3.52 b |
CV (%) | 2.31 | 4.55 | 1.47 | 1.45 | |
LargAb | Moy | 2.67 a | 2.54 a | 2.57 a | 2.54 a |
CV (%) | 22.70 | 1.33 | 7.03 | 6.81 | |
LongCu | Moy | 2.32 a | 2.30 ab | 2.29 b | 2.31 ab |
CV (%) | 2.22 | 0.92 | 1.40 | 2.49 | |
LongQu | Moy | 4.90 a | 4.53 b | 4.50 b | 4.44 b |
CV (%) | 1.86 | 5.95 | 5.03 | 2.94 | |
LongTa | Moy | 1.90 c | 1.84 d | 2.02 a | 1.97 b |
CV (%) | 4.56 | 4.89 | 2.85 | 4.38 | |
LongRT | Moy | 0.22 bc | 0.21 d | 0.24 a | 0.23 b |
CV (%) | 4.99 | 4.49 | 3.08 | 4.28 | |
LongAi | Moy | 8.54 b | 8.59 b | 8.57 b | 8.69 a |
CV (%) | 0.82 | 1.39 | 1.05 | 1.18 | |
LongAV | Moy | 21.08 ab | 19.61 c | 20.87 b | 20.05 c |
CV (%) | 4.58 | 8.73 | 8.50 | 6.28 |
Variables | Global Model | Variables Selected | Final Model | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Estimate | Std Error | z | p | Backward/Forward, Criterion = ‘BIC’ | Forward/Backward, Criterion = ‘BIC’ | Backward, Criterion = ‘BIC’ | Forward, Criterion = ‘BIC’ | Backward/Forward, Criterion = ‘AIC’ | Forward/Backward, Criterion = ‘AIC’ | Backward, Criterion = ‘AIC’ | Forward, Criterion = ‘AIC’ | Estimate | Std Error | z | p | |
Intercept | −1064.93 | 973.59 | −1.09 | 0.27 | −121.37 | 23.88 | −5.08 | 3.74 × 107 | ||||||||
Weight | −1.07 | 0.67 | −1.61 | 0.11 | x | x | x | x | ||||||||
LongTo | 3.76 | 5.63 | 0.67 | 0.50 | ||||||||||||
LongBe | −11.02 | 6.92 | −1.59 | 0.11 | x | x | x | x | x | x | x | x | ||||
HautBe | 42.67 | 170.42 | 0.25 | 0.80 | x | x | ||||||||||
IFB | 4.46 | 11.01 | 0.41 | 0.69 | x | x | 0.81 | 0.40 | 2.00 | 0.045 | ||||||
LongTe | 4.07 | 6.88 | 0.59 | 0.55 | ||||||||||||
LargTe | 1.01 | 4.97 | 0.20 | 0.84 | ||||||||||||
LongPo | −0.92 | 4.42 | −0.21 | 0.84 | ||||||||||||
LongAb | 16.93 | 10.04 | 1.69 | 0.09 | x | x | x | x | x | x | x | x | 19.57 | 4.67 | 4.19 | 0.00003 |
LargAb | 1.95 | 9.74 | 0.20 | 0.84 | x | x | ||||||||||
LongCu | 12.81 | 13.09 | 0.98 | 0.33 | x | x | ||||||||||
LongQu | 7.77 | 5.21 | 1.49 | 0.14 | x | x | x | x | x | x | x | 9.60 | 3.01 | 3.19 | 0.001 | |
LongTa | −481.56 | 482.95 | −1.00 | 0.32 | ||||||||||||
LongRT | 4005.70 | 4039.64 | 0.99 | 0.32 | ||||||||||||
LongAi | 103.27 | 106.75 | 0.97 | 0.33 | ||||||||||||
LongAV | 0.09 | 0.63 | 0.14 | 0.89 | ||||||||||||
Residual deviance | 44.93 | 60.36 | 60.36 | 60.36 | 60.36 | 49.35 | 49.48 | 49.35 | 49.48 | 61.25 | ||||||
AIC | 78.93 | 68.36 | 68.36 | 68.36 | 68.36 | 63.35 | 63.48 | 63.35 | 63.48 | 69.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akueson, A.H.G.; Alaye, A.E.; Akossou, A.Y.J. Is Morphometry an Indicator of the Number of Sexy Syllables in the Song of Yellow-Fronted Canary (Serinus mozambicus)? Diversity 2021, 13, 542. https://doi.org/10.3390/d13110542
Akueson AHG, Alaye AE, Akossou AYJ. Is Morphometry an Indicator of the Number of Sexy Syllables in the Song of Yellow-Fronted Canary (Serinus mozambicus)? Diversity. 2021; 13(11):542. https://doi.org/10.3390/d13110542
Chicago/Turabian StyleAkueson, Adoté Hervé Gildas, Ayédèguè Eustache Alaye, and Arcadius Yves Justin Akossou. 2021. "Is Morphometry an Indicator of the Number of Sexy Syllables in the Song of Yellow-Fronted Canary (Serinus mozambicus)?" Diversity 13, no. 11: 542. https://doi.org/10.3390/d13110542
APA StyleAkueson, A. H. G., Alaye, A. E., & Akossou, A. Y. J. (2021). Is Morphometry an Indicator of the Number of Sexy Syllables in the Song of Yellow-Fronted Canary (Serinus mozambicus)? Diversity, 13(11), 542. https://doi.org/10.3390/d13110542