Synthesis of Pyridinium Moiety Containing Triazolyl Purines
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seley-Radtke, K.L.; Yates, M.K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antivir. Res. 2018, 154, 66–86. [Google Scholar] [CrossRef] [PubMed]
- Legraverend, M. Recent advances in the synthesis of purine derivatives and their precursors. Tetrahedron 2008, 64, 8585–8603. [Google Scholar] [CrossRef]
- Shaw, G. 4.09-Purines. In Comprehensive Heterocyclic Chemistry; Katritzky, A.R., Rees, C.W., Eds.; Elsevier: Pergamon, Turkey, 1984; Volume 5, pp. 499–605. [Google Scholar]
- Joule, J.A.; Mills, K. Purines. In Heterocyclic Chemistry at a Glance; John Wiley & Sons, Ltd.: Chichester, UK, 2012; pp. 122–131. [Google Scholar]
- Hocek, M. Syntheses of purines bearing carbon substituents in positions 2, 6 or 8 by metal- or organometal-mediated C-C bond-forming reactions. Eur. J. Org. Chem. 2003, 2003, 245–254. [Google Scholar] [CrossRef]
- Manvar, A.; Shah, A. Microwave-assisted chemistry of purines and xanthines. An overview Dedicated to the late Professor V.M. Thakor on his 94th birthday. Tetrahedron 2013, 69, 8105–8127. [Google Scholar] [CrossRef]
- Novosjolova, I.; Bizdēna, Ē.; Turks, M. Synthesis and applications of azolylpurine and azolylpurine nucleoside derivatives. Eur. J. Org. Chem. 2015, 2015, 3629–3649. [Google Scholar] [CrossRef]
- Kovaļovs, A.; Novosjolova, I.; Bizdēna, Ē.; Bižane, I.; Skardziute, L.; Kazlauskas, K.; Jursenas, S.; Turks, M. 1,2,3-Triazoles as leaving groups in purine chemistry: A three-step synthesis of N6-substituted-2-triazolyl-adenine nucleosides and photophysical properties thereof. Tetrahedron Lett. 2013, 54, 850–853. [Google Scholar] [CrossRef]
- Zaķis, J.M.; Ozols, K.; Novosjolova, I.; Vilšķērsts, R.; Mishnev, A.; Turks, M. Sulfonyl group dance: A tool for the synthesis of 6-azido-2-sulfonylpurine derivatives. J. Org. Chem. 2020, 85, 4753–4771. [Google Scholar] [CrossRef] [PubMed]
- Legraverend, M.; Grierson, D.S. The purines: Potent and versatile small molecule inhibitors and modulators of key biological targets. Bioorg. Med. Chem. 2006, 14, 3987–4006. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Singh, J.; Ojha, R.; Singh, H.; Kaur, M.; Bedi, P.M.S.; Nepali, K. Design strategies, structure-activity relationship and mechanistic insights for purines as kinase inhibitors. Eur. J. Med. Chem. 2016, 112, 298–346. [Google Scholar] [CrossRef]
- Matarazzo, A.; Brow, J.; Hudson, R.H.E. Synthesis and photophysical evaluation of new fluorescent 7-arylethynyl-7-deazaadenosine analogs. Can. J. Chem. 2018, 96, 1093–1100. [Google Scholar] [CrossRef]
- Saito, Y.; Hudson, R.H.E. Base-modified fluorescent purine nucleosides and nucleotides for use in oligonucleotide probes. J. Photochem. Photobiol. C Photochem. Rev. 2018, 36, 48–73. [Google Scholar] [CrossRef]
- Venkatesham, A.; Pillalamarri, S.R.; Wit, F.; Lescrinier, E.; Debyser, Z.; Aerschot, A. Propargylated purine deoxynucleosides: New tools for fluorescence imaging strategies. Molecules 2019, 24, 1–16. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zatorska, D.; Kim, J.; Aguirre, J.; Llauger, L.; She, Y.; Wu, N.; Immormino, R.M.; Gewirth, D.T.; Chiosis, G. Identification of potent water-soluble purine-scaffold inhibitors of the heat shock protein 90. J. Med. Chem. 2006, 49, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Gołdyn, M.R.; Larowska, D.; Bartoszak-Adamska, E. Novel Purine Alkaloid Cocrystals with Trimesic and Hemimellitic Acids as Coformers: Synthetic Approach and Supramolecular Analysis. Cryst. Growth Des. 2021, 21, 396–413. [Google Scholar] [CrossRef] [PubMed]
- Carreira, A.R.F.; Veloso, T.; Schaeffer, N.; Pereira, J.L.; Ventura, S.P.M.; Rizzi, C.; Plénet, J.S.; Passos, H.; Coutinho, J.A.P. Synthesis of purine-based ionic liquids and their applications. Molecules 2021, 26, 6958. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.M.; McLaughlin, C.K.; Lantero, D.R.; Manderville, R.A. Biomarkers for phenol carcinogen exposure act as pH-sensing fluorescent probes. J. Am. Chem. Soc. 2007, 129, 1894–1895. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Mital, S. Electronic and photocatalytic properties of purine(s)-capped CdS nanoparticles in the presence of tryptophol. J. Mol. Catal. A Chem. 2004, 219, 65–71. [Google Scholar] [CrossRef]
- Jovaisaite, J.; Cīrule, D.; Jeminejs, A.; Novosjolova, I.; Turks, M.; Baronas, P.; Komskis, R.; Tumkevicius, S.; Jonusauskas, G.; Jursenas, S. Proof of principle of a purine D-A-D′ ligand based ratiometric chemical sensor harnessing complexation induced intermolecular PET. Phys. Chem. Chem. Phys. 2020, 22, 26502–26508. [Google Scholar] [CrossRef]
- Burcevs, A.; Sebris, A.; Traskovskis, K.; Chu, H.W.; Chang, H.T.; Jovaišaitė, J.; Juršėnas, S.; Turks, M.; Novosjolova, I. Synthesis of Fluorescent C–C Bonded Triazole-Purine Conjugates. J. Fluoresc. 2024, 34, 1091–1097. [Google Scholar] [CrossRef]
- Sebris, A.; Novosjolova, I.; Traskovskis, K.; Kokars, V.; Tetervenoka, N.; Vembris, A.; Turks, M. Photophysical and Electrical Properties of Highly Luminescent 2/6-Triazolyl-Substituted Push-Pull Purines. ACS Omega 2022, 7, 5242–5253. [Google Scholar] [CrossRef]
- Šišuļins, A.; Bucevičius, J.; Tseng, Y.T.; Novosjolova, I.; Traskovskis, K.; Bizdēna, Ē.; Chang, H.T.; Tumkevičius, S.; Turks, M. Synthesis and fluorescent properties of N(9)-alkylated 2-amino-6-triazolylpurines and 7-deazapurines. Beilstein J. Org. Chem. 2019, 15, 474–489. [Google Scholar] [CrossRef] [PubMed]
- Sajomsang, W.; Gonil, P.; Ruktanonchai, U.R.; Petchsangsai, M.; Opanasopit, P.; Puttipipatkhachorn, S. Effects of molecular weight and pyridinium moiety on water-soluble chitosan derivatives for mediated gene delivery. Carbohydr. Polym. 2013, 91, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.B.; Islam, M.I.; Nath, N.; Emran, T.B.; Rahman, M.R.; Sharma, R.; Matin, M.M. Recent Advances in Pyridine Scaffold: Focus on Chemistry, Synthesis, and Antibacterial Activities. BioMed Res. Int. 2023, 2023, 9967591. [Google Scholar] [CrossRef] [PubMed]
- Wade, D.A.; Tucker, S.A. Spectrochemical evaluation of pyridinium chloride as a possible selective fluorescence quenching agent of polycyclic aromatic hydrocarbons in water and neat acetonitrile. Talanta 2000, 53, 571–578. [Google Scholar] [CrossRef]
- Hann, R.A.; Rosseinsky, D.R.; White, T.P. Inter- and intra-molecular quenching of anthracene fluorescence by pyridinium ion in solution. J. Chem. Soc. Faraday Trans. 2 1974, 70, 1522–1525. [Google Scholar] [CrossRef]
Solvent | Compound 3 | Compound 4 | ||||
---|---|---|---|---|---|---|
λabs max, nm | λem max, nm | QY, % | λabs max, nm | λem max, nm | QY, % | |
MeCN | - | - | - | 360 | 457 | <0.5 |
MeOH | - | - | - | 362 | 461 | <0.5 |
H2O | 362 | 457 | <0.5 | 363 | 463 | <0.5 |
DMSO | 361 | 428 | <0.5 | 362 | 454 | <0.5 |
DCM | 359 | 565 | <0.5 | 360 | 452 | <0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burcevs, A.; Turks, M.; Novosjolova, I. Synthesis of Pyridinium Moiety Containing Triazolyl Purines. Molbank 2024, 2024, M1855. https://doi.org/10.3390/M1855
Burcevs A, Turks M, Novosjolova I. Synthesis of Pyridinium Moiety Containing Triazolyl Purines. Molbank. 2024; 2024(3):M1855. https://doi.org/10.3390/M1855
Chicago/Turabian StyleBurcevs, Aleksejs, Māris Turks, and Irina Novosjolova. 2024. "Synthesis of Pyridinium Moiety Containing Triazolyl Purines" Molbank 2024, no. 3: M1855. https://doi.org/10.3390/M1855
APA StyleBurcevs, A., Turks, M., & Novosjolova, I. (2024). Synthesis of Pyridinium Moiety Containing Triazolyl Purines. Molbank, 2024(3), M1855. https://doi.org/10.3390/M1855