Assessing Distribution Patterns and the Relative Abundance of Reintroduced Large Herbivores in the Limpopo National Park, Mozambique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design
2.2.1. Selection of Species
2.2.2. Selection of Habitats
2.3. Data Collection
2.4. Photo Processing
2.5. Data Analysis
2.5.1. Survey Effort
2.5.2. Species Diversity Indices and Relative Capture Frequency (RAI)
2.5.3. Occurrence Frequency/Naïve Occupancy
3. Results
3.1. Trapping Effort
3.2. Species Diversity Index and Relative Capture Frequency (RAI)
3.3. Occurrence Frequency/Naïve Occupancy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winnie, J.A.; Cross, P.; Getz, W. Habitat quality and heterogeneity influence distribution and behaviour in African buffalo (Syncerus caffer). Ecology 2008, 89, 1457–1468. [Google Scholar] [CrossRef] [Green Version]
- Anderson, T.M.; White, S.; Davis, B.; Erhardt, R.; Palmer, M.; Swanson, A.; Kosmala, M.; Packer, C. The spatial distribution of African savannah herbivores: Species associations and habitat occupancy in a landscape context. Phil. Trans. R. Soc. B 2016, 371, 20150314. [Google Scholar] [CrossRef]
- Sawyer, H.; Merkle, J.A.; Middleton, A.D.; Dwinnell, S.P.H.; Monteith, K.L. Migratory plasticity is not ubiquitous among large herbivores. J. Anim. Ecol. 2018, 88, 450–460. [Google Scholar] [CrossRef]
- Zeller, U.; Starik, N.; Göttert, T. Biodiversity, land use and ecosystem services—An organismic and comparative approach to different geographical regions. Glob. Ecol. Conserv. 2017, 10, 114–125. [Google Scholar] [CrossRef]
- Stoldt, M.; Göttert, T.; Mann, C.; Zeller, U. Transfrontier Conservation Areas and Human-Wildlife Conflict: The Case of the Namibian Component of the Kavango-Zambezi (KAZA) TFCA. Sci. Rep. 2020, 10, 7964. [Google Scholar] [CrossRef]
- Smuts, G.L. Home range size for Burchell’s Zebra—Equus burchelli antiquorum—From the Kruger National Park. Koedoe 1975, 18, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Shannon, G.; Page, B.; Slotow, R.; Duffy, K. African elephant home range and habitat selection in Pongola Game Reserve, South Africa. Afr. Zool. 2006, 41, 37–44. [Google Scholar] [CrossRef]
- Owen-Smith, N.; Martin, J. Identifying Space Use at Foraging Arena Scale within the Home Ranges of Large Herbivores. PLoS ONE 2015, 10, e0128821. [Google Scholar] [CrossRef]
- Göttert, T.; Schöne, J.; Hodges, J.K.; Böer, M. Habitat use and spatial organisation of relocated black rhinos in Namibia. Mammalia 2010, 74, 35–42. [Google Scholar] [CrossRef]
- Jones, J.P.G. Monitoring species abundance and distribution at the landscape scale. J. Appl. Ecol. 2011, 48, 9–13. [Google Scholar] [CrossRef]
- Chirima, J.G. Habitat Suitability Assessments for Sable Antelope. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2009. [Google Scholar]
- Cornélis, D.; Benhamou, S.; Janeau, G.; Morellet, N.; Ouedraogo, M.; Visscher, M.N.E. Spatiotemporal dynamics of forage and water resources shape space use of West African savanna buffaloes. J. Mammal. 2011, 92, 1287–1297. [Google Scholar] [CrossRef] [Green Version]
- Boyce, M.S.; Johnson, C.J.; Merrill, E.H.; Nielsen, S.E.; Solberg, E.J.; van Moorter, B. Can habitat selection predict abundance? J. Anim. Ecol. 2016, 85, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinclair, A.R.E. Does Interspecific Competition or Predation Shape the African Ungulate Community? J. Anim. Ecol. 1985, 54, 899–918. [Google Scholar] [CrossRef]
- Redfern, J.V.; Grant, R.; Biggs, H.; Getz, W.M. Surface water constraints on herbivore foraging in the Kruger National Park, South Africa. Ecology 2003, 84, 2092–2107. [Google Scholar] [CrossRef]
- Roath, L.R.; Krueger, W.C. Cattle Grazing and Behavior on a Forested Range. J. Range Manag. 1982, 35, 332–338. [Google Scholar] [CrossRef]
- Duparc, A.; Garel, M.; Marchand, P.; Dubray, D.; Maillard, D.; Loisona, A. Revisiting the functional response in habitat selection for large herbivores: A matter of spatial variation in resource distribution? Behav. Ecol. 2019, 30, 1725–1733. [Google Scholar] [CrossRef]
- Holbrook, J.D.; Olson, L.E.; de Cesare, N.J.; Hebblewhite, M.; Squires, J.R.; Steenweg, R. Functional responses in habitat selection: Clarifying hypotheses and interpretations. Ecol. Appl. 2019, 29, e01852. [Google Scholar] [CrossRef]
- Bell, R.H.V. A Grazing Ecosystem in the Serengeti. Sci. Am. 1971, 225, 86–93. [Google Scholar] [CrossRef]
- Jarman, P.J. The Social Organisation of Antelope in Relation to Their Ecology. Behaviour 1974, 48, 215–267. [Google Scholar] [CrossRef] [Green Version]
- Olff, H.; Ritchie, M.E.; Prins, H.H.T. Global environmental controls of diversity in large herbivores. Nature 2002, 415, 901–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopcraft, J.G.C.; Anderson, T.M.; Perez-Vila, S.; Mayemba, E.; Olff, H. Body size and the division of niche space: Food and predation differentially shape the distribution of Serengeti grazers. J. Anim. Ecol. 2012, 81, 201–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Roux, E.; van Veenhuisen, L.S.; Kerley, G.I.H.; Cromsigt, J.P.G.M. Animal body size distribution influences the ratios of nutrients supplied to plants. Proc. Natl. Acad. Sci. USA 2020, 117, 22256–22263. [Google Scholar] [CrossRef]
- Riginos, C.; Grace, J.B. Savanna tree density, herbivores, and the herbaceous community: Bottom-up vs. top-down effects. Ecology 2008, 89, 2228–2238. [Google Scholar] [CrossRef] [Green Version]
- Cromsigt, J.P.G.; Prins, H.H.T.; Olff, H. Habitat heterogeneity as a driver of ungulate diversity and distribution patterns: Interaction of body mass and digestive strategy. Divers. Distrib. 2009, 15, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Du Toit, J.T.; Owen-Smith, N. Body Size, Population Metabolism, and Habitat Specialization Among Large African Herbivores. Am. Nat. 1989, 133, 736–740. [Google Scholar] [CrossRef] [Green Version]
- Traill, L.W. Seasonal utilization of habitat by large grazing herbivores in semi-arid Zimbabwe. S. Afr. J. Wildl. Res. 2004, 34, 13–24. [Google Scholar]
- Skinner, J.D.; Chimimba, C. The Mammals of the Southern African Sub-Region, 3rd ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Musiega, D.E.; Kazadi, S.-N.; Fukuyama, K. A framework for predicting and visualizing the East African wildebeest migration-route patterns in variable climatic conditions using geographic information system and remote sensing. Ecol. Res. 2006, 21, 530–543. [Google Scholar] [CrossRef]
- Owen-Smith, N.; Cooper, S.M. Nutritional ecology of a browsing ruminant, the kudu (Traglaphus strepsiceros), through the seasonal cycle. J. Zool. 1989, 219, 29–43. [Google Scholar] [CrossRef]
- Botha, M.; Stock, W. Stable isotope composition of faeces as an indicator of seasonal diet selection in wild herbivores in Southern Africa. S. Afr. J. Sci. 2005, 101, 371–374. [Google Scholar]
- Administração Nacional das Áreas de Conservação (ANAC). Limpopo National Park Management and Development Plan; Ministério do Turismo: Maputo, Mozambique, 2003.
- Mavhunga, C.; Spierenburg, M. Transfrontier Talk, Cordon Politics: The Early History of the Great Limpopo Transfrontier Park in Southern Africa, 1925–1940. J. S. Afr. Stud. 2009, 35, 715–735. [Google Scholar] [CrossRef]
- Massé, F. The Political Ecology of Human-Wildlife Conflict: Producing Wilderness, Insecurity, and Displacement in the Limpopo National Park. Conservat. Soc. 2016, 14, 100–111. [Google Scholar] [CrossRef]
- Hatton, J.; Couto, M.; Oglethorpe, J. Biodiversity and War: A Case Study of Mozambique; Biodiversity Support: Washington, DC, USA, 2001. [Google Scholar]
- Hofmeyr, M. Translocation of elephant from the Kruger National Park to the Limpopo National Park as part of the initial development of the greater Limpopo Transfrontier Park. In Proceedings of the EMOA Elephant Symposium, Pilanesberg National Park, South Africa, 13–17 September 2004. [Google Scholar]
- Lunstrum, E. Green grabs, land grabs and the spatiality of displacement: Eviction from Mozambique’s Limpopo National Park. Area 2016, 48, 142–152. [Google Scholar] [CrossRef]
- Bazin, F.; Quesne, G.; Nhancale, C.; Aberlen, E. Ex Post Written and Audiovisual Evaluation of the Limpopo National Park Development Project; Agence Française de Développement: Paris, France, 2016; pp. 1–204. [Google Scholar]
- Mabunda, D.; Venter, F.; Pienaar, D.; Theron, P. Transfrontier Conservation Areas: The Southern African experience. In Parks, Peace, and Partnership: Global Initiatives in Transboundary Conservation; Quinn, M.S., Broberg, L., Freimund, W., Eds.; University of Calgary Press: Calgary, Canada, 2012; Volume 4, pp. 176–178. [Google Scholar]
- Mabunda, D.; Pienaar, D.J.; Verhoef, J. The Kruger National Park: A Century of Management and Research. In The Kruger Experience: Ecology and Management of Savanna Heterogeneity; du Toit, J.T., Rogers, K.K., Biggs, H.C., Eds.; Island Press: Washington, DC, USA, 2003; pp. 5–8. [Google Scholar]
- Scillitani, L.; Darmon, G.; Monaco, A.; Cocca, G.; Sturaro, E.; Rossi, L.; Ramanzin, M. Habitat Selection in Translocated Gregarious Ungulate Species: An Interplay between Sociality and Ecological Requirements. J. Wildl. Manag. 2013, 77, 761–769. [Google Scholar] [CrossRef]
- Richardson, K.M.; Doerr, V.; Ebrahimi, M.; Lovegrove, T.G.; Parker, K.A. Considering dispersal in reintroduction and restoration planning. In Advances in Reintroduction Biology of Australian and New Zealand Fauna; Armstrong, D.B., Hayward, M.W., Moro, D., Seddon, P.J., Eds.; CSIRO Publishing: Melbourne, Australia, 2015; pp. 59–92. [Google Scholar]
- Larkin, J.L.; Cox, J.J.; Wichrowski, M.W.; Dzialak, M.R.; Maehr, D.S. Influences on Release-Site Fidelity of Translocated Elk. Restor. Ecol. 2004, 12, 97–105. [Google Scholar] [CrossRef]
- Milgroom, J.; Spierenburg, M. Induced Volition: Resettlement from the Limpopo National Park, Mozambique. J. Contemp. Afr. Stud. 2008, 26, 435–448. [Google Scholar] [CrossRef]
- Muposhi, V.K.; Gandiwa, E.; Chemura, A.; Bartels, P.; Makuza, S.M.; Madiri, T.H. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem. PLoS ONE 2016, 11, e0163084. [Google Scholar] [CrossRef] [Green Version]
- Murwendo, T.; Murwira, A.; Masocha, M. Modelling and predicting mammalian wildlife abundance and distribution in semi-arid Gonarezhou National Park, South Eastern Zimbabwe. EFCC 2020, 1, 151–163. [Google Scholar] [CrossRef]
- Whyte, I.; Swanepoel, B. An Aerial Census of the Shingwedzi Basin Area of the Limpopo National Park in Mozambique; Census Report 02; South African National Parks: Pretoria, South Africa, 2006. [Google Scholar]
- Stephenson, A. Parque Nacional Do Limpopo: Aerial Wildlife Census. Mozambique; Census Report; Limpopo National Park: Maputo, Mozambique, 2013. [Google Scholar]
- Grossmann, F.; Lopes Pereira, C.; Chambal, D.; Maluleque, G.; Bendzane, E.; Parker, N.; Foloma, M.; Ntumi, C.; Polana, E.; Nelson, A. Aerial Survey of Elephant, Other Wildlife and Human Activity in Limpopo National Park and the Southern Extension; Census Report; Wildlife Conservation Society: New York, NY, USA, 2014. [Google Scholar]
- Brito, R.; Julaia, C. Descrição Das Secas Na Bacia Do Limpopo Em Moçambique; UEM—Faculdade de Agronomia e Engenharia Florestal: Maputo, Mozambique, 2007. [Google Scholar]
- Andresen, L.; Everatt, K.T.; Somers, M.J. Use of site occupancy models for targeted monitoring of the cheetah. J. Zool. 2014, 292, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Andresen, L. Cheetah distribution, threats and landscape connectivity in South-Western Mozambique; Annual Progress Report; Nelson Mandela Metropolitan University: South Africa, 2015. [Google Scholar]
- Stalmans, M.; Gertenbach, W.P.D.; Carvalho-Serfontein, F. Plant Communities and Landscapes of the Parque Nacional Do Limpopo, Moçambique. Koedoe 2004, 47, 61–81. [Google Scholar] [CrossRef]
- Estes, R.D. The Behavior Guide to African Mammals: Including Hoofed Mammals, Carnivores, Primates, 1st ed.; University of California Press: Berkeley, CA, USA, 2012. [Google Scholar]
- Ribeiro, N.; Ruecker, G.; Govender, N.; Macandza, V.; Pais, A.; Machava, D.; Chauque, A.; Lisboa, S.N.; Bandeira, R. The influence of fire frequency on the structure and botanical composition of savanna ecosystems. Ecol. Evol. 2019, 9, 8253–8264. [Google Scholar] [CrossRef]
- Woog, F.; Renner, S.C.; Fjeldså, J. Tips for bird surveys and censuses in countries without existing monitoring schemes. In Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories and Monmitoring; Eymann, J., Degreef, J., Häuser, C., Monje, J.C., Samyn, Y., Vanden Spiegel, D., Eds.; The Belgian Development Cooperation: Brussels, Belgium, 2010; Volume 8, p. 570. [Google Scholar]
- Rovero, F.; Zimmermannc, F.; Berzid, D.; Meeke, P. “Which camera trap type and how many do I need?” A review of camera features and study designs for a range of wildlife research applications. Hystrix It. J. Mamm. 2013, 24, 148–156. [Google Scholar] [CrossRef]
- Rovero, F.; Martin, E.; Rosa, M.; Ahumada, J.A.; Spitale, D. Estimating Species Richness and Modelling Habitat Preferences of Tropical Forest Mammals from Camera Trap Data. PLoS ONE 2014, 9, e103300. [Google Scholar] [CrossRef] [PubMed]
- Debata, S.; Swain, K.K. Estimating Mammalian Diversity and Relative Abundance Using Camera Traps in a Tropical Deciduous Forest of Kuldiha Wildlife Sanctuary, Eastern India. Mammal Study 2018, 43, 45–53. [Google Scholar] [CrossRef]
- Mena, J.L.; Yagui, H.; Tejeda, V.; Cabrera, J.; Pacheco-Esquivel, J.; Rivero, J.; Pastor, P. Abundance of jaguars and occupancy of medium- and large-sized vertebrates in a transboundary conservation landscape in the Northwestern Amazon. Glob. Ecol. Conserv. 2020, 23, e01079. [Google Scholar] [CrossRef]
- Tobler, M.W.; Carrillo-Percastegui, S.E.; Powell, G. Habitat use, activity patterns and use of mineral licks by five species of ungulate in South-Eastern Peru. J. Trop. Ecol. 2009, 25, 261–270. [Google Scholar] [CrossRef]
- Rovero, F.; Tobler, M.; Sanderson, J. Camera trap for inventorying terrestrial vertebrate. In Manual on field recording techniques and protocols for All Taxa Biodiversity Inventories and Monmitoring; Eymann, J., Degreef, J., Häuser, C., Monje, J.C., Samyn, Y., Vanden Spiegel, D., Eds.; The Belgian Development Cooperation: Brussels, Belgium, 2010; Volume 8, pp. 102–120. [Google Scholar]
- Walker, C. Signs of the Wild. A field guide to the spoor & signs of the mammals of Southern Africa, 5th ed.; Struik Publishers: Cape Town, South Africa, 1997. [Google Scholar]
- Stuart, C.T.; Stuart, M.D. Field guide to mammals of Southern Africa, 3rd ed.; Struik Publishers: Cape Town, South Africa, 2001. [Google Scholar]
- Meek, P.D.; Ballard, G.; Claridge, A.; Kays, R.; Moseby, K.; O’Brien, T.; O’Connell, A.; Sanderson, J.; Swann, D.E.; Tobler, M.; et al. Recommended guiding principles for reporting on camera trapping research. Biodivers. Conserv. 2014, 23, 2321–2343. [Google Scholar] [CrossRef]
- O’Brien, T.G.; Kinnaird, M.F.; Wibisono, H.T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 2003, 6, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Tobler, M.W.; Carrillo-Percastegui, S.E.; Pitman, R.L.; Mares, R.; Powell, G. An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Anim. Conserv. 2008, 11, 169–178. [Google Scholar] [CrossRef]
- Bernard, H.; Ahmad, A.H.; Brodie, J.; Giordano, A.J.; Lakim, M.; Amat, R.; Hue, S.K.P.; Khee, L.S.; Tuuga, A.; Malim, P.T.; et al. Camera-trapping survey of mammals in and around Imbak Canyon Conservation Area in Sabah, Malaysian Borneo. Raffles Bull. Zool. 2013, 61, 861–870. [Google Scholar]
- Garriga, R.M. Camera Trap Survey in the Western Area Peninsular Forest Reserve, Sierra Leone; Final Report; Tacugama Chimpanzee Sanctuary: Freetown, Sierra Leone, 2012. [Google Scholar]
- Palei, H.S.; Pradhan, T.; Sahu, H.K.; Nayak, A.K. Estimating Mammalian Abundance Using Camera Traps in the Tropical Forest of Similipal Tiger Reserve, Odisha, India. Proc. Zool. Soc. 2016, 69, 181–188. [Google Scholar] [CrossRef]
- Jędrzejewski, W.; Puerto, M.F.; Goldberg, J.F.; Hebblewhite, M.; Abarca, M.; Gamarra, G.; Calderón, L.E.; Romero, J.F.; Viloria, A.L.; Carreño, R.; et al. Density and population structure of the jaguar (Panthera onca) in a protected area of Los Llanos, Venezuela, from 1 year of camera trap monitoring. Mammal Res. 2017, 62, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.J.; Rittenhouse, T.A.G. Evaluating spatially explicit density estimates of unmarked wildlife detected by remote cameras. J. Appl. Ecol. 2018, 55, 2565–2574. [Google Scholar] [CrossRef]
- Bowkett, A.E.; Rovero, F.; Marshall, A.R. The Use of camera-trap data to model habitat use by antelope species in the Udzungwa Mountain Forests, Tanzania. Afr. J. Ecol. 2008, 46, 47–487. [Google Scholar] [CrossRef]
- Oberosler, V.; Groff, C.; Iemma, A.; Pedrini, P.; Rovero, F. The influence of human disturbance on occupancy and activity patterns of mammals in the Italian Alps from systematic camera trapping. Mamm. Biol. 2017, 87, 50–61. [Google Scholar] [CrossRef]
- Colwell, R.K. Estimates: Statistical Estimation of Species Richness and Shared Species from Samples. Available online: http://viceroy.eeb.uconn.edu/estimates (accessed on 3 November 2020).
- Willott, S.J. Species accumulation curves and the measure of sampling effort. J. Appl. Ecol. 2001, 38, 484–486. [Google Scholar] [CrossRef]
- Ugland, K.I.; Gray, J.S.; Ellingsen, K.E. The species-accumulation curve and estimation of species richness. J. Anim. Ecol. 2003, 72, 888–897. [Google Scholar] [CrossRef] [Green Version]
- Meyer, N.F.V.; Esser, H.J.; Moreno, R.; van Langevelde, F.; Liefting, Y.; Oller, D.R.; Vogels, C.B.F.; Carver, A.D.; Nielsen, C.K.; Jansen, P.A. An assessment of the terrestrial mammal communities in forests of Central Panama, using camera-trap surveys. J. Nat. Conserv. 2015, 26, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Edwards, D.P.; Ansell, F.A.; Ahmad, A.H.; Nilus, R.; Hamer, K.C. The Value of Rehabilitating Logged Rainforest for Birds. Conserv. Biol. 2009, 23, 1628–1633. [Google Scholar] [CrossRef]
- Hammer, O.; Ryan, P.D.; Harper, D.A.T. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Available online: https://palaeoelectronica.org/2001_1/past/issue1_01.htm (accessed on 10 January 2021).
- Jenks, K.E.; Chanteap, P.; Damrongchainarong, K.; Cutter, P.; Cutter, P.; Redford, T.; Lynam, A.J.; Howard, J.; Leimgruber, P. Using Relative Abundance Indices from Camera-Trapping to Test Wildlife Conservation Hypotheses—An Example from Khao Yai National Park, Thailand. Trop. Conserv. Sci. 2011, 4, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Fiderer, C.; Göttert, T.; Zeller, U. Spatial interrelations between raccoons (Procyon lotor), red foxes (Vulpes vulpes), and ground-nesting birds in a Special Protection Area of Germany. Eur. J. Wildl. Res. 2019, 65, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Rottstock, T.; Göttert, T.; Zeller, U. Relatively undisturbed African savannas—an important reference for assessing wildlife responses to livestock grazing systems in European rangelands. Glob. Ecol. Conserv. 2020, 23, e01124. [Google Scholar] [CrossRef]
- Rovero, F.; Marshall, A.R. Camera trapping photographic rate as an index of density in forest ungulates. J. Appl. Ecol. 2009, 46, 1011–1017. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wu, P.; Songer, M.; Cai, Q.; He, X.; Zhu, Y.; Shao, X. Monitoring wildlife abundance and diversity with infra-red camera traps in Guanyinshan Nature Reserve of Shaanxi Province, China. Ecol. Indic. 2013, 33, 121–128. [Google Scholar] [CrossRef]
- Starik, N.; Mbango, O.K.; Bengsch, S.; Göttert, T.; Zeller, U. Landscape Transformation Influences Responses of Terrestrial Small Mammals to Land Use Intensity in North-Central Namibia. Diversity 2020, 12, 488. [Google Scholar] [CrossRef]
- Hedwig, D.; Kienast, I.; Bonnet, M.; Curran, B.K.; Courage, A.; Boesch, C.; Kühl, H.S.; King, T. A camera trap assessment of the forest mammal community within the transitional savannah-forest mosaic of the Batéké Plateau National Park, Gabon. Afr. J. Ecol. 2018, 56, 777–790. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.F.; Hines, J.E.; Mulindahabi, F.; Masozera, M.K. Factors affecting species richness and distribution spatially and temporally within a protected area using multi-season occupancy models. Anim. Conserv. 2019, 22, 503–514. [Google Scholar] [CrossRef]
- Pezzullo, J.C. Exact Binomial and Poisson Confidence Intervals. Available online: https://statpages.info/confint.html (accessed on 12 January 2020).
- Stephenson, A. Parque Nacional Do Limpopo: Aerial Wildlife Census; Census Report; Limpopo National Park: Maputo, Mozambique, 2010. [Google Scholar]
- Jones, C.L.; Smithers, N.L.; Scholes, M.C.; Scholes, R.J. The Effect of Fire Frequency on the Organic Components of a Basaltic Soil in the Kruger National Park. S. Afr. J. Plant Soil. 1990, 7, 236–238. [Google Scholar]
- Ahumada, J.A.; Silva, C.E.F.; Gajapersad, K.; Hallam, C.; Hurtado, J.; Martin, E.; McWilliam, A.; Mugerwa, B.; O’Brien, T.; Rovero, F.; et al. Community structure and diversity of tropical forest mammals: Data from a global camera trap network. Phil. Trans. R. Soc. B 2011, 366, 2703–2711. [Google Scholar] [CrossRef]
- Turner, I.M. Species Loss in fragments of tropical rain forest: A review of the evidence. J. Appl. Ecol. 1996, 33, 200–209. [Google Scholar] [CrossRef]
- McNaughton, S.J.; Georgiadis, N.J. Ecology of African Grazing and Browsing Mammals. Ann. Rev. Ecol. Syst. 1986, 17, 39–65. [Google Scholar] [CrossRef]
- Andresen, L.; Everatt, K.T.; Somers, M.J.; Purchase, G.K. Evidence for a Resident Population of Cheetah in the Parque Nacional Do Limpopo, Mozambique. S. Afr. J. Wildl. Res. 2012, 42, 144–146. [Google Scholar] [CrossRef] [Green Version]
- Owen-Smith, N.; Mills, M.G.L. Shifting prey selection generates contrasting herbivore dynamics within a large-mammal predator–prey web. Ecology 2008, 89, 1120–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Common Name | Scientific Name | Body Mass (kg) [28,54] | Feeding Guild [28] |
---|---|---|---|
Warthog | Phacochoerus africanus | 60–72 | Grazer |
Waterbuck | Kobus ellipsiprymnus ** | 180–220 | Grazer |
Blue wildebeest | Connochaetes taurinus ** | 180–250 | Grazer |
Plains zebra | Equus quagga ** | 290–340 | Grazer |
African buffalo | Syncerus caffer ** | 580–700 | Grazer |
Common duiker | Sylvicapra grimmia | 18–21 | Browser |
Bushbuck | Tragelaphus scriptus | 32–64 | Browser |
Greater kudu | Tragelaphus strepsiceros | 190–250 | Browser |
Giraffe | Giraffa camelopardalis ** | 970–1400 | Browser |
Steenbok | Raphicerus campestris | 12–14 | Mixed feeder |
Impala | Aepyceros melampus ** | 40–70 | Mixed feeder |
Nyala | Tragelaphus angasii | 100–126 | Mixed feeder |
Sable antelope | Hippotragus niger | 180–230 | Mixed feeder |
Eland | Taurotragus oryx | 400–900 | Mixed feeder |
African elephant | Loxodonta Africana ** | 2800–6300 | Mixed feeder |
Common Name | Habitat Type | Area Type Regarding Wildlife Resettlement | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Median (IQR) | KW- Value | p-Value | Median (IQR) | KW- Value | p-Value | ||||||
L. North n = 38 | P. Sandveld n = 15 | R. Veld n = 10 | S. Calcrete n = 28 | N. Sandveld n = 47 | Resettled Area n = 76 | Not-Resettled Area n = 70 | |||||
Warthog | 0.0 (2.09) | 0.0 (1.8) | 0.0 (0.82) | 0.0 (0.0) | 0.0 (0.0) | 1.99 | 0.43 | 0.0 (1.79) a | 0.0 (0.0) b | 4.6 | <0.01 |
Waterbuck | 11.6 (38.2) a | – | 0.0 (2.01) b | 0.0 (0.0) b | 0.0 (0.0) b | 46.37 | 0.01 | 0.0 (12.9) a | 0.0(0.0) b | 15.03 | <0.01 |
Blue wildebeest | 0.0 (0.0) | 0.0 (1.7) a | – | 0.0 (0.0) b | – | 3.62 | 0.02 | 0.0 (0.0) | – | – | – |
Plains zebra | 5.1 (9.6) a | 1.8 (3.4) | 0.0 (2.06) | 0.0 (0.0) b | 0.0 (0.0)b | 37.55 | <0.01 | 2.2 (7.2) a | 0.0 (0.0) b | 30.2 | <0.01 |
African buffalo | 0.0 (2.08) | 0.0 (5.3) | 0.0 (4.2) | 1.5 (3.3) | 0.0 (2.45) | 2.62 | 0.5 | 0.0 (3.4) | 0.0 (2.5) | 1.24 | 0.2 |
Common duiker | 0.0 (3.8) a | 0.0 (1.8) a | 16.7 (32.3) b | 0.0 (0.82) a | 5.6 (17.1) b | 32.44 | <0.01 | 0.0 (3.3) a | 4.1 (14.9) b | 12.9 | <0.01 |
Bushbuck | 2.4 (0.0) | – | – | – | – | – | – | 0.0 (0.0) | – | – | – |
Greater kudu | 6.2 (16.7) a | 0.0 (1.1) b | 6.25 (17.7) | 0.0 (2.27) b | 2.08 (5.6) | 16.01 | 0.01 | 0.84 (8.29) | 1.14 (5.27) | 0.008 | 0.9 |
Giraffe | 0.0 (4.0) a | 0.0 (1.7) | 0.0 (2.1) | – | 0.0 (0.0)b | 8.21 | <0.01 | 0.0 (3.28) a | 0.0 (0.0) b | 12.05 | <0.01 |
Steenbok | 0.0 (0.0) a | 0.0 (0.0) | 2.08 (6.1) b | 0.0 (0.0) | 0.0 (2.45) b | 13.51 | <0.01 | 0.0 (0.0) a | 0.0 (2.5) b | 14.4 | <0.01 |
Impala | 10.9 (27.3) a | 0.0 (1.1) b | 2.08 (14.5) | 0.0 (1.5) b | 0.0 (2.5) b | 39.51 | <0.01 | 2.5 (18.6) a | 0.0 (2.6) b | 9.9 | <0.01 |
Nyala | 4.8 (28.8) a | 0.0 (1.1) b | 6.3 (33.3) | 1.7 (3.3) | 1.1 (2.5) | 11.2 | 0.01 | 0.0 (7.1) | 1.7 (6.1) | 1.4 | 0.22 |
Sable antelope | 0.0 (0.0) | 0.0 (0.0) | – | – | – | 0.43 | 0.51 | 0.0 (0.0) | – | – | – |
Eland | 0.0 (0.0) | – | – | – | 0.0 (0.0) | 0.06 | 0.43 | 0.0 (0.0) | 0.0 (0.0) | 0.07 | 0.37 |
African elephant | 0.0 (3.7) | 1.09 (1.79) | 2.08 (10.4) | 1.81 (8.1) | 0.0 (3.3) | 5.34 | 0.17 | 0.0 (3.5) | 0.0 (4.1) | 0.07 | 0.76 |
TW RAI | 66.6 (116) a | 8.79 (26.4) b | 58.3 (97.2) a | 18.5 (26.6) b | 27.4 (27.5) b | 36.58 | <0.01 | 3.5 (5.7) | 0.7 (2.8) | 3.4 | 0.06 |
U/TW ratio (%) | 94.5/5.5 | 82.2/17.8 | 95.4/4.6 | 84/16 | 92/8 | 19.6 | 0.5 | 92.6/7.4 | 91.5/8.5 | 4.74 | 0.12 |
U/PP ratio (%) | 95/5 | 98.7/1.3 | 97.3/2.7 | 90/10 | 92.5/7.5 | 95.6/4.4 | 92/8 | ||||
U/TC ratio (%) | 92.4/7.6 | 97/3 | 94/6 | 88/12 | 88.3/11.7 | - | - | 93.2/6.8 | 88/12 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roque, D.V.; Göttert, T.; Macandza, V.A.; Zeller, U. Assessing Distribution Patterns and the Relative Abundance of Reintroduced Large Herbivores in the Limpopo National Park, Mozambique. Diversity 2021, 13, 456. https://doi.org/10.3390/d13100456
Roque DV, Göttert T, Macandza VA, Zeller U. Assessing Distribution Patterns and the Relative Abundance of Reintroduced Large Herbivores in the Limpopo National Park, Mozambique. Diversity. 2021; 13(10):456. https://doi.org/10.3390/d13100456
Chicago/Turabian StyleRoque, Dionísio Virgílio, Thomas Göttert, Valério António Macandza, and Ulrich Zeller. 2021. "Assessing Distribution Patterns and the Relative Abundance of Reintroduced Large Herbivores in the Limpopo National Park, Mozambique" Diversity 13, no. 10: 456. https://doi.org/10.3390/d13100456
APA StyleRoque, D. V., Göttert, T., Macandza, V. A., & Zeller, U. (2021). Assessing Distribution Patterns and the Relative Abundance of Reintroduced Large Herbivores in the Limpopo National Park, Mozambique. Diversity, 13(10), 456. https://doi.org/10.3390/d13100456