2D Coordination Polymer [Fe(piv)2(dab)2]n
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Crystal Structure
2.3. FTIR Spectroscopy
3. Materials and Methods
3.1. General Remarks
3.2. Synthesis of [Fe(piv)2(dab)2]n (1), Method a
3.3. Synthesis of [Fe(piv)2(dab)2]n (1), Method b
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Mohan, B.; Musikavanhu, B.; Wang, X.; Muhammad, R.; Yang, X.; Ren, P. Metal-Polymer-Coordinated Complexes: An Expedient Class of Hybrid Functional Materials. Coord. Chem. Rev. 2025, 524, 216286. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, Q.; Pei, H.; He, S.; Guo, R.; Liu, N.; Mo, Z. Synthesis Strategies, Preparation Methods, and Applications of Chiral Metal-Organic Frameworks. Chem. A Eur. J. 2024, 30, e202401091. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lai, J.; Gou, Q.; Gao, R.; Zheng, G.; Zhang, R.; Song, Z.; Yue, Q.; Guo, Z. Development of Well-Defined Olefin Block (Co)Polymers Achieved by Late Transition Metal Catalysts: Catalyst, Synthesis and Characterization. Coord. Chem. Rev. 2025, 522, 216195. [Google Scholar] [CrossRef]
- You, L.-X.; Ren, B.-Y.; He, Y.-K.; Wang, S.-J.; Sun, Y.-G.; Dragutan, V.; Xiong, G.; Ding, F. Structural Features of Lanthanide Coordination Polymers with Catalytic Properties. J. Mol. Struct. 2024, 1304, 137687. [Google Scholar] [CrossRef]
- Liu, Y.; Lyu, S.; Wen, F.; Nie, W.; Wang, S. Polymer-Encapsulated Metal Complex Catalysts: An Emerging and Efficient Platform for Electrochemical CO2 Reduction. J. Mater. Sci. Technol. 2024, 172, 33–50. [Google Scholar] [CrossRef]
- Singh, H.D.; Misra, R.; Sarkar, S.; Chakraborty, D.; Nandi, S. Selective Electroreduction of CO2 to Value-Added C1 and C2 Products Using MOF and COF-Based Catalysts. Adv. Compos. Hybrid. Mater. 2024, 7, 209. [Google Scholar] [CrossRef]
- Hussain, S.; Zhu, C.; Yue, Z.; Hao, Y.; Gao, R.; Wei, J. Rational Design of Signal Amplifying Fluorescent Conjugated Polymers for Environmental Monitoring Applications: Recent Advances and Perspectives. Coord. Chem. Rev. 2024, 499, 215480. [Google Scholar] [CrossRef]
- Yang, G.; Ni, Z.-P.; Tong, M.-L. Recent Advances in Metal Cluster-Containing Spin-Crossover Coordination Compounds. Coord. Chem. Rev. 2024, 521, 216146. [Google Scholar] [CrossRef]
- Gong, H.; Yue, M.; Xue, F.; Zhang, S.; Ma, M.; Mu, X.; Xue, H.; Ma, R. Recent Progress in Advanced Conjugated Coordination Polymers for Rechargeable Batteries. Adv. Funct. Mater. 2025, 35, 2411854. [Google Scholar] [CrossRef]
- Khrizanforov, M.N.; Zagidullin, A.A.; Shekurov, R.P.; Akhmatkhanova, F.F.; Bezkishko, I.A.; Ermolaev, V.V.; Miluykov, V.A. Inorganic and Organometallic Polymers as Energy Storage Materials and Enhancing Their Efficiency. Comments Inorg. Chem. 2024, 44, 98–142. [Google Scholar] [CrossRef]
- Kong, D.; Lian, L.; Wang, Y.; Hussain, A.; Liu, Y. A Review on Carbon-Based and Coordination Polymer-Based Materials for Adsorption of SO2 from Flue Gas. Chem. Eng. J. 2024, 500, 157089. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, J.; Ahmad, F.; Xiao, Y.; Guan, J.; Shu, T.; Zhang, X. Bimetallic Coordination Polymers: Synthesis and Applications in Biosensing and Biomedicine. Biosensors 2024, 14, 117. [Google Scholar] [CrossRef]
- Cao, X.; Feng, N.; Huang, Q.; Liu, Y. Nanoscale Metal–Organic Frameworks and Nanoscale Coordination Polymers: From Synthesis to Cancer Therapy and Biomedical Imaging. ACS Appl. Bio Mater. 2024, 7, 7965–7986. [Google Scholar] [CrossRef]
- Kothawade, S.; Shende, P. Coordination Bonded Stimuli-Responsive Drug Delivery System of Chemical Actives with Metal in Pharmaceutical Applications. Coord. Chem. Rev. 2024, 510, 215851. [Google Scholar] [CrossRef]
- Nguyen, N.T.T.; Nguyen, T.T.T.; Ge, S.; Liew, R.K.; Nguyen, D.T.C.; Tran, T. Van Recent Progress and Challenges of MOF-Based Nanocomposites in Bioimaging, Biosensing and Biocarriers for Drug Delivery. Nanoscale Adv. 2024, 6, 1800–1821. [Google Scholar] [CrossRef]
- Cui, J.-W.; Yang, J.-H.; Sun, J.-K. Organic Cage-Based Frameworks: From Synthesis to Applications. Chem. Synth. 2024, 4, 30. [Google Scholar] [CrossRef]
- Xiong, Y.; Feng, Q.; Lu, L.; Qiu, X.; Knoedler, S.; Panayi, A.C.; Jiang, D.; Rinkevich, Y.; Lin, Z.; Mi, B.; et al. Metal–Organic Frameworks and Their Composites for Chronic Wound Healing: From Bench to Bedside. Adv. Mater. 2024, 36, 2302587. [Google Scholar] [CrossRef]
- Halcrow, M.A. Mix and Match—Controlling the Functionality of Spin-Crossover Materials through Solid Solutions and Molecular Alloys. Dalton Trans. 2024, 53, 13694–13708. [Google Scholar] [CrossRef]
- Adegoke, K.A.; Oyebamiji, A.K.; Adeola, A.O.; Olabintan, A.B.; Oyedotun, K.O.; Mamba, B.B.; Bello, O.S. Iron-Based Metal–Organic Frameworks and Derivatives for Electrochemical Energy Storage and Conversion. Coord. Chem. Rev. 2024, 517, 215959. [Google Scholar] [CrossRef]
- Benzaqui, M.; Wahiduzzaman, M.; Zhao, H.; Hasan, M.R.; Steenhaut, T.; Saad, A.; Marrot, J.; Normand, P.; Grenèche, J.-M.; Heymans, N.; et al. A Robust Eco-Compatible Microporous Iron Coordination Polymer for CO 2 Capture. J. Mater. Chem. A Mater. 2022, 10, 8535–8545. [Google Scholar] [CrossRef]
- Qi, X.; Chang, T.; Zhu, Z.; Hao, Y.; Liu, Y.; Hou, J. Post-Synthetic Modification of Isomorphic Coordination Polymers with Metal Ion Exchange and Catalytic Cycloaddition of CO2. J. Solid. State Chem. 2021, 304, 122604. [Google Scholar] [CrossRef]
- Lytvynenko, A.S.; Kolotilov, S.V.; Kiskin, M.A.; Cador, O.; Golhen, S.; Aleksandrov, G.G.; Mishura, A.M.; Titov, V.E.; Ouahab, L.; Eremenko, I.L.; et al. Redox-Active Porous Coordination Polymers Prepared by Trinuclear Heterometallic Pivalate Linking with the Redox-Active Nickel(II) Complex: Synthesis, Structure, Magnetic and Redox Properties, and Electrocatalytic Activity in Organic Compound Dehalogenation in Heterogeneous Medium. Inorg. Chem. 2014, 53, 4970–4979. [Google Scholar] [CrossRef] [PubMed]
- Noda, D.; Tahara, A.; Sunada, Y.; Nagashima, H. Non-Precious-Metal Catalytic Systems Involving Iron or Cobalt Carboxylates and Alkyl Isocyanides for Hydrosilylation of Alkenes with Hydrosiloxanes. J. Am. Chem. Soc. 2016, 138, 2480–2483. [Google Scholar] [CrossRef] [PubMed]
- Kamitani, M.; Kanemitsu, K.; Yujiri, K.; Yuge, H. Iron Pivalate Complexes Containing PNN Pincer Ligand: Synthesis and Application to Dehydrogenative Hydrosilane Coupling. Organometallics 2023, 42, 1839–1848. [Google Scholar] [CrossRef]
- Bushuev, V.A.; Gogoleva, N.V.; Nikolaevskii, S.A.; Novichihin, S.V.; Yambulatov, D.S.; Kiskin, M.A.; Eremenko, I.L. Coordination Polymer Based on a Triangular Carboxylate Core {Fe(μ3-O)(μ-O2CR)6} and an Aliphatic Diamine. Molecules 2024, 29, 2125. [Google Scholar] [CrossRef]
- Dulcevscaia, G.M.; Filippova, I.G.; Speldrich, M.; van Leusen, J.; Kravtsov, V.C.; Baca, S.G.; Kögerler, P.; Liu, S.-X.; Decurtins, S. Cluster-Based Networks: 1D and 2D Coordination Polymers Based on {MnFe 2 (μ 3 -O)}-Type Clusters. Inorg. Chem. 2012, 51, 5110–5117. [Google Scholar] [CrossRef]
- Baca, S.G.; Secker, T.; Mikosch, A.; Speldrich, M.; van Leusen, J.; Ellern, A.; Kögerler, P. Avoiding Magnetochemical Overparametrization, Exemplified by One-Dimensional Chains of Hexanuclear Iron(III) Pivalate Clusters. Inorg. Chem. 2013, 52, 4154–4156. [Google Scholar] [CrossRef]
- Abdulwahab, K.O.; Malik, M.A.; O’Brien, P.; Timco, G.A.; Tuna, F.; Muryn, C.A.; Winpenny, R.E.P.; Pattrick, R.A.D.; Coker, V.S.; Arenholz, E. A One-Pot Synthesis of Monodispersed Iron Cobalt Oxide and Iron Manganese Oxide Nanoparticles from Bimetallic Pivalate Clusters. Chem. Mater. 2014, 26, 999–1013. [Google Scholar] [CrossRef]
- Abdulwahab, K.; Malik, M.A.; O’Brien, P.; Govender, K.; Muryn, C.A.; Timco, G.A.; Tuna, F.; Winpenny, R.E.P. Synthesis of Monodispersed Magnetite Nanoparticles from Iron Pivalate Clusters. Dalton Trans. 2013, 42, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Abdulwahab, K.O.; Malik, M.A.; O’Brien, P.; Timco, G.A. A Direct Synthesis of Water Soluble Monodisperse Cobalt and Manganese Ferrite Nanoparticles from Iron Based Pivalate Clusters by the Hot Injection Thermolysis Method. Mater. Sci. Semicond. Process 2014, 27, 303–308. [Google Scholar] [CrossRef]
- Yang, L.; Xuan, W.; Webster, D.; Jagadamma, L.K.; Li, T.; Miller, D.N.; Cordes, D.B.; Slawin, A.M.Z.; Turnbull, G.A.; Samuel, I.D.W.; et al. Manipulation of the Structure and Optoelectronic Properties through Bromine Inclusion in a Layered Lead Bromide Perovskite. Chem. Mater. 2023, 35, 3801–3814. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Gupta, S.; Dutta, S.; Pati, S.K.; Bhattacharyya, S. Transition from Dion–Jacobson Hybrid Layered Double Perovskites to 1D Perovskites for Ultraviolet to Visible Photodetection. Chem. Sci. 2023, 14, 9770–9779. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.R.; Kim, A.Y. Structural Geometry and Molecular Dynamics of Hybrid Organic–Inorganic [NH3(CH2)6NH3]CdCl4 Crystals Close to Phase Transition Temperatures. J. Mol. Struct. 2023, 1279, 134993. [Google Scholar] [CrossRef]
- Lim, A.R.; Ju, H. Organic–Inorganic Hybrid [NH3(CH2)6NH3]ZnBr4 Crystal: Structural Characterization, Phase Transitions, Thermal Properties, and Structural Dynamics. RSC Adv. 2022, 12, 28720–28727. [Google Scholar] [CrossRef]
- Cheng, L.; Xiong, X.-Y.; Zhao, Y.-M.; Wang, Y.; Wu, Q.-Y.; Wang, K.-Y. Tailoring Hybrid Aluminoborate Frameworks by Incorporating Multicomponent Cadmium–Amine Complexes with Various Conformations. Inorg. Chem. 2022, 61, 11675–11686. [Google Scholar] [CrossRef]
- Malinar, M.J.; Ćelap, M.B.; Herak, R.; Prelesnik, B. Synthesis and Structure of Aminocarboxylato(1,4-Diaminobutane)Dinitrocobalt(III) Complexes. Crystal and Molecular Structure of the δ-(—)589-CIS(NO2)trans(NH2)-(R-Alaninato)(1,4-Diaminobutane)Dinitrocobalt(III) Diastereomer. Polyhedron 1992, 11, 1169–1175. [Google Scholar] [CrossRef]
- Fernández, E.J.; Garau, A.; Laguna, A.; Lasanta, T.; Lippolis, V.; López-de-Luzuriaga, J.M.; Montiel, M.; Olmos, M.E. Long-Chain Ketimine Synthesis in a Gold−Thallium Polymer. Organometallics 2010, 29, 2951–2959. [Google Scholar] [CrossRef]
- Maestre, M.C.; Mosquera, M.E.G.; Jacobsen, H.; Jiménez, G.; Cuenca, T. Cyclopentadienyl-Silyl-Amido versus Imido Niobium Complexes. The Role of Additional Amine Functionalities: A Combined Experimental and Theoretical Study. Organometallics 2008, 27, 839–849. [Google Scholar] [CrossRef]
- Yambulatov, D.S.; Voronina, J.K.; Goloveshkin, A.S.; Svetogorov, R.D.; Veber, S.L.; Efimov, N.N.; Matyukhina, A.K.; Nikolaevskii, S.A.; Eremenko, I.L.; Kiskin, M.A. Change in the Electronic Structure of the Cobalt(II) Ion in a One-Dimensional Polymer with Flexible Linkers Induced by a Structural Phase Transition. Int. J. Mol. Sci. 2022, 24, 215. [Google Scholar] [CrossRef]
- Randall, C.R.; Shu, L.; Chiou, Y.M.; Hagen, K.S.; Ito, M.; Kitajima, N.; Lachicotte, R.J.; Zang, Y.; Que, L. X-Ray Absorption Pre-Edge Studies of High-Spin Iron(II) Complexes. Inorg. Chem. 1995, 34, 1036–1039. [Google Scholar] [CrossRef]
- Hayashi, Y.; Santoro, S.; Azuma, Y.; Himo, F.; Ohshima, T.; Mashima, K. Enzyme-like Catalysis via Ternary Complex Mechanism: Alkoxy-Bridged Dinuclear Cobalt Complex Mediates Chemoselective O-Esterification over N-Amidation. J. Am. Chem. Soc. 2013, 135, 6192–6199. [Google Scholar] [CrossRef] [PubMed]
- Nikolaevskii, S.A.; Petrov, P.A.; Sukhikh, T.S.; Yambulatov, D.S.; Kiskin, M.A.; Sokolov, M.N.; Eremenko, I.L. Simple Synthetic Protocol to Obtain 3d-4f-Heterometallic Carboxylate Complexes of N-Heterocyclic Carbenes. Inorganica Chim. Acta 2020, 508, 119643. [Google Scholar] [CrossRef]
- Spek, A.L. Structure Validation in Chemical Crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148–155. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. In Handbook of Vibrational Spectroscopy; Griffiths, P.R., Ed.; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Castellucci, E.; Angeloni, L.; Neto, N.; Sbrana, G. IR and Raman Spectra of A 2,2′-Bipyridine Single Crystal: Internal Modes. Chem. Phys. 1979, 43, 365–373. [Google Scholar] [CrossRef]
- Strukl, J.S.; Walter, J.L. Infrared and Raman Spectra of Heterocyclic Compounds-III. The Infrared Studies and Normal Vibrations of 2,2′-Bipyridine. Spectrochim. Acta A 1971, 27, 209–221. [Google Scholar] [CrossRef]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-Ray Sources for Single-Crystal Structure Determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied Topological Analysis of Crystal Structures with the Program Package Topospro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
H-Bond | Symmetry Equivalent | D-H, Å | H…A, Å | D…A, Å | D-H…A, deg. |
---|---|---|---|---|---|
N1-H1A…O4 | 1 − x, −y, 1 − z | 0.91 | 2.21 | 3.027(3) | 149 |
N2-H2A…O2 | 3/2 − x, 1/2 + y, 3/2 − z | 0.91 | 2.36 | 3.080(3) | 135 |
N2-H2B…O2 | x, 1 + y, z | 0.91 | 2.29 | 3.194(3) | 172 |
N3-H3B…O4 | 1 − x, 1 − y, 1 − z | 0.91 | 2.15 | 3.056(3) | 172 |
N4-H4A…O2 | 1 − x, −y, 1 − z | 0.91 | 2.42 | 3.049(3) | 126 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bushuev, V.A.; Yambulatov, D.S.; Nikolaevskii, S.A.; Kiskin, M.A.; Eremenko, I.L. 2D Coordination Polymer [Fe(piv)2(dab)2]n. Molbank 2025, 2025, M1987. https://doi.org/10.3390/M1987
Bushuev VA, Yambulatov DS, Nikolaevskii SA, Kiskin MA, Eremenko IL. 2D Coordination Polymer [Fe(piv)2(dab)2]n. Molbank. 2025; 2025(2):M1987. https://doi.org/10.3390/M1987
Chicago/Turabian StyleBushuev, Vladimir A., Dmitriy S. Yambulatov, Stanislav A. Nikolaevskii, Mikhail A. Kiskin, and Igor L. Eremenko. 2025. "2D Coordination Polymer [Fe(piv)2(dab)2]n" Molbank 2025, no. 2: M1987. https://doi.org/10.3390/M1987
APA StyleBushuev, V. A., Yambulatov, D. S., Nikolaevskii, S. A., Kiskin, M. A., & Eremenko, I. L. (2025). 2D Coordination Polymer [Fe(piv)2(dab)2]n. Molbank, 2025(2), M1987. https://doi.org/10.3390/M1987