8-Iodo-4-methyl-2-oxo-2H-chromen-7-yl Benzenesulfonate
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. General Information
4.2. Synthesis of 7-Hydroxy-4-methyl-2H-chromen-2-one (1a)
4.3. Synthesis of 7-Hydroxy-8-iodo-4-methyl-2H-chromen-2-one (1b)
4.4. Synthesis of 4-Methyl-2-oxo-2H-chromen-7-yl Benzenesulfonate (3a)
4.5. Synthesis of 8-Iodo-4-methyl-2-oxo-2H-chromen-7-yl Benzenesulfonate (3b)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Annunziata, F.; Pinna, C.; Dallavalle, S.; Tamborini, L.; Pinto, A. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. Int. J. Mol. Sci. 2020, 21, 4618. [Google Scholar] [CrossRef] [PubMed]
- Keri, R.S.; Budagumpi, S.; Somappa, S.B. Synthetic and natural coumarins as potent anticonvulsant agents: A review with structure–activity relationship. J. Clin. Pharm. Ther. 2022, 47, 915–931. [Google Scholar] [CrossRef] [PubMed]
- Flores-Morales, V.; Villasana-Ruíz, A.P.; Garza-Veloz, I.; González-Delgado, S.; Martinez-Fierro, M.L. Therapeutic effects of coumarins with different substitution patterns. Molecules 2023, 28, 2413. [Google Scholar] [CrossRef]
- Yu, S.-M.; Hu, D.-H.; Zhang, J.-J. Umbelliferone exhibits anticancer activity via the induction of apoptosis and cell cycle arrest in HepG2 hepatocellular carcinoma cells. Mol. Med. Rep. 2015, 12, 3869–3873. [Google Scholar] [CrossRef]
- Kandil, S.; Westwell, A.D.; McGuigan, C. 7-Substituted umbelliferone derivatives as androgen receptor antagonists for the potential treatment of prostate and breast cancer. Bioorg. Med. Chem. Lett. 2016, 26, 2000–2004. [Google Scholar] [CrossRef] [PubMed]
- Medina, F.G.; González-Marrero, J.; Macías-Alonso, M.; González, M.C.; Córdova-Guerrero, I.; García, A.G.T.; Osegueda-Robles, S. Coumarin heterocyclic derivatives: Chemical synthesis and biological activity. Nat. Prod. Rep. 2015, 32, 1472–1507. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Li, M.-L.; Yuan, M.-S. Antifeedant activities of tutin and 7-hydroxycoumarin acylation derivatives against Mythimna separate. J. Pestic. Sci. 2012, 37, 95–98. [Google Scholar] [CrossRef]
- Orhan, I.E.; Deniz, S.S.; Salmas, R.E.; Durdagi, S.; Epifano, F.; Genovese, S.; Fiorito, S. Combined molecular modeling and cholinesterase inhibition studies on some natural and semisynthetic O-alkylcoumarin derivatives. Bioorg. Chem. 2019, 84, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Juvonen, R.O.; Pentikäinen, O.; Huuskonen, J.; Timonen, J.; Kärkkäinen, O.; Heikkinen, A.; Fashe, M.; Raunio, H. In vitro sulfonation of 7-hydroxycoumarin derivatives in liver cytosol of human and six animal species. Xenobiotica 2020, 50, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Schamschurin, I. <NS> Nr. 25 Chimija Nr. 1 <1941> 1, 5. Chem. Abstr. 1941, 5876. [Google Scholar]
- Esajan, W. Chem. Abstr. 1958, 12854.
- Sulfonates of Hydroxycoumarins. Current Patent Assignee: BASF SE—US4618622, 21 October 1986.
- Yang, S.-P.; Wang, D.-Q.; Hanc, L.-J.; Liu, Y.-F. 4-Methyl-2-oxo-2,3-dihydro-1-benzopyran-7-yl benzenesulfonate. Acta Cryst. 2008, E64, o2088. [Google Scholar] [CrossRef] [PubMed]
- Becerra, D.; Rojas, H.; Castillo, J.-C. Synthesis, spectroscopic, and thermal analyses of 2-oxo-1,2-dihydroquinolin-8-yl 4-chlorobenzoate. Molbank 2023, 2023, M1672. [Google Scholar] [CrossRef]
- Castillo, J.-C.; Becerra, D.; Macías, M.A. Crystal structure, hirshfeld surface analysis, and computational study of quinolin-8-yl 4-chlorobenzoate: Insights from spectroscopic, thermal, and antitumor properties. Crystals 2023, 13, 694. [Google Scholar] [CrossRef]
- Timonen, J.M.; Nieminen, R.M.; Sareila, O.; Goulas, A.; Moilanen, L.J.; Haukka, M.; Vainiotalo, P.; Moilanen, E.; Aulaskari, P.H. Synthesis and anti-inflammatory effects of a series of novel 7-hydroxycoumarin derivatives. Eur. J. Med. Chem. 2011, 46, 3845–3850. [Google Scholar] [CrossRef] [PubMed]
- Gavinolla, V.; Thangalipalli, S.; Bandalla, S.G.; Panduga, R.; Neella, C.K. A thermo-regulated highly regioselective mono and dihalogenations of phenols and anilines in water employing new Lewis base adducts (LBAs) [DBUBr]+Br− and [DBUI]+I− as green reagents: A simple approach. New J. Chem. 2023, 47, 20777–20784. [Google Scholar] [CrossRef]
Number | δH (Mult, J in Hz) | δC (ppm) | COSY | HMBC |
---|---|---|---|---|
Me | 2.39 (s) | 18.1 | -- | H–3 (3J) |
2 | -- | 159.2 | -- | H–3 (2J) |
3 | 6.41 (s) | 114.5 | -- | Me (3J) |
4 | -- | 152.6 | -- | Me (2J) |
4a | -- | 118.9 | -- | H–5 (2J) Me (3J) H–3 (3J) H–6 (3J) H–8 (3J) |
5 | 7.78 (d, J = 8.4) | 127.1 | H–6 (3J) | -- |
6 | 7.06 (dd, J = 8.6, 2.2) | 118.1 | H–5 (3J) | H–8 (3J) |
7 | -- | 150.6 | -- | H–6 (2J) H–8 (2J) H–5 (3J) |
8 | 7.12 (d, J = 2.4) | 110.3 | -- | H–6 (3J) |
8a | -- | 153.3 | -- | H–8 (2J) H–5 (3J) |
i | -- | 133.9 | -- | Hm (3J) |
o | 7.92 (dd, J = 8.4, 1.2) | 128.3 | Hm (3J) | Hm (2J) Hp (3J) |
m | 7.69 (dd, J = 8.0, 8.0) | 130.0 | Ho (3J) Hp (3J) | Ho (2J) |
p | 7.85 (tt, J = 7.4, 1.2) | 135.4 | Hm (3J) | Ho (3J) |
Number | δH (Mult, J in Hz) | δC (ppm) | COSY | HMBC |
---|---|---|---|---|
Me | 2.42 (s) | 18.2 | -- | H–3 (3J) |
2 | -- | 159.2 | -- | H–3 (2J) |
3 | 6.45 (s) | 114.8 | -- | Me (3J) |
4 | -- | 152.7 | -- | Me (2J) |
4a | -- | 119.1 | -- | Me (3J) H–3 (3J) H–6 (3J) |
5 | 7.84 (d, J = 8.8) | 126.8 | H–6 (3J) | -- |
6 | 7.16 (d, J = 8.8) | 117.9 | H–5 (3J) | -- |
7 | -- | 152.0 | -- | H–6 (2J) H–5 (3J) |
8 | -- | 84.0 | -- | H–6 (3J) |
8a | -- | 153.8 | -- | H–5 (3J) |
i | -- | 134.7 | -- | Hm (3J) |
o | 7.95 (d, J = 7.6) | 128.4 | Hm (3J) | Hm (2J) Hp (3J) |
m | 7.71 (dd, J = 7.8, 7.8) | 130.1 | Ho (3J) Hp (3J) | -- |
p | 7.88 (t, J = 7.4) | 135.6 | Hm (3J) | Ho (3J) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulido-Moreno, L.; Parra-Tibocha, A.; Ladino-Bejarano, A.; Macías, M.A.; Becerra, D.; Castillo, J.-C. 8-Iodo-4-methyl-2-oxo-2H-chromen-7-yl Benzenesulfonate. Molbank 2024, 2024, M1869. https://doi.org/10.3390/M1869
Pulido-Moreno L, Parra-Tibocha A, Ladino-Bejarano A, Macías MA, Becerra D, Castillo J-C. 8-Iodo-4-methyl-2-oxo-2H-chromen-7-yl Benzenesulfonate. Molbank. 2024; 2024(3):M1869. https://doi.org/10.3390/M1869
Chicago/Turabian StylePulido-Moreno, Luis, Andrés Parra-Tibocha, Alexander Ladino-Bejarano, Mario A. Macías, Diana Becerra, and Juan-Carlos Castillo. 2024. "8-Iodo-4-methyl-2-oxo-2H-chromen-7-yl Benzenesulfonate" Molbank 2024, no. 3: M1869. https://doi.org/10.3390/M1869
APA StylePulido-Moreno, L., Parra-Tibocha, A., Ladino-Bejarano, A., Macías, M. A., Becerra, D., & Castillo, J. -C. (2024). 8-Iodo-4-methyl-2-oxo-2H-chromen-7-yl Benzenesulfonate. Molbank, 2024(3), M1869. https://doi.org/10.3390/M1869