Next Article in Journal
Review of Cape Verde Aphanommata Wollaston, 1873 (Coleoptera: Curculionidae: Cossoninae) with Description of New Species, Larva and Notes on Biology and Distributional Patterns
Previous Article in Journal
Cumulative Human Impacts on Coral Reefs: Assessing Risk and Management Implications for Brazilian Coral Reefs
Previous Article in Special Issue
Significance of Mangrove Biodiversity Conservation in Fishery Production and Living Conditions of Coastal Communities in Sri Lanka
Open AccessArticle

Assessing Genetic Diversity after Mangrove Restoration in Brazil: Why Is It So Important?

Diretoria de Pesquisa, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Laboratório de Biologia Molecular, Rua Pacheco Leão, 915, Rio de Janeiro RJ 22460-030, Brazil
Laboratório de Virologia Molecular Animal, Departamento de Genética, Universidade Federal do Rio de Janeiro, sala a2-121, UFRJ-Av. Carlos Chagas Filho, 373-Cidade Universitária, Rio de Janeiro RJ 21941-902, Brazil
PPGPDS—Programa de Pós-Graduação em Práticas em Desenvolvimento Sustentável, Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Rua Anfilófio de Carvalho, 29 salas 901/902 e 1003/1004, Rio de Janeiro RJ 20030-901, Brazil
Laboratório de Ecologia Florestal e Biologia Vegetal (LEFBV), Departamento de Ciências Ambientais, Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Rodovia BR-465 Km 7, Seropédica RJ 23897-055, Brazil
Author to whom correspondence should be addressed.
Diversity 2018, 10(2), 27;
Received: 11 February 2018 / Revised: 28 March 2018 / Accepted: 20 April 2018 / Published: 26 April 2018
(This article belongs to the Special Issue Mangrove Ecology and Conservation)
Vital for many marine and terrestrial species, and several other environmental services, such as carbon sink areas, the mangrove ecosystem is highly threatened due to the proximity of large urban centers and climate change. The forced fragmentation of this ecosystem affects the genetic diversity distribution among natural populations. Moreover, while restoration efforts have increased, few studies have analyzed how recently-planted areas impact the original mangrove genetic diversity. We analyzed the genetic diversity of two mangroves species (Laguncularia racemosa and Avicennia schaueriana) in three areas in Brazil, using inter-simple sequence repeat (ISSR) markers. Using the local approach, we identified the genetic diversity pool of a restored area compared to nearby areas, including the remnant plants inside the restored area, one well-conserved population at the shore of Guanabara Bay, and one impacted population in Araçá Bay. The results for L. racemosa showed that the introduced population has lost genetic diversity by drift, but remnant plants with high genetic diversity or incoming propagules could help improve overall genetic diversity. Avicennia schaueriana showed similar genetic diversity, indicating an efficient gene flow. The principal component analysis showing different connections between both species indicate differences in gene flow and dispersal efficiencies, highlighting the needed for further studies. Our results emphasize that genetic diversity knowledge and monitoring associated with restoration actions can help avoid bottlenecks and other pitfalls, especially for the mangrove ecosystem. View Full-Text
Keywords: ISSR; mangroves; restoration; genetic diversity; conservation ISSR; mangroves; restoration; genetic diversity; conservation
Show Figures

Figure 1

MDPI and ACS Style

Granado, R.; Pinto Neta, L.C.; Nunes-Freitas, A.F.; Voloch, C.M.; Lira, C.F. Assessing Genetic Diversity after Mangrove Restoration in Brazil: Why Is It So Important? Diversity 2018, 10, 27.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Search more from Scilit
Back to TopTop