Can Functional Traits Explain Plant Coexistence? A Case Study with Tropical Lianas and Trees
Abstract
:1. Introduction
2. Methods
2.1. Study Selection
2.2. Data Collection and Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Violle, C.; Navas, M.-L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- McGill, B.J.; Enquist, B.J.; Weiher, E.; Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 2006, 21, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.J.; Kitajima, K.; Kraft, N.J.B.; Reich, P.B.; Wright, I.J.; Bunker, D.E.; Condit, R.; Dalling, J.W.; Davies, S.J.; Díaz, S.; et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 2010, 91, 3664–3674. [Google Scholar] [CrossRef] [PubMed]
- Adler, P.B.; Salguero-Gómez, R.; Compagnoni, A.; Hsu, J.S.; Ray-Mukherjee, J.; Mbeau-Ache, C.; Franco, M. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. USA 2013, 111, 740–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Prentice, I.C.; et al. The global spectrum of plant form and function. Nat. Cell Biol. 2015, 529, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Adler, P.B.; Fajardo, A.; Kleinhesselink, A.R.; Kraft, N.J.B. Trait-based tests of coexistence mechanisms. Ecol. Lett. 2013, 16, 1294–1306. [Google Scholar] [CrossRef]
- Tilman, D. Resource Competition and Community Structure; Princeton University Press: Princeton, NJ, USA, 1982; ISBN 9780691209654. [Google Scholar]
- Chen, Y.; Uriarte, M.; Wright, S.J.; Yu, S. Effects of neighborhood trait composition on tree survival differ between drought and postdrought periods. Ecology 2019, 100, e02766. [Google Scholar] [CrossRef]
- Shipley, B. Net assimilation rate, specific leaf area and leaf mass ratio: Which is most closely correlated with relative growth rate? A meta-analysis. Funct. Ecol. 2006, 20, 565–574. [Google Scholar] [CrossRef]
- Kunstler, G.; Falster, D.S.; Coomes, D.A.; Hui, F.; Kooyman, R.; Laughlin, D.C.; Poorter, L.; Vanderwel, M.; Vieilledent, G.; Wright, S.J.; et al. Plant functional traits have globally consistent effects on competition. Nat. Cell Biol. 2015, 529, 204–207. [Google Scholar] [CrossRef] [Green Version]
- Münkemüller, T.; Gallien, L.; Pollock, L.J.; Barros, C.; Carboni, M.; Chalmandrier, L.; Mazel, F.; Mokany, K.; Roquet, C.; Smyčka, J.; et al. Dos and don’ts when inferring assembly rules from diversity patterns. Glob. Ecol. Biogeogr. 2020, 29, 1212–1229. [Google Scholar] [CrossRef] [Green Version]
- Messier, J.; McGill, B.J.; Lechowicz, M.J. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 2010, 13, 838–848. [Google Scholar] [CrossRef]
- Schnitzer, S.A. Testing ecological theory with lianas. New Phytol. 2018, 220, 366–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnitzer, S.A. The ecology of lianas and their role in forests. Trends Ecol. Evol. 2002, 17, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Santiago, L.S.; Wright, S.J. Leaf functional traits of tropical forest plants in relation to growth form. Funct. Ecol. 2007, 21, 19–27. [Google Scholar] [CrossRef]
- Estrada-Villegas, S.; Schnitzer, S.A. A comprehensive synthesis of liana removal experiments in tropical forests. Biotropica 2018, 50, 729–739. [Google Scholar] [CrossRef]
- Van Der Heijden, G.; Powers, J.S.; Schnitzer, S.A. Lianas reduce carbon accumulation and storage in tropical forests. Proc. Natl. Acad. Sci. USA 2015, 112, 13267–13271. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Cansino, L.; Schnitzer, S.A.; Reid, J.; Powers, J.S. Liana competition with tropical trees varies seasonally but not with tree species identity. Ecology 2015, 96, 39–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- León, M.M.G.; Izquierdo, L.M.; Mello, F.N.A.; Powers, J.S.; Schnitzer, S.A. Lianas reduce community-level canopy tree reproduction in a Panamanian forest. J. Ecol. 2017, 106, 737–745. [Google Scholar] [CrossRef] [Green Version]
- González, A.D.V.; Mello, F.N.A.; Schnitzer, S.A.; César, R.G.; Tomazello-Filho, M. The negative effect of lianas on tree growth varies with tree species and season. Biotropica 2020. [Google Scholar] [CrossRef]
- Schnitzer, S.A.; Van Der Heijden, G.M.F. Lianas have a seasonal growth advantage over co-occurring trees. Ecology 2019, 100, e02655. [Google Scholar] [CrossRef] [PubMed]
- Parolari, A.J.; Paul, K.; Griffing, A.; Condit, R.; Perez, R.; Aguilar, S.; Schnitzer, S.A. Liana abundance and diversity increase with rainfall seasonality along a precipitation gradient in Panama. Ecography 2019, 43, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Santiago, L.S.; Pasquini, S.C.; De Guzman, M.E. Physiological implications of the liana growth form. In Ecology of Lianas; 2014; pp. 288–298. Available online: https://onlinelibrary.wiley.com/doi/10.1002/9781118392409.ch20 (accessed on 20 August 2020).
- Castellanos, A.E.; Mooney, H.A.; Bullock, S.H.; Jones, C.; Robichaux, R. Leaf, Stem, and Metamer Characteristics of Vines in a Tropical Deciduous Forest in Jalisco, Mexico. Biotropica 1989, 21, 41. [Google Scholar] [CrossRef]
- Johnson, D.M.; Domec, J.-C.; Woodruff, D.R.; McCulloh, K.A.; Meinzer, F.C. Contrasting hydraulic strategies in two tropical lianas and their host trees. Am. J. Bot. 2013, 100, 374–383. [Google Scholar] [CrossRef] [Green Version]
- Apgaua, D.M.G.; Tng, D.Y.P.; Cernusak, L.A.; Cheesman, A.W.; Santos, R.M.; Edwards, W.J.; Laurance, W.F. Plant functional groups within a tropical forest exhibit different wood functional anatomy. Funct. Ecol. 2016, 31, 582–591. [Google Scholar] [CrossRef] [Green Version]
- Avalos, G.; Mulkey, S.S.; Kitajima, K. Leaf Optical Properties of Trees and Lianas in the Outer Canopy of a Tropical Dry Forest1. Biotropica 1999, 31, 517–520. [Google Scholar] [CrossRef]
- Buckton, G.; Cheesman, A.W.; Munksgaard, N.C.; Wurster, C.M.; Liddell, M.J.; Cernusak, L.A. Functional traits of lianas in an Australian lowland rainforest align with post-disturbance rather than dry season advantage. Austral Ecol. 2019, 44, 983–994. [Google Scholar] [CrossRef]
- Castro, C.C.; Newton, A. Leaf and stem trait variation and plant functional types in 113 woody species of A seasonally dry tropical forest. Colomb. For. 2015, 18, 117–138. [Google Scholar] [CrossRef] [Green Version]
- Cernusak, L.A.; Winter, K.; Aranda, J.; Turner, B.L. Conifers, Angiosperm Trees, and Lianas: Growth, Whole-Plant Water and Nitrogen Use Efficiency, and Stable Isotope Composition (δ13C and δ18O) of Seedlings Grown in a Tropical Environment. Plant Physiol. 2008, 148, 642–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Z.-Q.; Poorter, L.; Cao, K.-F.; Bongers, F. Seedling Growth Strategies in Bauhinia Species: Comparing Lianas and Trees. Ann. Bot. 2007, 100, 831–838. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.-Q.; Schnitzer, S.A.; Bongers, F. Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia 2009, 161, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-J.; Cao, K.-F.; Schnitzer, S.A.; Fan, Z.-X.; Zhang, J.-L.; Bongers, F. Water-use advantage for lianas over trees in tropical seasonal forests. New Phytol. 2014, 205, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.G.; Wright, S.J.; Wurzburger, N. Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees. Oecologia 2015, 180, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.D.S.; Oliveira, R.S.; Martins, F.R. Costs and benefits of gas inside wood and its relationship with anatomical traits: A contrast between trees and lianas. Tree Physiol. 2020, 40, 856–868. [Google Scholar] [CrossRef]
- Dias, A.S.; Oliveira, R.S.; Martins, F.R.; Bongers, F.; Anten, N.P.R.; Sterck, F. How Do Lianas and Trees Change Their Vascular Strategy in Seasonal versus Rain Forest? Perspect. Plant Ecol. Evol. Syst. 2019, 40, 125465. [Google Scholar] [CrossRef]
- De Guzman, M.E.; Santiago, L.S.; Schnitzer, S.A.; Álvarez-Cansino, L. Trade-offs between water transport capacity and drought resistance in neotropical canopy liana and tree species. Tree Physiol. 2016, 37, 1404–1414. [Google Scholar] [CrossRef]
- De Guzman, M.E.; Acosta-Rangel, A.; Winter, K.; Meinzer, F.C.; Bonal, D.; Santiago, L.S. OUP accepted manuscript. Tree Physiol. 2020. [Google Scholar] [CrossRef]
- Domingues, T.F.; Martinelli, L.A.; Ehleringer, J.R. Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazônia, Brazil. Plant Ecol. 2007, 193, 101–112. [Google Scholar] [CrossRef]
- Han, L.; Xie, L.-J.; Dai, K.-J.; Yang, Q.; Cai, Z.-Q. Contrasting leaf characteristics of trees and lianas in secondary and mature forests in southwestern China. Photosynthetica 2010, 48, 559–566. [Google Scholar] [CrossRef]
- Kazda, M.; Salzer, J. Leaves of Lianas and Self-Supporting Plants Differ in Mass per Unit Area and in Nitrogen Content. Plant Biol. 2000, 2, 268–271. [Google Scholar] [CrossRef]
- Kazda, M.; Miladera, J.C.; Salzer, J. Optimisation of spatial allocation patterns in lianas compared to trees used for support. Trees 2008, 23, 295–304. [Google Scholar] [CrossRef]
- Liu, W. Leaf trait patterns of monsoon evergreen broad-leaved forest in relation to growth form. Afr. J. Agric. Res. 2012, 7, 3022–3028. [Google Scholar] [CrossRef]
- Maréchaux, I.; Bartlett, M.K.; Iribar, A.; Sack, L.; Chave, J. Stronger seasonal adjustment in leaf turgor loss point in lianas than trees in an Amazonian forest. Biol. Lett. 2017, 13, 20160819. [Google Scholar] [CrossRef] [PubMed]
- Maréchaux, I.; Saint-André, L.; Bartlett, M.K.; Sack, L.; Chave, J. Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest. J. Ecol. 2019, 108, 1030–1045. [Google Scholar] [CrossRef]
- Rios, R.S.; Salgado-Luarte, C.; Gianoli, E. Species Divergence and Phylogenetic Variation of Ecophysiological Traits in Lianas and Trees. PLoS ONE 2014, 9, e99871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Azofeifa, G.; Castro, K.; Wright, S.J.; Gamon, J.; Kalacska, M.; Rivard, B.; Schnitzer, S.A.; Feng, J.-L. Differences in leaf traits, leaf internal structure, and spectral reflectance between two communities of lianas and trees: Implications for remote sensing in tropical environments. Remote. Sens. Environ. 2009, 113, 2076–2088. [Google Scholar] [CrossRef] [Green Version]
- Slot, M.; Wright, S.J.; Kitajima, K. Foliar respiration and its temperature sensitivity in trees and lianas: In situ measurements in the upper canopy of a tropical forest. Tree Physiol. 2013, 33, 505–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slot, M.; Rey-Sánchez, C.; Winter, K.; Kitajima, K. Trait-based scaling of temperature-dependent foliar respiration in a species-rich tropical forest canopy. Funct. Ecol. 2014, 28, 1074–1086. [Google Scholar] [CrossRef]
- Smith-Martin, C.M.; Bastos, C.L.; Lopez, O.R.; Powers, J.S.; Schnitzer, S.A. Effects of dry-season irrigation on leaf physiology and biomass allocation in tropical lianas and trees. Ecology 2019, 100, e02827. [Google Scholar] [CrossRef]
- Van Der Sande, M.T.; Poorter, L.; Schnitzer, S.A.; Markesteijn, L. Are lianas more drought-tolerant than trees? A test for the role of hydraulic architecture and other stem and leaf traits. Oecologia 2013, 172, 961–972. [Google Scholar] [CrossRef] [Green Version]
- Van Der Sande, M.T.; Poorter, L.; Schnitzer, S.A.; Engelbrecht, B.M.J.; Markesteijn, L. The hydraulic efficiency–safety trade-off differs between lianas and trees. Ecology 2019, 100, e02666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vivek, P.; Parthasarathy, N. Liana community and functional trait analysis in tropical dry evergreen forest of India. J. Plant Ecol. 2014, 8, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Werden, L.K.; Waring, B.; Smith-Martin, C.M.; Powers, J.S. Tropical dry forest trees and lianas differ in leaf economic spectrum traits but have overlapping water-use strategies. Tree Physiol. 2017, 38, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, Y.-J.; Ma, K.; Bongers, F.; Sterck, F.J. Fully exposed canopy tree and liana branches in a tropical forest differ in mechanical traits but are similar in hydraulic traits. Tree Physiol. 2019, 39, 1713–1724. [Google Scholar] [CrossRef]
- Zhu, S.-D.; Chen, Y.-J.; Fu, P.-L.; Cao, K.-F. Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability. Tree Physiol. 2017, 37, 1469–1477. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.-D.; Cao, K.-F. Contrasting cost–benefit strategy between lianas and trees in a tropical seasonal rain forest in southwestern China. Oecologia 2010, 163, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.-D.; Cao, K.-F. Hydraulic properties and photosynthetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecol. 2009, 204, 295–304. [Google Scholar] [CrossRef]
- Williamson, G.B.; Wiemann, M.C. Measuring wood specific gravity…Correctly. Am. J. Bot. 2010, 97, 519–524. [Google Scholar] [CrossRef] [Green Version]
- The R Project for Statistical Computing. Available online: http://www.R-project.org/ (accessed on 8 October 2020).
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 56–61. [Google Scholar]
- Hodgson, J.; Wilson, P.; Hunt, R.; Grime, J.P.; Thompson, K. Allocating C-S-R Plant Functional Types: A Soft Approach to a Hard Problem. Oikos 1999, 85, 282. [Google Scholar] [CrossRef]
- Osnas, J.L.D.; Katabuchi, M.; Kitajima, K.; Wright, S.J.; Reich, P.B.; Van Bael, S.A.; Kraft, N.J.B.; Samaniego, M.J.; Pacala, S.W.; Lichstein, J.W. Divergent drivers of leaf trait variation within species, among species, and among functional groups. Proc. Natl. Acad. Sci. USA 2018, 115, 5480–5485. [Google Scholar] [CrossRef] [Green Version]
- Abdala-Roberts, L.; Galmán, A.; Petry, W.K.; Covelo, F.; De La Fuente, M.; Glauser, G.; Moreira, X. Interspecific variation in leaf functional and defensive traits in oak species and its underlying climatic drivers. PLoS ONE 2018, 13, e0202548. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Oleksyn, J.; Wright, I.J. Leaf phosphorus influences the photosynthesis–nitrogen relation: A cross-biome analysis of 314 species. Oecologia 2009, 160, 207–212. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Gleason, S.M.; Wright, I.J.; Weng, E.; Liu, H.; Zhu, S.; Lu, M.; Luo, Q.; Li, R.; Wu, G.; et al. Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Glob. Chang. Biol. 2019, 26, 1833–1841. [Google Scholar] [CrossRef] [PubMed]
- Rosell, J.A.; Olson, M.E. Do lianas really have wide vessels? Vessel diameter–stem length scaling in non-self-supporting plants. Perspect. Plant Ecol. Evol. Syst. 2014, 16, 288–295. [Google Scholar] [CrossRef]
- Meunier, F.; Moorthy, S.M.K.; De Deurwaerder, H.P.T.; Kreus, R.; Bulcke, J.V.D.; Lehnebach, R.; Verbeeck, H. Within-Site Variability of Liana Wood Anatomical Traits: A Case Study in Laussat, French Guiana. Forests 2020, 11, 523. [Google Scholar] [CrossRef]
- Jiménez-Castillo, M.; Wiser, S.K.; Lusk, C.H. ORIGINAL ARTICLE: Elevational parallels of latitudinal variation in the proportion of lianas in woody floras. J. Biogeogr. 2006, 34, 163–168. [Google Scholar] [CrossRef]
- Hacke, U.G.; Sperry, J.S.; Wheeler, J.K.; Castro, L. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 2006, 26, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Markesteijn, L.; Poorter, L.; Bongers, F.; Paz, H.; Sack, L. Hydraulics and life history of tropical dry forest tree species: Coordination of species’ drought and shade tolerance. New Phytol. 2011, 191, 480–495. [Google Scholar] [CrossRef]
- Schnitzer, S.A. A Mechanistic Explanation for Global Patterns of Liana Abundance and Distribution. Am. Nat. 2005, 166, 262–276. [Google Scholar] [CrossRef] [Green Version]
- DeWalt, S.J.; Schnitzer, S.A.; Alves, L.F.; Bongers, F.; Burnham, R.J.; Cai, Z.; Carson, W.P.; Chave, J.; Chuyong, G.B.; Costa, F.R.C.; et al. Biogeographical patterns of liana abundance and diversity. In Ecology of Lianas; 2014; pp. 131–146. Available online: https://onlinelibrary.wiley.com/doi/10.1002/9781118392409.ch11 (accessed on 20 August 2020).
- Gilbert, B.; Wright, S.J.; Muller-Landau, H.C.; Kitajima, K.; Hernandéz, A. Life history trade-offs in tropical trees and lianas. Ecology 2006, 87, 1281–1288. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R. Canopy chemistry expresses the life-history strategies of lianas and trees. In Ecology of Lianas; 2014; pp. 299–308. Available online: https://onlinelibrary.wiley.com/doi/10.1002/9781118392409.ch21 (accessed on 20 August 2020).
- Schnitzer, S.A.; Carson, W.P. Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 2001, 82, 913–919. [Google Scholar] [CrossRef]
- Ledo, A.; Schnitzer, S.A. Disturbance and clonal reproduction determine liana distribution and maintain liana diversity in a tropical forest. Ecology 2014, 95, 2169–2178. [Google Scholar] [CrossRef] [PubMed]
- Odell, E.H.; Stork, N.E.; Kitching, R.L. Lianas as a food resource for herbivorous insects: A comparison with trees. Biol. Rev. 2019, 94, 1416–1429. [Google Scholar] [CrossRef] [PubMed]
- Schupp, E.W.; Feener, D.H. Phylogeny, lifeform, and habitat- dependence of ant-defended plants in a Panamanian forest. In Ant-Plant Interactions; Huxley, C.R., Culver, D.K., Eds.; Oxford University Press: Oxford, UK, 1991; pp. 175–197. ISBN 978-110-715-975-4. [Google Scholar]
Study Citation | Site Country | Forest Type | Mean Annual Precipitation Wet Season Period | Liana and Tree Species Sampling |
---|---|---|---|---|
Apagua et al. 2016 [27] | Daintree Rainforest Observatory Australia | Lowland Tropical Rainforest | 4900 mm | 15 lianas and 45 trees |
Avalos et al. 1999 [28] | Parque Metropolitano Panama | Tropical Dry Forest | 1740 mm | 12 lianas and 7 trees |
Buckton et al. 2019 [29] | Cape Tribulation Australia | Lowland Tropical Rainforest | 4207 mm December–April | 7 lianas and 11 trees |
Castellanos et al. 1989 [25] | Chamela field station Mexico | Tropical Deciduous Forest | 748 mm July–October | 41 lianas (no information about tree sampling) |
Castellanos-Castro & Newton 2015 [30] | Totumo region, Caribbean coast Colombia | Tropical dry forest | 900 mm April–December | 14 lianas and 94 trees |
Cernusak et al. 2008 [31] | Gamboa Panama | Tropical Moist Forest | Not informed | 4 lianas and 9 trees |
Cai et al. 2007 [32] | Xishuanbanna China | Tropical Seasonal Forest | 1539 mm May–October | 3 lianas and 2 trees |
Cai et al. 2009 [33] | Xishuanbanna China | Tropical Seasonal Forest | 1559 mm May–October | 18 lianas and 16 trees |
Chen et al. 2014 [34] | Xishuanbanna China | Karst forest; Tropical Seasonal Forest; Flood Plain Forest | 1560 mm May–October | Karst forest-6 lianas and 10 trees; TSF-9 lianas and 12 trees; FPF-5 lianas and 11 trees |
Collins et al. 2016 [35] | Barro Colorado Island Panama | Tropical Moist Forest | 2600 mm May–December | 6 lianas and 6 trees |
Dias et al. 2020 [36] | Ribeirão Cachoeira Brazil | Tropical Seasonal Semi-deciduous forest | 1409 mm October–March | 16 lianas and 15 trees |
Dias et al. 2019 [37] | Paraná forest Brazil | Seasonally Dry Forest | 1409 mm September–March | The most abundant lianas and trees |
De Guzman et al. 2016 [38] | Parque Metropolitano Panama | Lowland Tropical Rainforest | 1865 mm May–November | 6 lianas and 6 trees |
De Guzman et al. 2020 [39] | Fuerte de San Lorenzo Panama | Lowland Tropical Rainforest | 3300 mm April–December | 3 lianas and 6 trees |
Domingues et al. 2007 [40] | Flona Tapajós, Santarém Brazil | Amazonian terra-firme tropical Rainforest | 2000 mm December–June | 6 lianas and 11 trees |
Han et al. 2010 [41] | Xishuanbanna China | Lowland Tropical Rainforest | 1500 mm May–October | 14 lianas and 16 trees (SF); 18 lianas and 18 trees (MF) |
Johnson et al. 2013 [26] | Parque Metropolitano Panama | Lowland Tropical Rainforest | 1865 mm May–October | 2 lianas and 1 tree |
Kazda & Salzer 2000 [42] | Makandé Gabon | Lowland Tropical Rainforest | 1753 mm October–December and March–May | 49 lianas and 42 trees |
Kazda et al. 2009 [43] | Masoala National Park Madagascar | Dense subequatorial humid forest | 3500 mm November–April | 57 samples of lianas and trees (species per life form not mentioned) |
Liu et al. 2012 [44] | Yunnan Province China | Monsoon evergreen broad-leaved forests | 1547.6 mm May–October | 91 species (liana and tree species not mentioned) |
Marechaux et al. 2017 [45] | Nouragues French Guiana | Lowland Tropical Rainforest | 3000 mm December–July | 11 botanical families of lianas and 71 trees |
Marechaux et al. 2019 [46] | Nouragues French Guiana | Lowland Tropical Rainforest | 3000 mm December–July | 11 botanical families of lianas and 10 trees |
Rios et al. 2014 [47] | Multiple sites and countries | Forest Ecosystems | Multiple sites | 63 lianas and 71 trees |
Sánchez-Asofeifa et al. 2009 [48] | Fuerte de San Lorenzo and Parque Metropolitano Panama | Tropical Wet and Tropical Dry | 3300 mm May–December 1740 mm May–December | 35 lianas and 18 trees |
Santiago & Wright 2007 [16] | Fuerte de San Lorenzo Panama | Lowland Tropical Rainforest | 3100 mm April–December | 11 lianas and 21 trees |
Slot et al. 2013 [49] | Parque Metropolitano Panama | Tropical Dry Forest | 1740 mm May–December | 13 lianas and 13 trees |
Slot et al. 2014 [50] | Parque Metropolitano Panama | Tropical Dry Forest | 1865 mm May–December | 14 lianas and 14 trees |
Smith-Martin et al. 2019 [51] | Canal zone–Summit Panama | Tropical Moist Forest | 2226 mm May–December | 6 lianas and 6 trees |
van der Sande et al. 2013 [52] | Parque Soberania Panama | Lowland Tropical Rainforest | 2400 mm April–December | 11 lianas and 13 trees |
van der Sande et al. 2019 [53] | Fuerte de San Lorenzo and Parque Soberania Panama | Tropical Moist Forest and Wet Forest | 3203 mm April–December 2311 mm May–November | 13 lianas and 13 trees |
Vivek & Parthasarathy 2018 [54] | Coromandel Coast India | Tropical Dry Evergreen Forest | 1141mm October–December | 10 lianas and 10 trees |
Werden et al. 2017 [55] | Guanacaste Costa Rica | Seasonally Dry Forest | 880–3030 mm May–Decemebr | 7 lianas and 14 trees |
Zhang et al. 2019 [56] | Xishuanbanna China | Lowland Tropical Rainforest | 1493mm May–October | 12 lianas and 10 trees |
Zhu et al. 2017 [57] | Xishuanbanna China | Lowland Tropical Rainforest | 1600 mm May–October | Karst forest- 2 lianas and 8 trees; Non-karst forest–3 lianas and 10 trees |
Zhu & Cao 2010 [58] | Xishuanbanna China | Tropical Seasonal Forest | 1500 mm May–October | 18 lianas and 19 trees |
Zhu & Cao 2009 [59] | Xishuanbanna China | Tropical Seasonal Forest | 1379 mm May–October | 3 lianas and 3 trees |
Functional Trait | Liana Mean Trait Value | Tree Mean Trait Value | t-Test Statistic and p-Value |
---|---|---|---|
Specific Leaf Area (SLA) | 176.98 ± 80.77 SD | 140.70 ± 62.41 SD | t(27) = 3.64, p = 0.001 * |
Mass-based nitrogen concentration (Nmass) | 24.95 ± 4.73 SD | 20.34 ± 3.85 SD | t(13) = 3.89, p = 0.002 * |
Mass-based phosphorus concentration (Pmass) | 1.43 ± 0.41 SD | 1.22 ± 0.4 SD | t(6) = 3.17, p = 0.02 * |
Sapwood specific conductivity (Ks) | 5.57 ± 3.18 SD | 2.91 ± 2.05 SD | t(6) = 4.62, p = 0.004 * |
Maximum area-based net photosynthetic rate (Amax) | 11.28 ± 2.63 SD | 11.17 ± 3.45 SD | t(12) = 0.12, p = 0.9 |
Carbon isotopic composition (δ13C) | −29.55 ± 1.43 SD | −29.9 ± 1.46 SD | t(8) = 1.51, p = 0.17 |
Wood density (WD) | 0.46 ± 0.05 SD | 0.5 ± 0.08 SD | t(13) = −1.16, p = 0.26 |
Leaf Turgor Loss Point (πtlp) | −1.63 ± 0.16 SD | −1.64 ± 0.33 SD | t(5) = 0.09, p = 0.93 |
Stomatal conductance (gs) | 0.19 ± 0.07 SD | 0.18 ± 0.1 SD | t(6) = −0.18, p = 0.86 |
Water potential at 50 percent loss of conductivity (P50) | −1.46 ± 0.62 SD | −1.74 ± 0.54 SD | t(7) = 1.56, p = 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mello, F.N.A.; Estrada-Villegas, S.; DeFilippis, D.M.; Schnitzer, S.A. Can Functional Traits Explain Plant Coexistence? A Case Study with Tropical Lianas and Trees. Diversity 2020, 12, 397. https://doi.org/10.3390/d12100397
Mello FNA, Estrada-Villegas S, DeFilippis DM, Schnitzer SA. Can Functional Traits Explain Plant Coexistence? A Case Study with Tropical Lianas and Trees. Diversity. 2020; 12(10):397. https://doi.org/10.3390/d12100397
Chicago/Turabian StyleMello, Felipe N. A., Sergio Estrada-Villegas, David M. DeFilippis, and Stefan A. Schnitzer. 2020. "Can Functional Traits Explain Plant Coexistence? A Case Study with Tropical Lianas and Trees" Diversity 12, no. 10: 397. https://doi.org/10.3390/d12100397
APA StyleMello, F. N. A., Estrada-Villegas, S., DeFilippis, D. M., & Schnitzer, S. A. (2020). Can Functional Traits Explain Plant Coexistence? A Case Study with Tropical Lianas and Trees. Diversity, 12(10), 397. https://doi.org/10.3390/d12100397