Vertical Stratification of Beetles in Deciduous Forest Communities in the Centre of European Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Procedures
2.3. Identification and Taxonomic Position of Samples
2.4. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species | 1.5 m | 3.5 m | 7.5 m | 12 m | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | M | O | T | M | O | T | M | O | T | M | O | |
Carabidae | ||||||||||||
Calosoma inquisitor (Linnaeus, 1758) | 9 | 0.26 | 4.65 | |||||||||
Limodromus assimilis (Paykull, 1790) | 5 | 0.14 | 2.33 | 3 | 0.09 | 2.33 | ||||||
Histeridae | ||||||||||||
Hister unicolor Linnaeus, 1758 | 1 | 0.03 | 2.33 | |||||||||
Gnathoncus buyssoni Auzat, 1917 | 1 | 0.02 | 2.33 | 1 | 0.02 | 2.33 | ||||||
Margarinotus striola (C.R. Sahlberg, 1819) | 12 | 0.27 | 11.63 | |||||||||
Platysoma lineare Erichson, 1834 | 2 | 0.04 | 4.65 | |||||||||
Silphidae | ||||||||||||
Dendroxena quadrimaculata (Scopoli, 1771) | 1 | 0.02 | 2.33 | 3 | 0.07 | 4.65 | 3 | 0.07 | 4.65 | 8 | 0.19 | 11.63 |
Necrodes littoralis (Linnaeus, 1758) | 4 | 0.09 | 9.3 | 1 | 0.02 | 2.33 | ||||||
Nicrophorus vespilloides Herbst, 1783 | 2 | 0.04 | 2.33 | |||||||||
Oiceoptoma thoracicum (Linnaeus, 1758) | 28 | 0.73 | 18.6 | 4 | 0.1 | 9.3 | 1 | 0.02 | 2.33 | |||
Staphylinidae | ||||||||||||
Staphylinidae sp. | 180 | 4.2 | 76.74 | 86 | 1.98 | 65.12 | 52 | 1.28 | 51.16 | 16 | 0.38 | 27.9 |
Quedius dilatatus (Fabricius, 1787) | 39 | 0.86 | 20.93 | 196 | 4.36 | 27.91 | 243 | 5.72 | 34.88 | 165 | 3.83 | 27.91 |
Scarabaeidae | ||||||||||||
Cetonia aurata (Linnaeus, 1758) | 1 | 0.02 | 2.33 | 1 | 0.02 | 2.33 | 3 | 0.07 | 2.33 | |||
Gnorimus variabilis (Linnaeus, 1758) | 1 | 0.03 | 2.33 | |||||||||
Protaetia fieberi (Kraatz, 1880) | 3 | 0.09 | 2.33 | 3 | 0.08 | 4.65 | 18 | 0.49 | 13.95 | |||
Protaetia marmorata (Fabricus, 1792) | 7 | 0.16 | 11.63 | 83 | 1.99 | 48.84 | 223 | 5.54 | 58.14 | 508 | 12.5 | 65.12 |
Protaetia speciosissima (Scopoli, 1786) | 1 | 0.03 | 2.33 | |||||||||
Protaetia metallica (Herbst, 1782) | 1 | 0.03 | 2.33 | |||||||||
Serica brunnea (Linnaeus, 1758) | 2 | 0.04 | 4.65 | |||||||||
Scirtidae | ||||||||||||
Contacyphon sp. | 1 | 0.02 | 2.33 | 1 | 0.03 | 2.33 | 1 | 0.02 | 2.33 | |||
Microcara testacea (Linnaeus,1767) | 1 | 0.03 | 2.33 | |||||||||
Elateridae | ||||||||||||
Ampedus pomorum (Herbst, 1784) | 1 | 0.02 | 2.33 | |||||||||
Athous haemorrhoidalis (Fabricius, 1801) | 2 | 0.06 | 2.33 | 1 | 0.03 | 2.33 | 1 | 0.03 | 2.33 | |||
Athous subfuscus (O.F. Müller, 1764) | 1 | 0.02 | 2.33 | |||||||||
Dalopius marginatus (Linnaeus, 1758) | 1 | 0.02 | 2.33 | |||||||||
Denticollis linearis (Linnaeus, 1758) | 1 | 0.02 | 2.33 | 1 | 0.02 | 2.33 | ||||||
Elater ferrugineus Linnaeus, 1758 | 1 | 0.03 | 2.33 | |||||||||
Melanotus castanipes (Paykull, 1800) | 1 | 0.02 | 2.33 | |||||||||
Buprestidae | ||||||||||||
Agrilus sp. | 1 | 0.02 | 2.33 | |||||||||
Lampyridae | ||||||||||||
Lampyris noctiluca (Linnaeus, 1758) | 4 | 0.09 | 4.65 | |||||||||
Cantharidae | ||||||||||||
Cantharis nigricans O.F. Müller, 1776 | 3 | 0.07 | 6.98 | 2 | 0.04 | 2.33 | 1 | 0.03 | 2.33 | 3 | 0.07 | 6.98 |
Podabrus alpinus (Paykull, 1798) | 1 | 0.02 | 2.33 | |||||||||
Dermestidae | ||||||||||||
Globicornis emarginata (Gyllenhal, 1808) | 4 | 0.09 | 6.98 | 2 | 0.05 | 2.33 | 6 | 0.14 | 6.98 | |||
Ptinidae | ||||||||||||
Dorcatoma robusta A. Strand, 1938 | 1 | 0.02 | 2.33 | |||||||||
Xyletinus sp. | 1 | 0.03 | 2.33 | |||||||||
Melyridae | ||||||||||||
Dasytes fusculus (Illiger, 1801) | 1 | 0.02 | 2.33 | |||||||||
Dasytes niger (Linnaeus, 1760) | 8 | 0.02 | 2.33 | 1 | 0.02 | 2.33 | ||||||
Malachius bipustulatus (Linnaeus, 1758) | 1 | 0.02 | 2.33 | 2 | 0.04 | 4.65 | 1 | 0.02 | 2.33 | |||
Monotomidae | ||||||||||||
Rhizophagus fenestralis (Linnaeus, 1758) | 3 | 0.07 | 6.98 | 1 | 0.02 | 2.33 | ||||||
Rhizophagus picipes (G.-A. Olivier, 1790) | 1 | 0.03 | 2.33 | |||||||||
Nitidulidae | ||||||||||||
Cryptarcha strigata (Fabricius, 1787) | 665 | 14.9 | 97.67 | 993 | 22.7 | 100 | 993 | 23.15 | 97.67 | 664 | 15.6 | 97.67 |
Cryptarcha undata (G.-A.Olivier, 1790) | 9 | 0.21 | 16.28 | 24 | 0.58 | 34.88 | 27 | 0.65 | 37.21 | 37 | 0.94 | 39.53 |
Cychramus luteus (Fabricius, 1787) | 307 | 6.82 | 55.81 | 88 | 1.96 | 20.93 | 36 | 0.84 | 16.28 | 21 | 0.48 | 13.95 |
Cychramus variegatus (Herbst, 1792) | 5 | 0.11 | 9.3 | 5 | 0.11 | 9.3 | ||||||
Cyllodes ater (Herbst, 1792) | 1 | 0.02 | 2.33 | 2 | 0.04 | 4.65 | ||||||
Epuraea guttata (G.-A. Olivier, 1811) | 7 | 0.15 | 13.95 | 5 | 0.12 | 11.63 | 4 | 0.1 | 6.98 | |||
Epuraea sp. | 91 | 2.2 | 58.14 | 40 | 0.95 | 41.86 | 21 | 0.51 | 27.91 | 40 | 0.9 | 16.28 |
Glischrochilus grandis (Tournier, 1872) | 78 | 1.92 | 37.21 | 81 | 1.87 | 27.91 | 24 | 0.58 | 18.6 | 11 | 0.26 | 11.63 |
Glischrochilus hortensis (Geoffroy, 1785) | 392 | 8.96 | 69.76 | 291 | 6.51 | 46.51 | 127 | 3.06 | 32.56 | 81 | 1.95 | 30.23 |
Glischrochilus quadriguttatus (Fabricius, 1777) | 35 | 0.79 | 30.23 | 18 | 0.41 | 23.26 | 8 | 0.2 | 9.3 | |||
Glischrochilus quadripunctatus (Linnaeus, 1758) | 39 | 0.87 | 30.23 | 11 | 0.24 | 18.6 | 2 | 0.04 | 4.65 | 2 | 0.04 | 4.65 |
Glischrochilus quadrisignatus (Say, 1835) | 1 | 0.02 | 2.33 | 1 | 0.02 | 2.33 | 1 | 0.02 | 2.33 | |||
Meligethes sp. | 1 | 0.03 | 2.33 | |||||||||
Omosita depressa (Linnaeus, 1758) | 1 | 0.02 | 2.33 | 1 | 0.02 | 2.33 | ||||||
Omosita discoidea (Fabricius, 1775) | 1 | 0.02 | 2.33 | |||||||||
Soronia grisea (Linnaeus, 1758) | 82 | 1.99 | 46.51 | 143 | 3.57 | 53.49 | 84 | 2.17 | 39.53 | 52 | 1.29 | 32.56 |
Soronia punctatissima (Illiger, 1794) | 1 | 0.02 | 2.33 | 1 | 0.02 | 2.33 | 1 | 0.02 | 2.33 | |||
Cucujidae | ||||||||||||
Cucujus haematodes (Erichson, 1845) | 1 | 0.03 | 2.33 | |||||||||
Pediacus depressus (Herbst, 1797) | 4 | 0.09 | 6.98 | 1 | 0.03 | 2.33 | ||||||
Coccinellidae | ||||||||||||
Calvia decemguttata (Linnaeus, 1767) | 1 | 0.02 | 2.33 | 1 | 0.02 | 2.33 | 1 | 0.03 | 2.33 | |||
Chilocorus renipustulatus (L.G. Scriba, 1791) | 1 | 0.03 | 2.33 | |||||||||
Psyllobora vigintiduopunctata (Linnaeus, 1758) | 1 | 0.03 | 2.33 | |||||||||
Melandryidae | ||||||||||||
Orchesia fasciata (Illiger, 1798) | 1 | 0.02 | 2.33 | |||||||||
Orchesia micans (Panzer, 1793) | 1 | 0.02 | 2.33 | |||||||||
Phloiotrya subtilis (Reitter, 1897) | 1 | 0.02 | 2.33 | |||||||||
Mycetophagidae | ||||||||||||
Litargus connexus (Geoffroy, 1785) | 2 | 0.05 | 4.65 | 2 | 0.04 | 4.65 | ||||||
Mycetophagus ater (Reitter, 1879) | 1 | 0.02 | 2.33 | 1 | 0.02 | 2.33 | ||||||
Mycetophagus piceus (Fabricius, 1777) | 1 | 0.02 | 2.33 | |||||||||
Mycetophagus quadripustulatus (Linnaeus, 1760) | 1 | 0.02 | 2.33 | 1 | 0.02 | 2.33 | ||||||
Mordellidae | ||||||||||||
Mordellochroa abdominalis (Fabricius, 1775) | 1 | 0.02 | 2.33 | |||||||||
Tomoxia bucephala A. Costa, 1854 | 1 | 0.02 | 2.33 | |||||||||
Tenebrionidae | ||||||||||||
Bolitophagus reticulatus (Linnaeus, 1767) | 1 | 0.03 | 2.33 | |||||||||
Lagria hirta (Linnaeus, 1758) | 1 | 0.02 | 2.33 | 1 | 0.02 | 2.33 | ||||||
Pyrochroidae | ||||||||||||
Schizotus pectinicornis (Linnaeus, 1758) | 1 | 0.03 | 2.33 | |||||||||
Pyrochroa coccinea (Linnaeus, 1760) | 1 | 0.02 | 2.33 | |||||||||
Cerambycidae | ||||||||||||
Alosterna ingrica (Baeckmann, 1902) | 1 | 0.02 | 2.33 | 1 | 0.02 | 2.33 | ||||||
Alosterna tabacicolor (De Geer, 1775) | 4 | 0.09 | 2.33 | |||||||||
Anoplodera sexguttata (Fabricius, 1775) | 1 | 0.02 | 2.33 | |||||||||
Dinoptera collaris (Linnaeus, 1758) | 1 | 0.02 | 2.33 | 1 | 0.02 | 2.33 | 1 | 0.02 | 2.33 | 1 | 0.03 | 2.33 |
Leptura quadrifasciata Linnaeus, 1758 | 9 | 0.2 | 11.63 | 6 | 0.13 | 9.3 | 4 | 0.09 | 6.98 | 4 | 0.09 | 9.3 |
Leptura thoracica (Creutzer, 1799) | 2 | 0.04 | 2.33 | 7 | 0.16 | 4.65 | 6 | 0.14 | 6.98 | 5 | 0.12 | 9.3 |
Molorchus minor (Linnaeus, 1758) | 2 | 0.04 | 4.65 | |||||||||
Necydalis major Linnaeus, 1758 | 1 | 0.02 | 2.33 | 1 | 0.03 | 2.33 | 1 | 0.03 | 2.33 | |||
Nivellia sanguinosa (Gyllenhal, 1827) | 3 | 0.07 | 6.98 | |||||||||
Obrium cantharinum (Linnaeus, 1767) | 1 | 0.03 | 2.33 | |||||||||
Oplosia cinerea (Mulsant, 1839) | 1 | 0.02 | 2.33 | |||||||||
Rhagium mordax (DeGeer, 1775) | 42 | 0.94 | 23.26 | 9 | 0.2 | 9.3 | 10 | 0.22 | 11.63 | 23 | 0.56 | 18.6 |
Rhagium sycophanta (Schrank, 1781) | 1 | 0.03 | 2.33 | 1 | 0.02 | 2.33 | 2 | 0.06 | 2.33 | |||
Stenocorus meridianus (Linnaeus, 1758) | 2 | 0.04 | 4.65 | 1 | 0.03 | 2.33 | ||||||
Orsodacnidae | ||||||||||||
Orsodacne cerasi (Linnaeus, 1758) | 1 | 0.03 | 2.33 | |||||||||
Anthribidae | ||||||||||||
Gonotropis dorsalis (Gyllenhal, 1813) | 1 | 0.03 | 2.33 | |||||||||
Curculionidae | ||||||||||||
Anisandrus dispar (Fabricius, 1792) | 19 | 0.52 | 9.3 | 6 | 0.16 | 4.65 | 6 | 0.16 | 6.98 | 4 | 0.11 | 4.65 |
Phyllobius argentatus (Linnaeus, 1758) | 4 | 0.09 | 6.98 | 6 | 0.13 | 9.3 | 1 | 0.02 | 2.33 | |||
Phyllobius jacobsoni Smirnov, 1913 | 1 | 0.02 | 2.33 | |||||||||
Phyllobius pomaceus Gyllenhal, 1834 | 2 | 0.06 | 2.33 | 1 | 0.03 | 2.33 | ||||||
Platystomos albinus (Linnaeus, 1758) | 1 | 0.02 | 2.33 | |||||||||
Strophosoma capitatum (DeGeer, 1775) | 1 | 0.02 | 2.33 | |||||||||
Xyleborinus saxesenii (Ratzeburg, 1837) | 3 | 0.09 | 2.33 |
References
- Romano, V.A.; Rosati, L.; Fascetti, S. Trends in population size of Ophrys argolica subsp. biscutella in the Appennino Lucano-Val d’Agri-Lagonegrese National Park (Italy). Nat. Conserv. Res. 2020, 5 (Suppl. S1), 155–164. [Google Scholar] [CrossRef]
- Sergeev, M.E. Species composition and biotopic distribution of leaf beetles (Coleoptera: Megalopodidae, Chrysomelidae) in the Sikhote-Alin State Nature Reserve (Russia). Nat. Conserv. Res. 2020, 5, 80–88. [Google Scholar] [CrossRef]
- Popkova, T.V.; Zryanin, V.A.; Ruchin, A.B. The ant fauna (Hymenoptera: Formicidae) of the Mordovia State Nature Reserve, Russia. Nat. Conserv. Res. 2021, 6, 45–57. [Google Scholar] [CrossRef]
- Weiss, M.; Didham, R.K.; Procházka, J.; Schlaghamerský, J.; Basset, Y.; Odegaard, F.; Tichechkin, A.; Schmidl, J.; Floren, A.; Curletti, G.; et al. Saproxylic beetles in tropical and temperate forests—A standardized comparison of vertical stratification patterns. For. Ecol. Manag. 2019, 444, 50–58. [Google Scholar] [CrossRef]
- DeVries, P.J. Stratification of fruit-feeding nymphalid butterflies in a Costa Rican rainforest. J. Res. Lepid. 1988, 26, 98–108. [Google Scholar]
- Santos, J.; Iserhard, C.; Carreira, J.; Freitas, A. Monitoring fruit-feeding butterfly assemblages in two vertical strata in seasonal Atlantic forest: Temporal species turnover is lower in the canopy. J. Trop. Ecol. 2017, 33, 345–355. [Google Scholar] [CrossRef]
- Ruchin, A.B. Seasonal dynamics and spatial distribution of lepidopterans in selected locations in Mordovia, Russia. Biodiversitas 2021, 22, 2569–2575. [Google Scholar] [CrossRef]
- Rubik, D.W. Tropical pollinators in the canopy and understory: Field data and theory for stratum preferences. J. Insect Behav. 1993, 6, 659–673. [Google Scholar] [CrossRef]
- Ulyshen, M.D.; Soon, V.; Hanula, J.L. Vertical distribution and seasonality of predatory wasps (Hymenoptera: Vespidae) in a temperate deciduous forest. Fla. Entomol. 2011, 94, 1068–1070. [Google Scholar] [CrossRef]
- Giovanni, F.; Mei, M.; Cerretti, P. Vertical stratification of selected Hymenoptera in a remnant forest of the Po Plain (Italy, Lombardy) (Hymenoptera: Ampulicidae, Crabronidae, Sphecidae). Fragm. Entomol. 2017, 49, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Urban-Mead, K.R.; Muñiz, P.; Gillung, J.; Espinoza, A.; Fordyce, R.; van Dyke, M.; McArt, S.H.; Danforth, B.N. Bees in the trees: Diverse spring fauna in temperate forest edge canopies. For. Ecol. Manag. 2021, 482, 118903. [Google Scholar] [CrossRef]
- Gruppe, A.; Schubert, H. The spatial distribution and plant specificity of Neuropterida in different forest sites in Southern Germany (Raphidioptera and Neuroptera). Beitr. Zur Entomol. 2001, 51, 517–527. [Google Scholar] [CrossRef]
- Makarkin, V.N.; Ruchin, A.B. Materials on the Neuroptera and Raphidioptera fauna in Mordovia and adjacent regions of European Russia. Proc. Mordovia State Nat. Reserve 2020, 24, 161–181. [Google Scholar]
- Kato, M.; Inque, T.; Hamid, A.A.; Nagamitsu, T.; Merdek, M.B.; Nona, A.R.; Itino, T.; Yamane, S.; Yumoto, T. Seasonality and vertical structure of light-attracted insect communities in a dipterocarp forest in Sarawak. Res. Popul. Ecol. 1995, 37, 59–79. [Google Scholar] [CrossRef]
- Birtele, D.; Hardersen, S. Analysis of vertical stratification of Syrphidae (Diptera) in an oak-hornbeam forest in northern Italy. Ecol. Res. 2012, 27, 755–763. [Google Scholar] [CrossRef]
- Dvořák, L.; Dvořáková, K.; Oboňa, J.; Ruchin, A.B. Selected Diptera families caught with beer traps in the Republic of Mordovia (Russia). Nat. Conserv. Res. 2020, 5, 65–77. [Google Scholar] [CrossRef]
- Sutton, S.L.; Hudson, P.J. The vertical distribution of small flying insects in the lowland rain forest of Zaire. Zool. J. Linn. Soc. 1980, 68, 111–124. [Google Scholar] [CrossRef]
- Kirstová, M.; Pyszko, P.; Šipoš, J.; Drozd, P.; Kočárek, P. Vertical distribution of earwigs (Dermaptera: Forficulidae) in a temperate lowland forest, based on sampling with a mobile aerial lift platform. Entomol. Sci. 2017, 20, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Procházka, J.; Cizek, L.; Schlaghamerský, J. Vertical stratification of scolytine beetles in temperate forests. Insect Conserv. Divers. 2018, 11, 534–544. [Google Scholar] [CrossRef]
- Charles, E.; Basset, Y. Vertical stratification of leaf-beetle assemblages (Coleoptera: Chrysomelidae) in two forest types in Panama. J. Trop. Ecol. 2005, 21, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Graham, E.E.; Poland, T.M.; McCullough, D.G.; Millar, J.G. A comparison of trap type and height for capturing cerambycid beetles (Coleoptera). J. Econ. Entomol. 2012, 105, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Vance, C.C.; Kirby, K.R.; Malcolm, J.R.; Smith, S.M. Community composition of longhorned beetles (Coleoptera: Cerambycidae) in the canopy and understorey of sugar maple and white pine stands in south-central Ontario. Environ. Entomol. 2003, 32, 1066–1074. [Google Scholar] [CrossRef]
- Puker, A.; Correa, C.M.A.; Silva, A.S.; Silva, J.V.O.; Korasaki, V.; Grossi, P.C. Effects of fruit-baited trap height on flower and leaf chafer scarab beetles sampling in Amazon rainforest. Entom. Sci. 2020, 23, 245–255. [Google Scholar] [CrossRef]
- Vodka, Š.; Cizek, L. The effects of edge-interior and understorey-canopy gradients on the distribution of saproxylic beetles in a temperate lowland forest. For. Ecol. Manag. 2013, 304, 33–41. [Google Scholar] [CrossRef]
- Stork, N.E.; Grimbacher, P.S. Beetle assemblages from an Australian tropical rainforest show that the canopy and the ground strata contribute equally to biodiversity. Proc. R. Soc. B Biol. Sci. 2006, 273, 1969–1975. [Google Scholar] [CrossRef] [Green Version]
- Hirao, T.; Murakami, M.; Kashizaki, A. Importance of the understory stratum to entomofaunal diversity in a temperate deciduous forest. Ecol. Res. 2009, 24, 263–272. [Google Scholar] [CrossRef]
- Bouget, C.; Brin, A.; Brustel, H. Exploring the “last biotic frontier”: Are temperate forest canopies special for saproxylic beetles? For. Ecol. Manag. 2011, 261, 211–220. [Google Scholar] [CrossRef]
- Butler, L.; Kondo, V.; Barrows, E.M.; Townsend, E.C. Effects of Weather Conditions and Trap Types on Sampling for Richness and Abundance of Forest Macrolepidoptera. Environ. Entomol. 1999, 28, 795–811. [Google Scholar] [CrossRef]
- Matos-Maraví, P.; Ritter, C.D.; Barnes, C.J.; Nielsen, M.; Olsson, U.; Wahlberg, N.; Marquina, D.; Sääksjärvi, I.; Antonelli, A. Biodiversity seen through the perspective of insects: 10 simple rules on methodological choices and experimental design for genomic studies. PeerJ 2019, 7, e6727. [Google Scholar] [CrossRef] [PubMed]
- Diabaté, D.; Tano, Y. Efficiencies of three insect collection methods in Lamto, Côte d’Ivoire. Int. J. Biodivers. Conserv. 2020, 12, 153–158. [Google Scholar] [CrossRef]
- Schieffer, T.L.; Bright, D.E. Xylosandrus mutilatus (Blandford), an exotic ambrosia beetle (Coleoptera: Curculionidae: Scolytinae: Xyleborini) new to North America. Coleop. Bull. 2004, 58, 431–438. [Google Scholar] [CrossRef]
- Dodds, K. Effects of trap height on captures of arboreal insects in pine stands of northeastern United States of America. Can. Entomol. 2014, 146, 80–89. [Google Scholar] [CrossRef]
- Sweeney, J.; Hughes, C.; Webster, V.; Kostanowicz, C.; Webster, R.; Mayo, P.; Allison, J.D. Impact of horizontal edge–interior and vertical canopy–understory gradients on the abundance and diversity of bark and woodboring beetles in survey traps. Insects 2020, 11, 573. [Google Scholar] [CrossRef] [PubMed]
- Foit, J.; Čermák, V.; Gaar, V.; Hradil, K.; Nový, V.; Rolincová, P. New insights into the life history of Monochamus galloprovincialis can enhance surveillance strategies for the pinewood nematode. J. Pest Sci. 2019, 92, 1203–1215. [Google Scholar] [CrossRef]
- Touroult, J.; Dalens, P.H. Beetles vertical stratification in French Guiana’forests: Study using aerial fruit traps. ACOREP-France Coléoptères de Guyane 2012, 6, 16–24. [Google Scholar]
- Rassati, D.; Marini, L.; Marchioro, M.; Rapuzzi, P.; Magnani, G.; Poloni, R.; Di Giovanni, F.; Mayo, P.; Sweeney, J. Developing trapping protocols for wood-boring beetles associated with broadleaf trees. J. Pest Sci. 2019, 92, 267–279. [Google Scholar] [CrossRef]
- Miller, D.R.; Crowe, C.M.; Sweeney, J.D. Trap height affects catches of bark and woodboring beetles (Coleoptera: Curculionidae, Cerambycidae) in baited multiple-funnel traps in Southeastern United States. J. Econ. Entomol. 2020, 113, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Ruchin, A.B.; Makarkin, N.V. Neuroptera and Raphidioptera in the Mordovia State Nature Reserve. Nat. Conserv. Res. 2017, 2, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Ruchin, A.B.; Khapugin, A.A. Red Data Book Invertebrates in a Protected Area of European Russia. Acta Zool. Acad. Sci. Hung. 2019, 65, 349–370. [Google Scholar] [CrossRef]
- Tereshkin, I.S.; Tereshkina, L.V. Vegetation of the Mordovia Reserve. Successive series of the successions. Proc. Mordovia State Nat. Reserve 2006, 7, 186–287. [Google Scholar]
- Khapugin, A.A.; Vargot, E.V.; Chugunov, G.G. Vegetation recovery in fire-damaged forests: A case study at the southern boundary of the taiga zone. For. Stud. 2016, 64, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Ruchin, A.B.; Egorov, L.V.; Khapugin, A.A.; Vikhrev, N.E.; Esin, M.N. The use of simple crown traps for the insects collection. Nat. Conserv. Res. 2020, 5, 87–108. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, P.; Bousquet, Y.; Davies, A.E.; Alonso-Zarazaga, M.A.; Lawrence, J.F.; Lyal, C.H.C.; Newton, A.F.; Reid, C.A.M.; Schmitt, M.; Ślipiński, S.A.; et al. Family-group names in Coleoptera (Insecta). ZooKeys 2011, 88, 1–972. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, P.; Bousquet, Y. Additions and corrections to “Family-group names in Coleoptera (Insecta)”. ZooKeys 2020, 922, 65–139. [Google Scholar] [CrossRef]
- Löbl, I.; Smetana, A. (Eds.) Catalogue of Palaearctic Coleoptera. Volume 7: Curculionoidea I; Apollo Books: Stenstrup, Denmark, 2011; p. 373. [Google Scholar]
- Löbl, I.; Smetana, A. (Eds.) Catalogue of Palaearctic Coleoptera. Volume 8: Curculionoidea II; Apollo Books: Stenstrup, Denmark, 2013; p. 707. [Google Scholar]
- Löbl, I.; Löbl, D. (Eds.) Catalogue of Palaearctic Coleoptera. Volume 2/1. Revised and Updated Version. Hy-Drophiloidea–Staphylinoidea; Brill: Leiden, The Netherlands; Boston, MA, USA, 2015; p. 1702. [Google Scholar]
- Löbl, I.; Löbl, D. (Eds.) Catalogue of Palaearctic Coleoptera. Volume 3. Revised and Updated Version. Scara-Baeoidea–Scirtoidea–Dascilloidea–Buprestoidea–Byrrhoidea; Brill: Leiden, The Netherlands; Boston, MA, USA, 2016; p. 983. [Google Scholar]
- Löbl, I.; Löbl, D. (Eds.) Catalogue of Palaearctic Coleoptera. Volume 1. Revised and Updated Version. Archostemata–Adephaga–Myxophaga; Brill: Leiden, The Netherlands; Boston, MA, USA, 2017; p. 1443. [Google Scholar]
- Iwan, D.; Löbl, I. (Eds.) Catalogue of Palaearctic Coleoptera. Volume 5. Revised and Updated Second Edition. Tenebrionoidea; Brill: Leiden, The Netherlands; Boston, MA, USA, 2020; p. 945. [Google Scholar]
- Danilevsky, M. (Ed.) Catalogue of Palaearctic Coleoptera. Volume 6/1. Updated and Revised Second Edition. Chrysomeloidea I (Vesperidae, Disteniidae, Cerambycidae); Brill: Leiden, The Netherlands; Boston, MA, USA, 2020; p. 712. [Google Scholar]
- Robertson, J.; Ślipiński, A.; Moulton, M.; Shockley, F.W.; Giorgi, A.; Lord, N.P.; McKenna, D.D.; Tomaszewska, W.; Forrester, J.; Miller, K.B.; et al. Phylogeny and classification of Cucujoidea and the recognition of a new superfamily Coccinelloidea (Coleoptera: Cucujiformia). Syst. Entomol. 2015, 40, 745–778. [Google Scholar] [CrossRef]
- Alonso-Zarazaga, M.A.; Barrios, H.; Borovec, R.; Bouchard, P.; Caldara, R.; Colonnelli, E.; Gültekin, L.; Hlaváč, P.; Koro-tyaev, B.; Lyal, C.H.C.; et al. Cooperative Catalogue of Palaearctic Coleoptera Curculionoidea. Monografías Electrónicas SEA 2017, 8, 1–729. [Google Scholar]
- Löbl, I.; Smetana, A. (Eds.) Catalogue of Palaearctic Coleoptera. Volume 4. Elateroi-dea–Derodontoidea–Bos-trichoidea–Lymexyloidea–Cleroidea–Cucujoidea; Apollo Books: Stenstrup, Denmark, 2007; p. 935. [Google Scholar]
- Löbl, I.; Smetana, A. (Eds.) Catalogue of Palaearctic Coleoptera. Volume 6: Chrysomeloidae; Apollo Books: Stenstrup, Denmark, 2010; p. 924. [Google Scholar]
- Bousquet, Y. Litteratura Coleopterologica (1758–1900): A guide to selected books related to the taxonomy of Coleoptera with publication dates and notes. ZooKeys 2016, 583, 1–776. [Google Scholar] [CrossRef] [Green Version]
- Lachat, T.; Wermelinger, B.; Gossner, M.M.; Bussler, H.; Isacsson, G.; Müller, J. Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecol. Indic. 2012, 23, 323–331. [Google Scholar] [CrossRef]
- Carpaneto, G.M.; Baviera, C.; Biscaccianti, A.B.; Brandmayr, P.; Mazzei, A.; Mason, F.; Battistoni, A.; Teofili, C.; Rondinini, C.; Fattorini, S.; et al. A red list of Italian saproxylic beetles: Taxonomic overview, ecological features and conservation issues (Coleoptera). Fragm. Entomol. 2015, 47, 53–126. [Google Scholar] [CrossRef]
- Gutowski, J.M.; Sućko, K.; Borowski, J.; Kubisz, D.; Mazur, M.A.; Melke, A.; Mokrzycki, T.; Plewa, R.; Żmihorski, M. Post-fire beetle succession in a biodiversity hotspot: Białowieża Primeval Forest. For. Ecol. Manag. 2020, 461, 117893. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Magurran, A.E. Ecological Diversity and Its Measurement; Chapman & Hall: London, UK, 1996; 179p. [Google Scholar]
- Ruchin, A.B.; Egorov, L.V.; Khapugin, A.A. Usage of fermental traps for studying the species diversity of Coleoptera. Insects 2021, 12, 407. [Google Scholar] [CrossRef] [PubMed]
- Ulyshen, M.D.; Hanula, J.L. A comparison of the beetle (Coleoptera) fauna captured at two heights above the ground in a North American temperate deciduous forest. Am. Midl. Nat. 2007, 158, 260–278. [Google Scholar] [CrossRef]
- Tsinkevich, V.A. Checklist of Cucujoidea (Coleoptera) of Belarus (Eastern Europe). In Contributions to Systematics and Biology of Beetles. (Papers Celebrating the 80th Birthday of Igor Lopatin); Pensoft Publishers: Sofia, Bulgaria, 2005; pp. 333–345. [Google Scholar]
- Tauzin, P. Ethologie et chorologie de Protaetia (Liocola) lugubris Herbst, 1786 sur le territoire français (Coleoptera, Cetoniidae, Cetoniinae, Cetoniini). Cetoniimania 2006, 3, 4–38. [Google Scholar]
- Lassauce, A.; Anselle, P.; Lieutier, F.; Bouget, C. Coppice-with-standards with an overmature coppice component enhance saproxylic beetle biodiversity: A case study in French deciduous forests. For. Ecol. Manag. 2012, 266, 273–285. [Google Scholar] [CrossRef]
- Lasoń, A.; Holly, M. Glischrochilus grandis Tournier, 1872–new species of beetle for the Polish fauna and new data on the occurrence of genus Glischrochilus Reitter, 1873 (Coleoptera: Nitidulidae: Cryptarchinae). Acta Entomol. Sil. 2015, 23, 1–4. [Google Scholar]
- Urban, P.; Schulze, W. Ein aktueller Nachweis des Marmorierten Rosenkäfers Pro-taetia marmorata (Fabricius, 1792) in der Senne (Nordrhein-Westfalen) (Mitteilungen zur Insektenfauna Westfalens XXII). Mitteilungen der Arbeitsgemeinschaft Westfälischer Entomologen 2017, 33, 15–19. [Google Scholar]
- Egorov, L.V.; Ruchin, A.B.; Semishin, G.B. Some data on the Coleoptera fauna of the Mordovia State Nature Reserve. Report 8. Proc. Mordovia State Nat. Reserve 2019, 22, 3–62. [Google Scholar]
- Egorov, L.V.; Ruchin, A.B.; Semenov, V.B.; Semionenkov, O.I.; Semishin, G.B. Checklist of the Coleoptera of Mordovia State Nature Reserve, Russia. ZooKeys 2020, 962, 13–122. [Google Scholar] [CrossRef]
- Ruchin, A.B.; Egorov, L.V.; Khapugin, A.A. Seasonal activity of Coleoptera attracted by fermental crown traps in forest ecosystems of Central Russia. Ecol. Quest. 2021, 32, 37–53. [Google Scholar]
- Oude, J.E. Naamlijst van de glanskevers van Nederland en het omliggende gebied (Coleoptera: Nitidulidae and Brachypteridae). Ned. Faun. Meded. 1999, 8, 11–32. [Google Scholar]
- Kurochkin, A.S. Fauna and bionomy of sap beetles (Coleoptera, Nitidulidae) and kateretid beetles (Coleoptera, Kateretidae) of Krasnosamarskoe forestry farm (Samara Region, Russia). Vestn. Samara Univ. Nat. Sci. 2007, 8, 120–128. [Google Scholar]
- Nikitsky, N.B.; Mamontov, S.N.; Vlasenko, A.S. New data of beetles from Tula abatis forests (Coleoptera: Nitidulidae–Scolytidae) collected in window traps. Bull. Mosc. Soc. Nat. Biol. Ser. 2016, 121, 25–37. [Google Scholar]
- Nikitsky, N.B.; Osipov, I.N.; Chemeris, M.V.; Semenov, V.B.; Gusakov, A.A. The beetles of the Prioksko-Terrasny Biosphere Reserve—Xylobiontes, Mycetobiontes and Scarabaeidae. Arch. Zool. Mus. Mosc. State Univ. 1996, 36, 1–197. [Google Scholar]
- Oleksa, A.; Chybicki, I.J.; Gawronski, R.; Svensson, G.P.; Burczyk, J. Isolation by distance in saproxylic beetles may increase with niche specialization. J. Insect Conserv. 2013, 17, 219–233. [Google Scholar] [CrossRef] [Green Version]
- Salnitska, M.; Solodovnikov, A. Rove beetles of the genus Quedius (Coleoptera, Staph-ylinidae) of Russia: A key to species and annotated catalogue. ZooKeys 2019, 847, 1–100. [Google Scholar] [CrossRef] [PubMed]
- Bieńko, W.; Kirpsza, I.; Mokrzycki, T. New localities of Quedius dilatatus (Fabricius, 1787) (Coleoptera: Staphylinidae) in Poland and remarks on its biology. Wiad. Entomol. 2017, 36, 137–144. [Google Scholar]
- Menocal, O.; Kendra, P.E.; Montgomery, W.S.; Crane, J.H.; Carrillo, D. Vertical distribution and daily flight periodicity of ambrosia beetles (Coleoptera: Curculionidae) in Florida avocado orchards affected by laurel wilt. J. Econ. Entomol. 2018, 111, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, T.N.; Ulyshen, M.D.; Horn, S.; Hoebeke, E.R. Vertical and horizontal distribution of bark and woodboring beetles by feeding guild: Is there an optimal trap location for detection? J. Pest Sci. 2019, 92, 327–341. [Google Scholar] [CrossRef]
- Ulyshen, M.D.; Sheehan, T.N. Trap height considerations for detection two economically important forest beetle guilds in southeastern US forests. J. Pest Sci. 2019, 92, 253–265. [Google Scholar] [CrossRef]
- Holuša, J.; Fiala, T.; Foit, J. Ambrosia beetles prefer closed canopies: A case study in oak forests in Central Europe. Forests 2021, 12, 1223. [Google Scholar] [CrossRef]
- Speight, M.C.D. Saproxylic invertebrates and their conservation. Council of Europe. Nat. Environ. Ser. 1989, 42, 1–79. [Google Scholar]
- Haeler, E.; Bergamini, A.; Blaser, S.; Ginzler, C.; Hindenlang, K.; Keller, C.; Kiebacher, T.; Kormann, U.G.; Scheidegger, C.; Schmidt, R.; et al. Saproxylic species are linked to the amount and isolation of dead wood across spatial scales in a beech forest. Landsc. Ecol. 2021, 36, 89–104. [Google Scholar] [CrossRef]
- Siitonen, J. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol. Bull. 2001, 49, 11–41. [Google Scholar]
- Papis, M.; Mokrzycki, T. Saproxylic beetles (Coleoptera) of the strictly protected area Bukowa Góra in the Roztoczański National Park. For. Res. Pap. 2015, 76, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Seibold, S.; Bässler, C.; Baldrian, P.; Reinhard, L.; Thorn, S.; Ulyshen, M.D.; Weiß, I.; Müller, J. Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biol. Conserv. 2016, 204, 181–188. [Google Scholar] [CrossRef]
- Ekström, A.L.; Bergmark, P.; Hekkala, A.M. Can multifunctional forest landscapes sustain a high diversity of saproxylic beetles? For. Ecol. Manag. 2021, 490, 119107. [Google Scholar] [CrossRef]
- Löbel, S.; Snäll, T.; Rydin, H. Species richness patterns and metapopulation processes—Evidence from epiphyte communities in boreo-nemoral forests. Ecography 2006, 29, 169–182. [Google Scholar] [CrossRef]
- Parisi, F.; Innangi, M.; Tognetti, R.; Lombardi, F.; Chirici, G.; Marchetti, M. Forest stand structure and coarse woody debris determine the biodiversity of beetle communities in Mediterranean mountain beech forests. Glob. Ecol. Conserv. 2021, 28, e01637. [Google Scholar] [CrossRef]
- Wermelinger, B.; Flückiger, P.F.; Obrist, M.K.; Duelli, P. Horizontal and vertical distribution of saproxylic beetles (Col., Buprestidae, Cerambycidae, Scolytinae) across sections of forest edges. J. Appl. Entomol. 2007, 131, 104–114. [Google Scholar] [CrossRef]
- Zumr, V.; Remeš, J.; Pulkrab, K. How to Increase Biodiversity of Saproxylic Beetles in Commercial Stands through Integrated Forest Management in Central Europe. Forests 2021, 12, 814. [Google Scholar] [CrossRef]
- Schroeder, B.; Buddle, C.; Saint-Germain, M. Activity of flying beetles (Coleoptera) at two heights in canopy gaps and intact forests in a hardwood forest in Quebec. Can. Entomol. 2009, 141, 515–520. [Google Scholar] [CrossRef]
- Preisser, E.; Smith, D.C.; Lowman, M.D. Canopy and ground level insect distribution in a temperate forest. Selbyana 1998, 19, 141–146. [Google Scholar]
- Gossner, M.M.; Struwe, J.-F.; Sturm, S.; Max, S.; McCutcheon, M.; Weisser, W.W.; Zytynska, S.E. Searching for the optimal sampling solution: Variation in invertebrate communities, sample condition and DNA quality. PLoS ONE 2016, 11, e0148247. [Google Scholar] [CrossRef] [Green Version]
- Basset, Y. Influence of leaf traits on the spatial distribution of arboreal arthropods within an overstorey rainforest tree. Ecol. Entomol. 1992, 17, 8–16. [Google Scholar] [CrossRef]
- Brown, J.; Vargo, S.; Connor, E.F.; Nuckols, M.S. Causes of vertical stratification in the density of Cameraria hamadryadella. Ecol. Entomol. 1997, 22, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Maguire, D.Y.; Robert, K.; Brochu, K.; Larrivée, M.; Buddle, C.M.; Wheeler, T.A. Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies. Environ. Entomol. 2014, 43, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, L.; Gutowski, J.M.; Mayo, P.; Mokrzycki, T.; Pohl, G.; Silk, P.; Webster, R.; Hughes, C.; Van Rooyen, K.; Sweeney, J. Pheromone-enhanced lure blends and multiple trap heights improve detection of bark and wood-boring beetles potentially moved in solid wood packaging. J. Pest Sci. 2019, 92, 309–325. [Google Scholar] [CrossRef]
- Allemand, R.; Aberlenc, H.P. Une methode efficace d’echantillonnage de l’entomofaune des frondaisons: Le piege attractif aerien. Bull. Soc. Entomol. Suisse 1991, 64, 293–305. [Google Scholar]
- Brustel, H. Coleopteres Saproxyliques et Valeur Biologique des Forets Françaises. Perspectives Pour la Conservation du Patrimoine Naturel; Les Dossiers Forestiers 13; Office National des Forets: Paris, France, 2004; 297p. [Google Scholar]
- Li, Y.; Meng, Q.; Silk, P.; Gao, W.; Mayo, P.; Sweeney, J. Effect of semiochemicals and trap height on catch of Neocerambyx raddei in Jilin province, China. Entomol. Exp. Appl. 2017, 164, 94–101. [Google Scholar] [CrossRef]
- Heidrich, L.; Bae, S.; Levick, S.; Seibold, S.; Weisser, W.; Krzystek, P.; Magdon, P.; Nauss, T.; Schall, P.; Serebryanyk, A.; et al. Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nat. Ecol. Evol. 2020, 4, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Carnicer, J.; Vives-Ingla, M.; Blanquer, L.; Méndez-Camps, X.; Rosell, C.; Sabaté, S.; Gutiérrez, E.; Sauras, T.; Peñuelas, J.; Barbeta, A. Forest resilience to global warming is strongly modulated by local-scale topo-graphic, microclimatic and biotic conditions. J. Ecol. 2021, 109, 3322–3339. [Google Scholar] [CrossRef]
- Plewa, R.; Jaworski, T.; Hilszczański, J.; Horák, J. Investigating the biodiversity of the forest strata: The importance of vertical stratification to the activity and development of saproxylic beetles in managed temperate deciduous forests. For. Ecol. Manag. 2017, 402, 186–193. [Google Scholar] [CrossRef]
- Seibold, S.; Hagge, J.; Müller, J.; Gruppe, A.; Brandl, R.; Bässler, C.; Thorn, S. Experiments with dead wood reveal the importance of dead branches in the canopy for saproxylic beetle conservation. For. Ecol. Manag. 2018, 409, 564–570. [Google Scholar] [CrossRef]
- Shah, A.A.; Dillon, M.E.; Hotaling, S.; Woods, H.A. High elevation insect communities face shifting ecological and evolutionary landscapes. Curr. Opin. Insect Sci. 2020, 41, 1–6. [Google Scholar] [CrossRef]
- Gaudio, N.; Gendre, X.; Saudreau, M.; Seigner, V.; Balandier, P. Impact of tree canopy on thermal and radiative microclimates in a mixed temperate forest: A new statistical method to analyse hourly temporal dynamics. Agric. For. Meteorol. 2017, 237–238, 71–79. [Google Scholar] [CrossRef] [Green Version]
- De Lombaerde, E.; Blondeel, H.; Baeten, L.; Landuyt, D.; Perring, M.P.; Depauw, L.; Maes, S.L.; Wang, B.; Verheyen, K. Light, temperature and understorey cover predominantly affect early life stages of tree seedlings in a multifactorial mesocosm experiment. For. Ecol. Manag. 2020, 461, 117907. [Google Scholar] [CrossRef]
- Thom, D.; Sommerfeld, A.; Sebald, J.; Hagge, J.; Müller, J.; Seidl, R. Effects of disturbance patterns and deadwood on the microclimate in European beech forests. Agric. For. Meteorol. 2020, 291, 108066. [Google Scholar] [CrossRef]
- Woods, H.A.; Saudreau, M.; Pincebourde, S. Structure is more important than physiology for estimating intracanopy distributions of leaf temperatures. Ecol. Evol. 2018, 8, 5206–5218. [Google Scholar] [CrossRef] [Green Version]
- Blonder, B.; Escobar, S.; Kapás, R.E.; Michaletz, S.T. Low predictability of energy balance traits and leaf temperature metrics in desert, montane and alpine plant communities. Funct. Ecol. 2020, 34, 1882–1897. [Google Scholar] [CrossRef]
- Miller, B.D.; Carter, K.R.; Reed, S.C.; Wood, T.E.; Cavaleri, M.A. Only sun-lit leaves of the uppermost canopy exceed both air temperature and photosynthetic thermal optima in a wet tropical forest. Agric. For. Meteorol. 2021, 301, 108347. [Google Scholar] [CrossRef]
- Ulyshen, M.D. Arthropod vertical stratification in temperate deciduous forests: Implications for conservation-oriented management. For. Ecol. Manag. 2011, 261, 1479–1489. [Google Scholar] [CrossRef]
- Neves, F.S.; Silva, J.O.; Espírito-Santo, M.M.; Fernandes, G.W. Insect Herbivores and Leaf Damage along Successional and Vertical Gradients in a Tropical Dry Forest. Biotropica 2014, 46, 14–24. [Google Scholar] [CrossRef]
- Wardhaugh, C.W. The spatial and temporal distributions of arthropods in forest canopies: Uniting disparate patterns with hypotheses for specialisation. Biol. Rev. 2014, 89, 1021–1041. [Google Scholar] [CrossRef] [PubMed]
- De Frenne, P.; Zellweger, F.; Rodríguez-Sánchez, F.; Scheffers, B.R.; Hylander, K.; Luoto, M. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 2019, 3, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Zellweger, F.; Coomes, D.; Lenoir, J.; Depauw, L.; Maes, S.L.; Wulf, M.; Kirby, K.J.; Brunet, J.; Kopecký, M.; Máliš, F.; et al. Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Glob. Ecol. Biogeogr. 2019, 28, 1774–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prévosto, B.; Helluy, M.; Gavinet, J.; Fernandez, C.; Balandier, P. Microclimate in Mediterranean pine forests: What is the influence of the shrub layer? Agric. For. Meteorol. 2020, 282–283, 107856. [Google Scholar] [CrossRef]
- Landuyt, D.; De Lombaerde, E.; Perring, M.P.; Hertzog, L.R.; Ampoorter, E.; Maes, S.L.; De Frenne, P.; Ma, S.; Proesmans, W.; Blondeel, H.; et al. The functional role of temperate forest understorey vegetation in a changing world. Glob. Chang. Biol. 2019, 25, 3625–3641. [Google Scholar] [CrossRef]
- Kovács, B.; Tinya, F.; Ódor, P. Stand structural drivers of microclimate in mature temperate mixed forests. Agric. For. Meteorol. 2017, 234–235, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Jonsell, M.; Hansson, J. Logs and stumps in clearcuts support similar saproxylic beetle diversity: Implications for bioenergy harvest. Silva Fenn. 2011, 45, 1053–1064. [Google Scholar] [CrossRef] [Green Version]
- Pakeman, R.J.; Stockan, J.A. Drivers of carabid functional diversity: Abiotic environment, plant functional traits, or plant functional diversity? Ecology 2014, 95, 1213–1224. [Google Scholar] [CrossRef]
- Penone, C.; Allan, E.; Soliveres, S.; Felipe-Lucia, M.R.; Gossner, M.M.; Seibold, S.; Simons, N.K.; Schall, P.; Van Der Plas, F.; Manning, P.; et al. Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecol. Lett. 2019, 22, 170–180. [Google Scholar] [CrossRef]
- Schneider, A.; Blick, T.; Köhler, F.; Pauls, S.U.; Römbke, J.; Zub, P.; Dorow, W.H.O. Animal diversity in beech forests—An analysis of 30 years of intense faunistic research in Hessian strict forest reserves. For. Ecol. Manag. 2021, 499, 119564. [Google Scholar] [CrossRef]
- Tinya, F.; Kovács, B.; Bidló, A.; Dima, B.; Király, I.; Kutszegi, G.; Lakatos, F.; Mag, Z.; Márialigeti, S.; Nascimbene, J.; et al. Environmental drivers of forest biodiversity in temperate mixed forests—A multi-taxon approach. Sci. Total Environ. 2021, 795, 148720. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Tillier, P.; Vincent-Barbaroux, C.; Bouget, C.; Sallé, A. Influence of forest decline on the abundance and diversity of Raphidioptera and Mecoptera species dwelling in oak canopies. Eur. J. Entomol. 2020, 117, 372–379. [Google Scholar] [CrossRef]
- Martínez-Pérez, S.; Borja, R.; García-París, M.; Galante, E.; Micó, E. Ensambles de dermápteros (Dermaptera, Forficulidae) en microhábitats saproxílicos de bosques ibéricos de quercíneas. Bol. Asoc. Esp. Entomol. 2021, 45, 73–84. [Google Scholar]
Indicators | 1.5 m | 3.5 m | 7.5 m | 12 m |
---|---|---|---|---|
Total of individuals | 2133 | 2140 | 1904 | 1705 |
Mean number of individuals | 427 | 428 | 381 | 341 |
Number of species (excluding unidentified ones) | 58 | 43 | 40 | 44 |
Number of saproxylic species (% of the total number of species at this height) | 70.7 | 81.4 | 77.5 | 81.8 |
Number of anthophilic species (% of the total number of species at this height) | 29.3 | 44.1 | 45.0 | 45.5 |
Shannon index | 2.14 | 1.74 | 1.63 | 1.76 |
Simpson index | 0.21 | 0.31 | 0.34 | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruchin, A.B.; Egorov, L.V. Vertical Stratification of Beetles in Deciduous Forest Communities in the Centre of European Russia. Diversity 2021, 13, 508. https://doi.org/10.3390/d13110508
Ruchin AB, Egorov LV. Vertical Stratification of Beetles in Deciduous Forest Communities in the Centre of European Russia. Diversity. 2021; 13(11):508. https://doi.org/10.3390/d13110508
Chicago/Turabian StyleRuchin, Alexander B., and Leonid V. Egorov. 2021. "Vertical Stratification of Beetles in Deciduous Forest Communities in the Centre of European Russia" Diversity 13, no. 11: 508. https://doi.org/10.3390/d13110508
APA StyleRuchin, A. B., & Egorov, L. V. (2021). Vertical Stratification of Beetles in Deciduous Forest Communities in the Centre of European Russia. Diversity, 13(11), 508. https://doi.org/10.3390/d13110508