Are Wildland Fires Increasing Large Patches of Complex Early Seral Forest Habitat?
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Quayle, B. Calibration and Validation of Immediate Post-Fire Satellite-Derived Data to Three Severity Metrics. Fire Ecol. 2015, 11, 12–30. [Google Scholar]
- Lydersen, J.M.; Collins, B.M.; Miller, J.D.; Fry, D.L.; Stephens, S.L. Relating fire-caused change in forest structure to remotely sensed estimates of fire severity. Fire Ecol. 2016, 12, 99–116. [Google Scholar] [CrossRef]
- Dellasala, D.A.; Bond, M.L.; Hanson, C.T.; Hutto, R.L.; Odion, D.C. Complex Early Seral Forests of the Sierra Nevada: What are They and How Can They Be Managed for Ecological Integrity? Nat. Areas J. 2014, 34, 310–324. [Google Scholar] [CrossRef] [Green Version]
- Odion, D.C.; Hanson, C.T.; Arsenault, A.; Baker, W.L.; Dellasala, D.A.; Hutto, R.L.; Klenner, W.; Moritz, M.A.; Sherriff, R.L.; Veblen, T.T.; et al. Examining Historical and Current Mixed-Severity Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America. PLoS ONE 2014, 9, e87852. [Google Scholar] [CrossRef]
- Odion, D.C.; Hanson, C.T.; Baker, W.L.; Dellasala, D.A.; Williams, M.A. Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al. PLoS ONE 2016, 11, e0154579. [Google Scholar] [CrossRef]
- Stevens, J.T.; Safford, H.D.; North, M.P.; Fried, J.S.; Gray, A.N.; Brown, P.M.; Dolanc, C.R.; Dobrowski, S.Z.; Falk, D.A.; Farris, C.A.; et al. Average stand age from forest inventory plots does not describe historical fire regimes in ponderosa pine and mixed-conifer forests of western North America. PLoS ONE 2016, 11, e0147688. [Google Scholar] [CrossRef]
- Hanson, C.T.; Odion, D.C.; Dellasala, D.A.; Baker, W.L. Overestimation of Fire Risk in the Northern Spotted Owl Recovery Plan. Conserv. Boil. 2009, 23, 1314–1319. [Google Scholar] [CrossRef]
- Baker, W.L. Historical forest structure and fire in Sierran mixed-conifer forests reconstructed from General Land Office survey data. Ecosphere 2014, 5, 1–70. [Google Scholar] [CrossRef]
- Baker, W.L. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA? PLoS ONE 2015, 10, e0136147. [Google Scholar]
- Law, B.; Waring, R. Carbon implications of current and future effects of drought, fire and management on Pacific Northwest forests. For. Ecol. Manag. 2015, 355, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Keyser, A.; Westerling, A. Climate drives inter-annual variability in probability of high severity fire occurrence in the western United States. Environ. Res. Lett. 2017, 12, 65003. [Google Scholar] [CrossRef]
- Dillon, G.K.; Holden, Z.A.; Morgan, P.; Crimmins, M.A.; Heyerdahl, E.K.; Luce, C.H. Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006. Ecosphere 2011, 2, 1–33. [Google Scholar] [CrossRef]
- Miller, J.D.; Safford, H.D.; Crimmins, M.; Thode, A.E. Quantitative evidence for increasing forest fire severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA. Ecosystems 2009, 12, 16–32. [Google Scholar] [CrossRef]
- Mallek, C.; Safford, H.D.; Viers, J.; Miller, J.D. Modern departures in fire severity and area vary by forest type, Sierra Nevada and Southern Cascades, USA. Ecosphere 2013, 4, 1–28. [Google Scholar] [CrossRef]
- Hanson, C.T.; Odion, D.C. Is fire severity increasing in the Sierra Nevada, California, USA? Int. J. Wildland Fire 2014, 23, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hanson, C.T.; Odion, D.C. Sierra Nevada fire severity conclusions are robust to further analysis: A reply to Safford et al. Int. J. Wildland Fire 2015, 24, 294–295. [Google Scholar] [CrossRef]
- Stephens, S.L. Forest fire causes and extent on United States Forest Service lands. Int. J. Wildland Fire 2005, 14, 213. [Google Scholar] [CrossRef]
- Stephens, S.L.; Agee, J.K.; Fulé, P.Z.; North, M.P.; Romme, W.H.; Swetnam, T.W.; Turner, M.G. Managing Forests and Fire in Changing Climates. Science 2013, 342, 41–42. [Google Scholar] [CrossRef]
- Lydersen, J.M.; North, M.P.; Collins, B.M. Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes. For. Ecol. Manag. 2014, 328, 326–334. [Google Scholar] [CrossRef] [Green Version]
- Hessburg, P.F.; Churchill, D.J.; Larson, A.J.; Haugo, R.D.; Miller, C.; Spies, T.A.; North, M.P.; Povak, N.A.; Belote, R.T.; Singleton, P.H.; et al. Restoring fire-prone Inland Pacific landscapes: Seven core principles. Landsc. Ecol. 2015, 30, 1805–1835. [Google Scholar] [CrossRef]
- Reilly, M.J.; Dunn, C.J.; Meigs, G.W.; Spies, T.A.; Kennedy, R.E.; Bailey, J.D.; Briggs, K. Contemporary patterns of fire extent and severity in forests of the Pacific Northwest, USA (1985–2010). Ecosphere 2017, 8, e01695. [Google Scholar] [CrossRef]
- Hessburg, P.F.; Spies, T.A.; Perry, D.A.; Skinner, C.N.; Taylor, A.H.; Brown, P.M.; Stephens, S.L.; Larson, A.J.; Churchill, D.J.; Povak, N.A.; et al. Tamm review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California. For. Ecol. Manag. 2016, 366, 221–250. [Google Scholar] [CrossRef]
- Parks, S.A.; Miller, C.; Abatzoglou, J.T.; Holsinger, L.M.; Parisien, M.-A.; Dobrowski, S.Z. How will climate change affect wildland fire severity in the western US? Environ. Res. Lett. 2016, 11, 35002. [Google Scholar] [CrossRef] [Green Version]
- DellaSala, D.A.; Hanson, C.T. Ecological and biodiversity benefits of mega-fires. In The Ecological Importance of Mixed-Severity Fires: Nature’s Phoenix; DellaSala, D.A., Hanson, C.T., Eds.; Elsevier: Waltham, MA, USA, 2015; pp. 23–54. [Google Scholar]
- Baker, W.L. Accommodating Mixed-Severity Fire to Restore and Maintain Ecosystem Integrity with a Focus on the Sierra Nevada of California, USA. Fire Ecol. 2017, 13, 148–171. [Google Scholar]
- Donato, D.C.; Fontaine, J.B.; Robinson, W.D.; Kauffman, J.B.; Law, B.E. Vegetation response to a short interval between high-severity wildfires in a mixed-evergreen forest. J. Ecol. 2009, 97, 142–154. [Google Scholar] [CrossRef]
- Fontaine, J.B.; Donato, D.C.; Robinson, W.D.; Law, B.E.; Kauffman, J.B. Bird communities following high-severity fire: Response to single and repeat fires in a mixed-evergreen forest, Oregon, USA. For. Ecol. Manag. 2009, 257, 1496–1504. [Google Scholar] [CrossRef] [Green Version]
- Hutto, R.L.; Bond, M.L.; Dellasala, D.A. Using Bird Ecology to Learn About the Benefits of Severe Fire. In The Ecological Importance of Mixed-Severity Fires: Nature’s Phoenix; DellaSala, D.A., Hanson, C.T., Eds.; Elsevier: Waltham, MA, USA, 2015; pp. 55–88. [Google Scholar]
- Bond, M.L. Mammals and Mixed- and High-severity Fire. In The Ecological Importance of Mixed-Severity Fires: Nature’s Phoenix; DellaSala, D.A., Hanson, C.T., Eds.; Elsevier: Waltham, MA, USA, 2015; pp. 89–117. [Google Scholar]
- Buchalski, M.R.; Fontaine, J.B.; Heady, P.A., III; Hayes, J.P.; Frick, W.F. Bat response to differing fire severity in mixed-conifer forest, California, USA. PLoS ONE 2013, 8, e57884. [Google Scholar] [CrossRef]
- Kulakowski, D.; Veblen, T.T. Bark Beetles and High-Severity Fires in Rocky Mountain Subalpine Forests. In The Ecological Importance of Mixed-Severity Fires: Nature’s Phoenix; DellaSala, D.A., Hanson, C.T., Eds.; Elsevier: Waltham, MA, USA, 2015; pp. 149–174. [Google Scholar]
- Jackson, B.K.; Sullivan, S.M.P.; Baxter, C.V.; Malison, R.L. Stream-Riparian Ecosystems and Mixed- and High-Severity Fire. In The Ecological Importance of Mixed-Severity Fires: Nature’s Phoenix; DellaSala, D.A., Hanson, C.T., Eds.; Elsevier: Waltham, MA, USA, 2015; pp. 118–148. [Google Scholar]
- Dudley, J.G.; Saab, V.A. Home Range Size of Black-Backed Woodpeckers in Burned Forests of Southwestern Idaho. West. N. Am. Nat. 2007, 67, 593–600. [Google Scholar] [CrossRef]
- Saab, V.A.; Russell, R.E.; Dudley, J.G. Nest Densities of Cavity-Nesting Birds in Relation to Postfire Salvage Logging and Time Since Wildfire. Condor 2007, 109, 97. [Google Scholar] [CrossRef]
- Hanson, C.T.; North, M.P. Postfire Woodpecker Foraging in Salvage-Logged and Unlogged Forests of the Sierra Nevada. Condor 2008, 110, 777–782. [Google Scholar] [CrossRef]
- Saab, V.A.; Russell, R.E.; Dudley, J.G. Nest-site selection by cavity-nesting birds in relation to postfire salvage logging. For. Ecol. Manag. 2009, 257, 151–159. [Google Scholar] [CrossRef]
- Bond, M.; Lee, D.E.; Siegel, R.B.; Ward, J.P. Habitat Use and Selection by California Spotted Owls in a Postfire Landscape. J. Wildl. Manag. 2009, 73, 1116–1124. [Google Scholar] [CrossRef]
- Bond, M.L.; Bradley, C.; Lee, D.E.; Lee, D. Foraging habitat selection by California spotted owls after fire. J. Wildl. Manag. 2016, 80, 1290–1300. [Google Scholar] [CrossRef]
- Baker, W.L. Restoring and managing low-severity fire in dry-forest landscapes of the western USA. PLoS ONE 2017, 12, e0172288. [Google Scholar] [CrossRef]
- Bradley, C.M.; Hanson, C.T.; DellaSala, D.A. Does increased forest protection correspond to higher fire severity in frequent-fire forests of the western USA? Ecosphere 2016, 7, e01492. [Google Scholar] [CrossRef]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Holden, Z.A.; Morgan, P.; Hudak, A.T. Burn severity of areas reburned by wildfires in the Gila National Forest, New Mexico, USA. Fire Ecol. 2010, 6, 77–85. [Google Scholar] [CrossRef]
- Cansler, C.A.; McKenzie, D. How Robust Are Burn Severity Indices When Applied in a New Region? Evaluation of Alternate Field-Based and Remote-Sensing Methods. Remote Sens. 2012, 4, 456–483. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D. Patterns and Trends in Burned Area and Fire Severity from 1984 to 2010 in the Sierra De San Pedro Mártir, Baja California, Mexico. Fire Ecol. 2016, 12, 52–72. [Google Scholar]
- Kemp, K.B.; Higuera, P.E.; Morgan, P. Fire legacies impact conifer regeneration across environmental gradients in the U.S. northern Rockies. Landsc. Ecol. 2016, 31, 619–636. [Google Scholar] [CrossRef]
- Steel, Z.L.; Koontz, M.J.; Safford, H.D. The changing landscape of wildfire: Burn pattern trends and implications for California’s yellow pine and mixed conifer forests. Landsc. Ecol. 2018, 33, 1159–1176. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.; Kemp, K.B.; Higuera, P.E.; Harvey, B.J.; Rother, M.T.; Donato, D.C.; Morgan, P.; Veblen, T.T. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 2018, 21, 243–252. [Google Scholar] [CrossRef]
- Picotte, J.J.; Peterson, B.; Meier, G.; Howard, S.M. 1984–2010 trends in fire burn severity and area for the conterminous US. Int. J. Wildland Fire 2016, 25, 413. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Shatford, J.P.A.; Hibbs, D.E.; Puettmann, K.J. Conifer regeneration after forest fire in the Klamath-Siskiyous: How much, how soon? J. For. 2007, 105, 139–146. [Google Scholar]
- Haire, S.L.; McGarigal, K. Effects of landscape patterns of fire severity on regenerating ponderosa pine forests (Pinus ponderosa) in New Mexico and Arizona, USA. Landsc. Ecol. 2010, 25, 1055–1069. [Google Scholar] [CrossRef]
- Chambers, M.E.; Fornwalt, P.J.; Malone, S.L.; Battaglia, M.A. Patterns of conifer regeneration following high severity wildfire in ponderosa pine—Dominated forests of the Colorado Front Range. For. Ecol. Manag. 2016, 378, 57–67. [Google Scholar] [CrossRef]
- Hanson, C.T. Landscape heterogeneity following high-severity fire in California’s forests. Wildl. Soc. Bull. 2018, 42, 264–271. [Google Scholar] [CrossRef]
- Leiberg, J.B. Forest Conditions in the Northern Sierra Nevada, California. USDI Geological Survey; Professional Paper No. 8; U.S. Government Printing Office: Washington, DC, USA, 1902.
- Hanson, C.T. Post-Fire Management of Snag Forest Habitat in the Sierra Nevada. Ph.D. Thesis, University of California at Davis, Davis, CA, USA, 2007. [Google Scholar]
- Perry, D.A.; Hessburg, P.F.; Skinner, C.N.; Spies, T.A.; Stephens, S.L.; Taylor, A.H.; Franklin, J.F.; McComb, B.; Riegel, G. The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California. Forest Ecol. Manag. 2011, 262, 703–717. [Google Scholar] [CrossRef]
- Baker, W.L. Implications of spatially extensive historical data from surveys for restoring dry forests of Oregon’s eastern Cascades. Ecosphere 2012, 3, 1–39. [Google Scholar] [CrossRef]
- Leiberg, J.B. Southern part of Cascade Range Forest Reserve. In Forest Conditions in the Cascade Range Forest Reserve, Oregon; Langille, H.D., Plummer, F.G., Dodwell, A., Rixon, T.F., Leiberg, J.B., Eds.; Professional Paper No. 9; U.S. Geological Survey; U.S. Government Printing Office: Washington, DC, USA, 1903; pp. 229–289. [Google Scholar]
- Williams, M.A.; Baker, W.L. Spatially extensive reconstructions show variable-severity fire and heterogeneous structure in historical western United States dry forests. Glob. Ecol. Biogeogr. 2012, 21, 1042–1052. [Google Scholar] [CrossRef]
- Dodge, I.R. The Black Hills: A Minute Description of the Routes, Scenery, Soil, Climate, Timber, Gold, Geology, Zoology, etc.; Miller, J., Ed.; Kessinger Publishing: New York, NY, USA, 1876. [Google Scholar]
- Morgan, P.; Heyerdahl, E.K.; Miller, C.; Wilson, A.M.; Gibson, C.E. Northern Rockies pyrogeography: An example of fire atlas utility. Fire Ecol. 2014, 10, 14–30. [Google Scholar]
- Morgan, P.; Hudak, A.T.; Wells, A.; Parks, S.A.; Baggett, L.S.; Bright, B.C.; Green, P. Multidecadal trends in area burned with high severity in the Selway-Bitterroot Wilderness Area 1880–2012. Inter. J. Wildland Fire 2017, 26, 930–943. [Google Scholar] [CrossRef]
- Harvey, B.J.; Donato, D.C.; Turner, M.G. Drivers and trends in landscape patterns of stand-replacing fire in forests of the US Northern Rocky Mountains (1984–2010). Landsc. Ecol. 2016, 31, 2367–2383. [Google Scholar] [CrossRef]
- Owen, S.M.; Sieg, C.H.; Meador, A.J.S.; Fulé, P.Z.; Iniguez, J.M.; Baggett, L.S.; Fornwalt, P.J.; Battaglia, M.A. Ponderosa pine regeneration in high-severity burn patches. For. Ecol. Manag. 2017, 405, 134–149. [Google Scholar] [CrossRef]
- Yue, X.; Mickley, L.J.; Logan, J.A.; Kaplan, J.O. Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century. Atmos. Environ. 2013, 77, 767–780. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, D.; Littell, J.S. Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA? Ecol. Appl. 2017, 27, 26–36. [Google Scholar] [CrossRef]
- Parks, S.A.; Holsinger, L.M.; Miller, C.; Parisien, M.A. Analog-based fire regime and vegetation shifts in mountainous regions of the western US. Ecography 2018, 41, 910–926. [Google Scholar] [CrossRef]
- Stevens, J.T.; Collins, B.M.; Miller, J.D.; North, M.P.; Stephens, S.L. Changing spatial patterns of stand-replacing fire in California conifer forests. For. Ecol. Manag. 2017, 406, 28–36. [Google Scholar] [CrossRef]
- Collins, B.M.; Stevens, J.T.; Miller, J.D.; Stephens, S.L.; Brown, P.M.; North, M.P. Alternative characterization of forest fire regimes: Incorporating spatial patterns. Landsc. Ecol. 2017, 32, 1543–1552. [Google Scholar] [CrossRef]
- Donato, D.C.; Campbell, J.L.; Franklin, J.F. Multiple successional pathways and precocity in forest development: Can some forests be born complex? J. Veg. Sci. 2012, 23, 576–584. [Google Scholar] [CrossRef]
- Miller, J.D.; Safford, H.D.; Welch, K.R. Using one year post-fire fire severity assessments to estimate longer-term effects of fire in conifer forests of northern and eastern California, USA. For. Ecol. Manag. 2016, 382, 168–183. [Google Scholar] [CrossRef] [Green Version]
- Savage, M.; Mast, J.N. How resilient are southwestern ponderosa pine forests after crown fires? Can. J. For. Res. 2005, 35, 967–977. [Google Scholar] [CrossRef] [Green Version]
- Tepley, A.J.; Thompson, J.R.; Epstein, H.E.; Anderson-Teixeira, K.J.; Anderson-Teixeira, K.J. Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains. Glob. Chang. Boil. 2017, 23, 4117–4132. [Google Scholar] [CrossRef]
- Swanson, M.E.; Franklin, J.F.; Beschta, R.L.; Crisafulli, C.M.; DellaSala, D.A.; Hutto, R.L.; Lindenmayer, D.B.; Swanson, F.J. The forgotten stage of forest succession: Early-successional ecosystems on forested sites. Front. Ecol. Environ. 2011, 9, 117–125. [Google Scholar] [CrossRef]
- DellaSala, D.A.; Hanson, C.T. (Eds.) The Ecological Importance of Mixed Severity Fire: Nature’s Phoenix; Elsevier: Waltham, MA, USA, 2015. [Google Scholar]
- Phalan, B.T.; Northrup, J.M.; Yang, Z.; Deal, R.L.; Rousseau, J.S.; Spies, T.A.; Betts, M.G. Impacts of the Northwest Forest Plan on Forest Composition and Bird Populations. Proc. Natl. Acad. Sci. USA 2019, 116, 3322–3327. [Google Scholar] [CrossRef]
- Cohen, J. Preventing disaster: Home ignitability in the wildland-urban interface. J. For. 2000, 98, 15–21. [Google Scholar] [CrossRef]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [Green Version]
Time Group Comparison | q0.05,4 | |RA-RB| | SE | q | Significant? (Is q > q0.05,4 ?) |
---|---|---|---|---|---|
1–2 | 3.63 | 45.0 | 26.53 | 1.70 | N |
1–3 | 3.63 | 108.0 | 26.53 | 4.07 | Y |
1–4 | 3.63 | 107.0 | 26.53 | 4.03 | Y |
2–3 | 3.63 | 63.0 | 26.53 | 2.37 | N |
2–4 | 3.63 | 62.0 | 26.53 | 2.34 | N |
3–4 | 3.63 | 1.00 | 26.53 | 0.04 | N |
Time Group Comparison | Q0.05,4 | |A-B| | SE | Q | Significant? (Is Q > Q0.05,4?) |
---|---|---|---|---|---|
1–2 | 2.64 | 2.73 | 26.91 | 0.10 | N |
1–3 | 2.64 | 26.50 | 24.37 | 1.09 | N |
1–4 | 2.64 | 15.08 | 24.42 | 0.62 | N |
2–3 | 2.64 | 23.77 | 16.23 | 1.46 | N |
2–4 | 2.64 | 12.35 | 16.29 | 0.76 | N |
3–4 | 2.64 | 11.42 | 11.60 | 0.98 | N |
Region | Area of Forest (ha) | Area (ha) of Patches >400 ha (% of Ecoregion) | Rotation Interval 1 (Years) |
---|---|---|---|
Sierra Nevada/Southern California | 2,395,288 | 64,895 (2.709) | 1181 |
Klamath/Southern Cascades | 5,741,930 | 100,112 (1.744) | 1835 |
Northern Cascades/Northern Rockies | 10,057,451 | 73,936 (0.735) | 4354 |
Southern Rockies/Southwest | 6,956,201 | 72,851 (1.047) | 3056 |
Distance (m) | Sierra-Nevada/ Southern-California | Klamath/ Southern-Cascades | Northern-Cascades/ Northern-Rockies | Southern-Cascades/ Southwest |
---|---|---|---|---|
<100 | 49.3 | 55.6 | 46.8 | 54.7 |
101–200 | 27.6 | 25.5 | 25.2 | 26.0 |
201–300 | 13.5 | 11.2 | 12.8 | 10.6 |
>300 | 9.6 | 7.7 | 15.3 | 8.7 |
Source | Region | Forest Type | Evidence Type | Patch Size/s (ha) | Time Period |
---|---|---|---|---|---|
[54,55] | Northern Sierra Nevada | Mixed-conifer and ponderosa pine | Historical USGS mapping, and current GIS analysis | 400–~9000 | 19th century |
[8] | Sierra Nevada | Mixed-conifer and ponderosa pine | Reconstruction, using 19th-century General Land Office data | Largest = 8050 (northern) and 9400 (southern) | 19th century |
[56] | Eastern Washington Cascades | Mixed-conifer | Reconstructions of past high-severity from historical aerial photos | 400–10,500 | 19th century, and early 20th |
[57] | Eastern Oregon Cascades | Mixed-conifer and ponderosa pine | Reconstruction from 19th-century General Land Office data | 400–~5000 | 19th century |
[58] | Oregon Klamath | Mostly ponderosa pine | Historical account, early 20th century U.S. Geological Survey report | ~14,000 | 19th century |
[59] | Colorado Front Range | Mostly ponderosa pine | Reconstruction from 19th-century General Land Office data | 400–~22,000 | 19th century |
[59] | Blue Mountains, Oregon | Ponderosa pine | Reconstruction from 19th-century General Land Office data | 400–~12,000 | 19th century |
[59] | Central/eastern Arizona | Ponderosa pine | Reconstruction from 19th-century General Land Office data | 400–~40,000 | 19th century |
[60] | Black Hills, South Dakota | Ponderosa pine, some lodgepole pine | Historical account | ~19,000 | mid-19th century |
[61,62] | Northern Rockies | Ponderosa pine, some Douglas-fir | Reconstruction from historical aerial photos | ~35,000 | 1910 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
DellaSala, D.A.; Hanson, C.T. Are Wildland Fires Increasing Large Patches of Complex Early Seral Forest Habitat? Diversity 2019, 11, 157. https://doi.org/10.3390/d11090157
DellaSala DA, Hanson CT. Are Wildland Fires Increasing Large Patches of Complex Early Seral Forest Habitat? Diversity. 2019; 11(9):157. https://doi.org/10.3390/d11090157
Chicago/Turabian StyleDellaSala, Dominick A., and Chad T. Hanson. 2019. "Are Wildland Fires Increasing Large Patches of Complex Early Seral Forest Habitat?" Diversity 11, no. 9: 157. https://doi.org/10.3390/d11090157
APA StyleDellaSala, D. A., & Hanson, C. T. (2019). Are Wildland Fires Increasing Large Patches of Complex Early Seral Forest Habitat? Diversity, 11(9), 157. https://doi.org/10.3390/d11090157